Skip to content
2000
image of Impact of Toll/Interleukin-1 Receptor Domain Protein C on Mesenchymal Stem Cells Mitochondrial Protein Expression: A Proteomic Study

Abstract

Introduction

Stem cells play a pivotal role in immunomodulation and tissue repair, and their functions can be influenced by TLR signaling. The Toll/interleukin-1 receptor domain-containing protein C (TcpC), secreted by Uropathogenic , can inhibit host immunity by interfering with TLR pathways. As mitochondria are crucial for stem cell function, there may be links between TcpC and mitochondrial homeostasis.

Methods

We isolated MSC mitochondria using magnetic beads coated with a monoclonal antibody against the outer mitochondrial membrane protein OMP25 and conducted a proteomic study to examine the MSC mitochondrial proteome with or without TcpC. Bioinformatics analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) network analysis, were employed.

Results

A total of 33 proteins with significant changes in abundance were identified: 4 increased in abundance, including glycolytic enzymes (Pkm [FC=1.6599, p=0.0217]) and stress response proteins (Ywhaq [FC=1.4666, p=0.04502]); and 29 decreased, mainly related to mitochondrial oxidative phosphorylation (e.g., Atp5f1e [FC=0.001, p=0.00120], Ndufa11 [FC=0.001, p=0.00674]) and protein quality control (e.g., Grpel1 [FC=0.46663, p=0.02083], Hspa9 [FC=0.48089, p=0.0435], Pitrm1 [FC=0.12764, p=0.01388]).

Discussion

The possible effects of TcpC on the MSC mitochondrial proteome are reported here for the first time. This information provides a clearer understanding of MSCs in the context of infectious disease and offers a scientific basis for future stem cell therapy research.

Conclusion

TCP-C intervention leads to a series of differentially expressed proteins in MSC mitochondria, which are involved in several functional clusters, including oxidative phosphorylation, respiratory electron transport, the tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism, branched-chain amino acid catabolism, and cristae formation.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240411988251128121911
2026-01-13
2026-01-30
Loading full text...

Full text loading...

