Skip to content
2000
image of Phosphatidylethanolamine: Structural Component and Beyond

Abstract

Phosphatidylethanolamine (PE) is a major phospholipid in biological membranes and plays essential roles in autophagy, cell signaling, protein function, and membrane integrity. Its dynamic, conical structure supports membrane fluidity and curvature, which are crucial for processes such as signaling, autophagosome formation, membrane fusion, vesicle trafficking, and proper protein folding. Although PE is abundant, its significance for human health and disease has only recently come to light. Altered PE levels or disruptions in its metabolism have been associated with various conditions, including metabolic disorders such as non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases like Alzheimer’s and Parkinson’s, and several cancers. PE is synthesized primarily via two pathways: the CDP-ethanolamine (Kennedy) pathway and the mitochondrial phosphatidylserine decarboxylase (PSD) pathway, both of which are critical for maintaining lipid homeostasis. Advances in lipidomics now allow comprehensive profiling of PE species, facilitating the identification of disease-specific lipid biomarkers. This review expands current knowledge on the physiological roles of PE and elucidates mechanisms underlying PE-related lipid dysregulation in human disease.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240415642251205104453
2026-01-13
2026-01-30
Loading full text...

Full text loading...

References

  1. Drescher S. van Hoogevest P. The phospholipid research center: Current research in Phospholipids and their use in drug delivery. Pharmaceutics 2020 12 12 1235 10.3390/pharmaceutics12121235 33353254
    [Google Scholar]
  2. Li F. Shi Z. Cheng M. Biology and Roles in Diseases of Selenoprotein I Characterized by Ethanolamine Phosphotransferase Activity and Antioxidant Potential. J. Nutr. 2023 153 11 3164 3172 10.1016/j.tjnut.2023.03.023 36963501
    [Google Scholar]
  3. Cockcroft S. Mammalian lipids: Structure, synthesis and function. Essays Biochem. 2021 65 5 813 845 10.1042/EBC20200067 34415021
    [Google Scholar]
  4. Angelova A. Angelov B. Drechsler M. Bizien T. Gorshkova Y.E. Deng Y. Plasmalogen-based liquid crystalline multiphase structures involving docosapentaenoyl derivatives inspired by biological cubic membranes. Front. Cell Dev. Biol. 2021 9 617984 10.3389/fcell.2021.617984 33644054
    [Google Scholar]
  5. Joubert F. Puff N. Mitochondrial cristae architecture and functions: Lessons from minimal model systems. Membranes 2021 11 7 465 10.3390/membranes11070465 34201754
    [Google Scholar]
  6. Afzal N. Lederer W.J. Jafri M.S. Mannella C.A. Effect of crista morphology on mitochondrial ATP output: A computational study. Curr Res Physiol 2021 4 163 176 10.1016/j.crphys.2021.03.005 34396153
    [Google Scholar]
  7. Ali O. Szabó A. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 2023 24 21 15693 10.3390/ijms242115693 37958678
    [Google Scholar]
  8. Croitoru C.M. De novo design of membrane protein channels. PHD thesis, Aston University 2024 10.48780/PUBLICATIONS.ASTON.AC.UK.00047417
    [Google Scholar]
  9. Casares D. Escribá P.V. Rosselló C.A. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019 20 9 2167 10.3390/ijms20092167 31052427
    [Google Scholar]
  10. Nosal H. Moser K. Warzała M. Holzer A. Stańczyk D. Sabura E. Selected fatty acids esters as potential PHB-V bioplasticizers: Effect on mechanical properties of the polymer. J. Polym. Environ. 2021 29 1 38 53 10.1007/s10924‑020‑01841‑5
    [Google Scholar]