References

  1. Hashemzadeh M.R. Eslaminejad M.B. Salman Yazdi R. Aflatoonian R. Evaluation of toll-like receptor 4 expression in human bone marrow mesenchymal stem cells by lipopolysaccharides from Shigella. Biologicals 2018 55 53 58 10.1016/j.biologicals.2018.06.004 30042006
    [Google Scholar]
  2. Heidarzadeh M. Avcı Ç.B. Saberianpour S. Activation of toll-like receptor signaling in endothelial progenitor cells dictates angiogenic potential: From hypothesis to actual state. Cell Tissue Res. 2021 384 2 389 401 10.1007/s00441‑020‑03405‑4 33459880
    [Google Scholar]
  3. Bowman J.D. Surani S. Horseman M.A. Endotoxin, toll-like receptor-4, and atherosclerotic heart disease. Curr. Cardiol. Rev. 2017 13 2 86 93 10.2174/1573403X12666160901145313 27586023
    [Google Scholar]
  4. Ha T. Liu L. Kelley J. Kao R. Williams D. Li C. Toll-like receptors: New players in myocardial ischemia/reperfusion injury. Antioxid. Redox Signal. 2011 15 7 1875 1893 10.1089/ars.2010.3723 21091074
    [Google Scholar]
  5. Bauer E.M. Chanthaphavong R.S. Sodhi C.P. Hackam D.J. Billiar T.R. Bauer P.M. Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension. Circ. Res. 2014 114 10 1596 1600 10.1161/CIRCRESAHA.114.303662 24637196
    [Google Scholar]
  6. Cao C. Chai Y. Shou S. Wang J. Huang Y. Ma T. Toll-like receptor 4 deficiency increases resistance in sepsis-induced immune dysfunction. Int. Immunopharmacol. 2018 54 169 176 10.1016/j.intimp.2017.11.006 29149705
    [Google Scholar]
  7. Ittensohn J. Hemberger J. Griffiths H. Keller M. Albrecht S. Miethke T. Regulation of expression of the TIR-containing protein C gene of the uropathogenic Escherichia coli strain CFT073. Pathogens 2021 10 5 549 10.3390/pathogens10050549 34062817
    [Google Scholar]
  8. Snyder G.A. Cirl C. Jiang J. Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2013 110 17 6985 6990 10.1073/pnas.1215770110 23569230
    [Google Scholar]
  9. Fang J. Ou Q. Pan J. TcpC inhibits toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88. PLoS Pathog. 2021 17 3 1009481 10.1371/journal.ppat.1009481 33788895
    [Google Scholar]
  10. Waldhuber A. Puthia M. Wieser A. Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflam-masome activation. J. Clin. Invest. 2016 126 7 2425 2436 10.1172/JCI81916 27214553
    [Google Scholar]
  11. San Roman J.A. Sánchez P.L. Villa A. Comparison of different bone marrow–derived stem cell approaches in reperfused STEMI. J. Am. Coll. Cardiol. 2015 65 22 2372 2382 10.1016/j.jacc.2015.03.563 26046730
    [Google Scholar]
  12. Houtgraaf J.H. de Jong R. Kazemi K. Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function. Circ. Res. 2013 113 2 153 166 10.1161/CIRCRESAHA.112.300730 23658436
    [Google Scholar]
  13. Bianconi V. Sahebkar A. Kovanen P. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy. Pharmacol. Ther. 2018 181 156 168 10.1016/j.pharmthera.2017.08.004 28827151
    [Google Scholar]
  14. Zhou Y. Li P. Goodwin A.J. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol. Ther. 2018 26 5 1375 1384 10.1016/j.ymthe.2018.02.020 29599080
    [Google Scholar]
  15. Veréb Z. Mázló A. Szabó A. Vessel wall-derived mesenchymal stromal cells share similar differentiation potential and immunomodulatory properties with bone marrow-derived stromal cells. Stem Cells Int. 2020 2020 1 16 10.1155/2020/8847038 33144864
    [Google Scholar]
  16. Mani A. Hotra J.W. Blackwell S.C. Goetzl L. Refuerzo J.S. Mesenchymal stem cells attenuate lipopolysaccharide-induced inflammatory response in human uterine smooth muscle cells. AJP Rep. 2020 10 3 e335 e341 10.1055/s‑0040‑1715166 33094025
    [Google Scholar]
  17. Kurte M. Vega-Letter A.M. Luz-Crawford P. Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Res. Ther. 2020 11 1 416 10.1186/s13287‑020‑01840‑2 32988406
    [Google Scholar]
  18. yao yu wang xia Progress in stem cells mitochondrial proteomics research: A review. Adv Clin Exp Med 2025 34 12 2175 2186 10.17219/acem/203862 40827930
    [Google Scholar]
  19. Fuenzalida P. Kurte M. Fernández-O’ryan C. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium–induced colitis model. Cytotherapy 2016 18 5 630 641 10.1016/j.jcyt.2016.02.002 27059200
    [Google Scholar]
  20. He X. Wang H. Jin T. Xu Y. Mei L. Yang J. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling. PLoS One 2016 11 3 0149876 10.1371/journal.pone.0149876 26930594
    [Google Scholar]
  21. Qi R. Hou J. Yang Y. Integrin beta1 mediates the effect of telocytes on mesenchymal stem cell proliferation and migration in the treatment of acute lung injury. J. Cell. Mol. Med. 2023 27 24 3980 3994 10.1111/jcmm.17976 37855260