  11. Waghule T. Saha R.N. Alexander A. Singhvi G. Tailoring the multi-functional properties of phospholipids for simple to complex self-assemblies. J. Control. Release 2022 349 460 474 10.1016/j.jconrel.2022.07.014 35841998
    [Google Scholar]
  12. Moreau H. Bayer E.M. Lipids: Plant biology’s slippery superheroes. Front Plant Sci 2023 1 1273816 10.3389/fphgy.2023.1273816
    [Google Scholar]
  13. Ventura R. Martínez-Ruiz I. Hernández-Alvarez M.I. Phospholipid membrane transport and associated diseases. Biomedicines 2022 10 5 1201 10.3390/biomedicines10051201 35625937
    [Google Scholar]
  14. Müller G.A. Müller T.D. (Patho)Physiology of glycosylphosphatidylinositol-anchored proteins I: Localization at plasma membranes and extracellular compartments. Biomolecules 2023 13 5 855 10.3390/biom13050855 37238725
    [Google Scholar]
  15. Abnosi M.H. Hosseini S. Di-ethanolamine causes the mortality of bone marrow mesenchymal stem cell due to metabolic imbalance and oxidative stress. Avicenna J Med Biochem 2020 8 1 35 43 10.34172/ajmb.2020.05
    [Google Scholar]
  16. Quan X. Bakovic M. Regulation of membrane phospholipid homeostasis in neurodegenerative diseases. OBM Geriatrics 2021 5 3 176 10.21926/obm.geriatr.2103176
    [Google Scholar]
  17. Anari M. Montgomery M.K. Phospholipid metabolism in the liver – Implications for phosphatidylserine in non-alcoholic fatty liver disease. Biochem. Pharmacol. 2023 213 115621 10.1016/j.bcp.2023.115621 37217141
    [Google Scholar]
  18. St Germain M. Iraji R. Bakovic M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine pathway or phosphatidylserine decarboxylation. Front. Nutr. 2023 9 1094273 10.3389/fnut.2022.1094273 36687696
    [Google Scholar]
  19. Saukko-Paavola A.J. Klemm R.W. Remodelling of mitochondrial function by import of specific lipids at multiple membrane‐contact sites. FEBS Lett. 2024 598 10 1274 1291 10.1002/1873‑3468.14813 38311340
    [Google Scholar]
  20. Marzoog B.A. Vlasova T.I. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021 19 1 59 75 10.15584/ejcem.2021.1.9
    [Google Scholar]
  21. Jennings W. Epand R.M. CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chem. Phys. Lipids 2020 230 104914 10.1016/j.chemphyslip.2020.104914 32360136
    [Google Scholar]
  22. Szlasa W. Zendran I. Zalesińska A. Tarek M. Kulbacka J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020 52 5 321 342 10.1007/s10863‑020‑09846‑4 32715369
    [Google Scholar]
  23. Dong Y. Li C. Tu S. Phosphatidylethanolamine protects nucleus pulposus cells from oxidative stress‐induced cellular senescence and extracellular matrix degradation by promoting autophagy. JOR Spine 2025 8 2 70058 10.1002/jsp2.70058 40309337
    [Google Scholar]
  24. Pandey M.K. Uncovering the lipid web: Discovering the multifaceted roles of lipids in human diseases and therapeutic opportunities. Int. J. Mol. Sci. 2023 24 17 13223 10.3390/ijms241713223 37686028
    [Google Scholar]
  25. Tahami Monfared A.A. Byrnes M.J. White L.A. Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022 11 2 553 569 10.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
  26. Zuo Y. Amireddy N. Cai Q. Implications of mitochondrial phosphatidylethanolamine in neuronal health and neurodegeneration. Neural Regen. Res. 2025 10.4103/NRR.NRR‑D‑25‑00201 40618265
    [Google Scholar]
  27. Zhang X. Gao R. Yang L. Astrocytic functions and lipid metabolism: Correlations and therapeutic targets in Alzheimer’s disease and glioblastoma. Clin. Transl. Discov. 2024 4 2 287 10.1002/ctd2.287
    [Google Scholar]
  28. Chiurchiù V. Tiberi M. Matteocci A. Lipidomics of bioactive lipids in Alzheimer’s and Parkinson’s diseases: Where are we? Int. J. Mol. Sci. 2022 23 11 6235 10.3390/ijms23116235 35682914
    [Google Scholar]
  29. Reddy P.H. Oliver D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019 8 5 488 10.3390/cells8050488 31121890
    [Google Scholar]
  30. Mal S. Malik U. Pal D. Mishra A. Insight γ-Secretase: Structure, function, and role in Alzheimer’s disease. Curr. Drug Targets 2021 22 12 1376 1403 10.2174/1389450121999201230203709 33390127
    [Google Scholar]
  31. Hur J.Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med. 2022 54 4 433 446 10.1038/s12276‑022‑00754‑8 35396575
    [Google Scholar]
  32. Do H.N. Devkota S. Bhattarai A. Wolfe M.S. Miao Y. Effects of presenilin-1 familial Alzheimer’s disease mutations on γ-secretase activation for cleavage of amyloid precursor protein. Commun. Biol. 2023 6 1 174 10.1038/s42003‑023‑04539‑1 36788318
    [Google Scholar]
  33. Hida M. Yasuda K. Toyokawa M. Amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein processing in oligodendrocytes. Brain Res. 2025 1855 149601 10.1016/j.brainres.2025.149601 40154861
    [Google Scholar]
  34. Krawczuk D. Kulczyńska-Przybik A. Mroczko B. The potential regulators of amyloidogenic pathway of APP processing in Alzheimer’s disease. Biomedicines 2025 13 7 1513 10.3390/biomedicines13071513 40722590
    [Google Scholar]
  35. Villegas S. Roda A.R. Serra-Mir G. Montoliu-Gaya L. Tiessler L. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen. Res. 2022 17 8 1666 1674 10.4103/1673‑5374.332127 35017413
    [Google Scholar]
  36. Srinivasan E. Chandrasekhar G. Chandrasekar P. Alpha-Synuclein aggregation in Parkinson’s disease. Front. Med. 2021 8 736978 10.3389/fmed.2021.736978 34733860
    [Google Scholar]
  37. Moors T.E. Milovanovic D. Defining a lewy body: Running up the hill of shifting definitions and evolving concepts. J. Parkinsons Dis. 2024 14 1 17 33 10.3233/JPD‑230183 38189713
    [Google Scholar]
  38. Muddapu V.R. Chakravarthy V.S. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci. Rep. 2021 11 1 1754 10.1038/s41598‑021‑81185‑9 33462293
    [Google Scholar]
  39. Patel D. Witt S.N. Ethanolamine and phosphatidylethanolamine: Partners in health and disease. Oxid. Med. Cell. Longev. 2017 2017 1 4829180 10.1155/2017/4829180 28785375
    [Google Scholar]
  40. Hu C. Deng J. Yu Y. Unveiling the causal effects of phosphatidylethanolamine (18:1_0:0) via glutamine conjugate of C 6 H 10 O 2 (2) and X-23648 in Parkinson’s disease: Insights from mediation Mendelian randomization. Neurol. Res. 2025 Jul 1 14 10.1080/01616412.2025.2536076 40740103
    [Google Scholar]
  41. Sanluca C. Spagnolo P. Mancinelli R. Interaction between α-Synuclein and bioactive lipids: Neurodegeneration, disease biomarkers and emerging therapies. Metabolites 2024 14 7 352 10.3390/metabo14070352 39057675
    [Google Scholar]
  42. Wang S. Zhang S. Liou L.C. Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc. Natl. Acad. Sci. USA 2014 111 38 E3976 E3985 10.1073/pnas.1411694111 25201965
    [Google Scholar]
  43. Ge P. Dawson V.L. Dawson T.M. PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease. Mol. Neurodegener. 2020 15 1 20 10.1186/s13024‑020‑00367‑7 32169097
    [Google Scholar]
  44. Langerscheidt F. Wied T. Al Kabbani M.A. van Eimeren T. Wunderlich G. Zempel H. Genetic forms of tauopathies: Inherited causes and implications of Alzheimer’s disease-like TAU pathology in primary and secondary tauopathies. J. Neurol. 2024 271 6 2992 3018 10.1007/s00415‑024‑12314‑3 38554150
    [Google Scholar]
  45. Cherian A. K P D, Vijayaraghavan A. Parkinson’s disease - Genetic cause. Curr. Opin. Neurol. 2023 36 4 292 301 10.1097/WCO.0000000000001167 37366140
    [Google Scholar]
  46. Salles P.A. Pizarro-Correa X. Chaná-Cuevas P. Genetics of Parkinson’s disease: Recessive forms. Neurol Perspect 2024 4 2 100147 10.1016/j.neurop.2024.100147
    [Google Scholar]
  47. Magistrelli L. Contaldi E. Comi C. The impact of SNCA variations and its product alpha-synuclein on non-motor features of Parkinson’s disease. Life 2021 11 8 804 10.3390/life11080804 34440548
    [Google Scholar]
  48. Fernandes T. Domingues M.R. Moreira P.I. Pereira C.F. A perspective on the link between mitochondria-associated membranes (MAMs) and lipid droplets metabolism in neurodegenerative diseases. Biology 2023 12 3 414 10.3390/biology12030414 36979106
    [Google Scholar]
  49. Johri A. Chandra A. Connection lost, MAM: Errors in ER–Mitochondria connections in neurodegenerative diseases. Brain Sci. 2021 11 11 1437 10.3390/brainsci11111437 34827436
    [Google Scholar]
  50. Morato Torres C.A. Wassouf Z. Zafar F. Sastre D. Outeiro T.F. Schüle B. The role of alpha-synuclein and other Parkinson’s genes in neurodevelopmental and neurodegenerative disorders. Int. J. Mol. Sci. 2020 21 16 5724 10.3390/ijms21165724 32785033
    [Google Scholar]
  51. Zhao W. Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca2+ transport in the pathogenesis of diseases. Acta Pharmacol. Sin. 2025 46 2 271 291 10.1038/s41401‑024‑01359‑9 39117969
    [Google Scholar]
  52. Malpartida A.B. Williamson M. Narendra D.P. Wade-Martins R. Ryan B.J. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends Biochem. Sci. 2021 46 4 329 343 10.1016/j.tibs.2020.11.007 33323315
    [Google Scholar]
  53. Kartsoli S. Kostara C.E. Tsimihodimos V. Bairaktari E.T. Christodoulou D.K. Lipidomics in non-alcoholic fatty liver disease. World J. Hepatol. 2020 12 8 436 450 10.4254/wjh.v12.i8.436 32952872
    [Google Scholar]
  54. Flessa C.M. Kyrou I. Nasiri-Ansari N. Kaltsas G. Kassi E. Randeva H.S. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J. Cell. Biochem. 2022 123 10 1585 1606 10.1002/jcb.30247 35490371
    [Google Scholar]
  55. Li J. Xin Y. Li J. Chen H. Li H. Phosphatidylethanolamine N-methyltransferase: From functions to diseases. Aging Dis. 2023 14 3 879 891 10.14336/AD.2022.1025 37191416
    [Google Scholar]
  56. Shama S. Jang H. Wang X. Phosphatidylethanolamines are associated with nonalcoholic fatty liver disease (NAFLD) in obese adults and induce liver cell metabolic perturbations and hepatic stellate cell activation. Int. J. Mol. Sci. 2023 24 2 1034 10.3390/ijms24021034 36674549
    [Google Scholar]
  57. Ramanathan R. Ali A.H. Ibdah J.A. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2022 23 13 7280 10.3390/ijms23137280 35806284
    [Google Scholar]
  58. Seebacher F. Zeigerer A. Kory N. Krahmer N. Hepatic lipid droplet homeostasis and fatty liver disease. Semin. Cell Dev. Biol. 2020 108 72 81 10.1016/j.semcdb.2020.04.011 32444289
    [Google Scholar]
  59. Xu X. Poulsen K.L. Wu L. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022 7 1 287 10.1038/s41392‑022‑01119‑3 35963848
    [Google Scholar]
  60. Mukerjee S. Saeedan A.S. Ansari M.N. Singh M. Polyunsaturated fatty acids mediated regulation of membrane biochemistry and tumor cell membrane integrity. Membranes 2021 11 7 479 10.3390/membranes11070479 34203433
    [Google Scholar]
  61. Martínez-Reyes I. Chandel N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021 21 10 669 680 10.1038/s41568‑021‑00378‑6 34272515
    [Google Scholar]
  62. Fei W. Yan J. Wu X. Perturbing plasma membrane lipid: A new paradigm for tumor nanotherapeutics. Theranostics 2023 13 8 2471 2491 10.7150/thno.82189 37215569
    [Google Scholar]
  63. Kur I.M. Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch. 2024 476 12 1789 1802 10.1007/s00424‑024‑02948‑7 38573347
    [Google Scholar]
  64. Zaarour R.F. Azakir B. Hajam E.Y. Role of hypoxia-mediated autophagy in tumor cell death and survival. Cancers 2021 13 3 533 10.3390/cancers13030533 33573362
    [Google Scholar]
  65. Li W. Luo L.X. Zhou Q.Q. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biol. 2022 55 102421 10.1016/j.redox.2022.102421 35964342
    [Google Scholar]
  66. Stoica C. Ferreira A.K. Hannan K. Bakovic M. Bilayer forming phospholipids as targets for cancer therapy. Int. J. Mol. Sci. 2022 23 9 5266 10.3390/ijms23095266 35563655
    [Google Scholar]
  67. Korbecki J. Bosiacki M. Kupnicka P. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 2024 25 19 10745 10.3390/ijms251910745 39409074
    [Google Scholar]
  68. Chen X. Qiu W. Ma X. Roles and mechanisms of choline metabolism in nonalcoholic fatty liver disease and cancers. Front. Biosci. 2024 29 5 182 10.31083/j.fbl2905182 38812309
    [Google Scholar]
  69. Pascale R.M. Simile M.M. Calvisi D.F. Feo C.F. Feo F. S-Adenosylmethionine: From the discovery of its inhibition of tumorigenesis to its use as a therapeutic agent. Cells 2022 11 3 409 10.3390/cells11030409 35159219
    [Google Scholar]
  70. Chang W. Fa H. Xiao D. Wang J. Targeting phosphatidylserine for Cancer therapy: Prospects and challenges. Theranostics 2020 10 20 9214 9229 10.7150/thno.45125 32802188
    [Google Scholar]
  71. Van de Wiele C. Ustmert S. De Spiegeleer B. De Jonghe P.J. Sathekge M. Alex M. Apoptosis imaging in oncology by means of positron emission tomography: A review. Int. J. Mol. Sci. 2021 22 5 2753 10.3390/ijms22052753 33803180
    [Google Scholar]
  72. Teng D. Swanson K.D. Wang R. DHODH modulates immune evasion of cancer cells via CDP-Choline dependent regulation of phospholipid metabolism and ferroptosis. Nat. Commun. 2025 16 1 3867 10.1038/s41467‑025‑59307‑y 40274823
    [Google Scholar]
  73. Jouhet J. Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci 2013 4 494 10.3389/fpls.2013.00494 24348497
    [Google Scholar]
  74. Xie P. Zhang H. Qin Y. Xiong H. Shi C. Zhou Z. Membrane proteins and membrane curvature: Mutual interactions and a perspective on disease treatments. Biomolecules 2023 13 12 1772 10.3390/biom13121772 38136643
    [Google Scholar]
  75. Samantha A. Vrielink A. Lipid a phosphoethanolamine transferase: Regulation, structure and immune response. J. Mol. Biol. 2020 432 18 5184 5196 10.1016/j.jmb.2020.04.022 32353363
    [Google Scholar]
  76. Clarke R.J. Electrostatic switch mechanisms of membrane protein trafficking and regulation. Biophys. Rev. 2023 15 6 1967 1985 10.1007/s12551‑023‑01166‑2 38192346
    [Google Scholar]
  77. Corin K. Bowie J.U. How bilayer properties influence membrane protein folding. Protein Sci. 2020 29 12 2348 2362 10.1002/pro.3973 33058341
    [Google Scholar]
  78. Tipper D.J. Harley C.A. Spf1 and Ste24: Quality controllers of transmembrane protein topology in the eukaryotic cell. Front. Cell Dev. Biol. 2023 11 1220441 10.3389/fcell.2023.1220441 37635876
    [Google Scholar]
  79. Fraschini R. Cytokinesis in eukaryotic cells: The furrow complexity at a glance. Cells 2020 9 2 271 10.3390/cells9020271 31979090
    [Google Scholar]
  80. Gibieža P. Petrikaitė V. The regulation of actin dynamics during cell division and malignancy. Am. J. Cancer Res. 2021 11 9 4050 4069 [PMID: 34659876
    [Google Scholar]
  81. Savitskaya M.A. Zakharov I.I. Onishchenko G.E. Apoptotic features in non-apoptotic processes. Biochemistry 2022 87 3 191 206 10.1134/S0006297922030014 35526851
    [Google Scholar]
  82. Emoto K. Inadome H. Kanaho Y. Narumiya S. Umeda M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 2005 280 45 37901 37907 10.1074/jbc.M504282200 16162509
    [Google Scholar]
  83. Cikes D. Elsayad K. Sezgin E. Critical role of PCYT2 in muscle health and aging. bioRxiv 2022 10.1101/2022.03.02.482658
    [Google Scholar]
  84. Kaneko Y. Shimoda K. Ayala R. p97 and p47 function in membrane tethering in cooperation with FTCD during mitotic Golgi reassembly. EMBO J. 2021 40 9 105853 10.15252/embj.2020105853 33555040
    [Google Scholar]
  85. Settembre C. Perera R.M. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat. Rev. Mol. Cell Biol. 2024 25 3 223 245 10.1038/s41580‑023‑00676‑x 38001393
    [Google Scholar]
  86. Sakamoto H. Nakada-Tsukui K. Besteiro S. The autophagy machinery in human-parasitic protists; diverse functions for universally conserved proteins. Cells 2021 10 5 1258 10.3390/cells10051258 34069694
    [Google Scholar]
  87. Roberto T.N. Lima R.F. Pascon R.C. Idnurm A. Vallim M.A. Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans. PLoS One 2020 15 4 0230981 10.1371/journal.pone.0230981 32251488
    [Google Scholar]
  88. Rocha M. Apostolova N. Diaz-Rua R. Muntane J. Victor V.M. Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome. Trends Endocrinol. Metab. 2020 31 10 725 741 10.1016/j.tem.2020.03.004 32265079
    [Google Scholar]
  89. Baek J. He C. Afshinnia F. Michailidis G. Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat. Rev. Nephrol. 2022 18 1 38 55 10.1038/s41581‑021‑00488‑2 34616096
    [Google Scholar]
  90. Sanches P.H.G. de Melo N.C. Porcari A.M. de Carvalho L.M. Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and Machine Learning Applications in transcriptomics, proteomics, and metabolomics. Biology 2024 13 11 848 10.3390/biology13110848 39596803
    [Google Scholar]
  91. Ahmad A. Imran M. Ahsan H. Biomarkers as biomedical bioindicators: Approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics 2023 15 6 1630 10.3390/pharmaceutics15061630 37376078
    [Google Scholar]
  92. Yeo J. Parrish C.C. Mass spectrometry-based lipidomics in the characterization of individual Triacylglycerol (TAG) and Phospholipid (PL) Species from marine sources and their beneficial health effects. Rev. Fish. Sci. Aquacult. 2022 30 1 81 100 10.1080/23308249.2021.1897968
    [Google Scholar]
  93. Murphy R.C. Gaskell S.J. New applications of mass spectrometry in lipid analysis. J. Biol. Chem. 2011 286 29 25427 25433 10.1074/jbc.R111.233478 21632539
    [Google Scholar]
  94. Züllig T. Köfeler H.C. High resolution mass spectrometry in lipidomics. Mass Spectrom. Rev. 2021 40 3 162 176 10.1002/mas.21627 32233039
    [Google Scholar]
  95. Damiani T. Bonciarelli S. Thallinger G.G. Software and computational tools for LC-MS-based epilipidomics: Challenges and solutions. Anal. Chem. 2023 95 1 287 303 10.1021/acs.analchem.2c04406 36625108
    [Google Scholar]
  96. Meikle T.G. Huynh K. Giles C. Meikle P.J. Clinical lipidomics: Realizing the potential of lipid profiling. J. Lipid Res. 2021 62 100127 10.1016/j.jlr.2021.100127 34582882
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240415642251205104453
Loading
/content/journals/cmm/10.2174/0115665240415642251205104453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test