    [Google Scholar]
  22. Kooshki H. Ghollasi M. Halabian R. Kazemi N.M. Osteogenic differentiation of preconditioned bone marrow mesenchymal stem cells with lipopolysaccharide on modified poly‐ l ‐lactic‐acid nanofibers. J. Cell. Physiol. 2019 234 5 5343 5353 10.1002/jcp.26567 30515792
    [Google Scholar]
  23. Szűcs D. Miklós V. Monostori T. Effect of inflammatory microenvironment on the regenerative capacity of adipose-derived mesenchymal stem cells. Cells 2023 12 15 1966 10.3390/cells12151966 37566046
    [Google Scholar]
  24. Gupta N. Krasnodembskaya A. Kapetanaki M. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 2012 67 6 533 539 10.1136/thoraxjnl‑2011‑201176 22250097
    [Google Scholar]
  25. Zagaglia C. Ammendolia M.G. Maurizi L. Nicoletti M. Longhi C. Urinary tract infections caused by uropathogenic escherichia coli strains—new strategies for an old pathogen. Microorganisms 2022 10 7 1425 10.3390/microorganisms10071425 35889146
    [Google Scholar]
  26. Qazi T.H. Mooney D.J. Duda G.N. Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials 2017 140 103 114 10.1016/j.biomaterials.2017.06.019 28644976
    [Google Scholar]
  27. Song M. Heo J. Chun J.Y. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev. 2014 23 6 654 663 10.1089/scd.2013.0277 24192209
    [Google Scholar]
  28. Wang W. He Y. Zhang H. Wang Y. Stem cell-derived exosomes in complicated urinary tract infections: Immuno-modulatory mechanisms and potential therapeutic strategies for urothelial repair. Stem Cell Res. Ther. 2025 16 1 422 10.1186/s13287‑025‑04548‑3 40765004
    [Google Scholar]
  29. Shin J.H. Ryu C.M. Yu H.Y. Shin D.M. Choo M.S. Current and future directions of stem cell therapy for bladder dysfunction. Stem Cell Rev. Rep. 2020 16 1 82 93 10.1007/s12015‑019‑09922‑2 31758372
    [Google Scholar]
  30. Wang X. Yao W. Wang M. Zhu J. Xia L. TLR4‐SIRT3 mechanism modulates mitochondrial and redox homeostasis and promotes EPCs recruitment and survival. Oxid. Med. Cell. Longev. 2022 2022 1 1282362 10.1155/2022/1282362 35832490
    [Google Scholar]
  31. Gao J. Feng Z. Wang X. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ. 2018 25 2 229 240 10.1038/cdd.2017.144 28914882
    [Google Scholar]
  32. Lin K.C. Fang W.F. Yeh J.N. Outcomes of combined mitochondria and mesenchymal stem cells-derived exosome therapy in rat acute respiratory distress syndrome and sepsis. World J. Stem Cells 2024 16 6 690 707 10.4252/wjsc.v16.i6.690 38948095
    [Google Scholar]
  33. Fang J. Ou Q. Wu B. TcpC inhibits M1 but promotes M2 macrophage polarization via regulation of the MAPK/NF-κB and Akt/STAT6 pathways in urinary tract infection. Cells 2022 11 17 2674 10.3390/cells11172674 36078080
    [Google Scholar]
  34. Li H. Zhang Y. Zhang J. Zhao C. Zhu Y. Han M. A quantitative proteomics analysis for small molecule Stemazole’s effect on human neural stem cells. Proteome Sci. 2020 18 1 12 10.1186/s12953‑020‑00168‑2 33298084
    [Google Scholar]
  35. Walker J.E. The ATP synthase: The understood, the uncertain and the unknown. Biochem. Soc. Trans. 2013 41 1 1 16 10.1042/BST20110773 23356252
    [Google Scholar]
  36. Schultz B.E. Chan S.I. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu. Rev. Biophys. Biomol. Struct. 2001 30 1 23 65 10.1146/annurev.biophys.30.1.23 11340051
    [Google Scholar]
  37. Li S. Chen N. He J. Luo X. Lin W. NDUFA11 may be the disulfidptosis-related biomarker of ischemic stroke based on integrated bioinformatics, clinical samples, and experimental analyses. Front. Neurosci. 2025 18 1505493 10.3389/fnins.2024.1505493 39877656
    [Google Scholar]
  38. Hejzlarová K. Kaplanová V. Nůsková H. Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem. J. 2015 466 3 601 611 10.1042/BJ20141462 25588698
    [Google Scholar]
  39. Yin Z. Agip A.N.A. Bridges H.R. Hirst J. Structural insights into respiratory complex I deficiency and assembly from the mitochondrial disease-related ndufs4−/− mouse. EMBO J. 2024 43 2 225 249 10.1038/s44318‑023‑00001‑4 38177503
    [Google Scholar]
  40. Yu A.K. Song L. Murray K.D. Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse. Hum. Mol. Genet. 2015 24 10 2848 2860 10.1093/hmg/ddv045 25652399
    [Google Scholar]
  41. Raffa S. Chin X.L.D. Stanzione R. The reduction of NDUFC2 expression is associated with mitochondrial impairment in circulating mononuclear cells of patients with acute coronary syndrome. Int. J. Cardiol. 2019 286 127 133 10.1016/j.ijcard.2019.02.027 30808603
    [Google Scholar]
  42. Rubattu S. Di Castro S. Schulz H. Ndufc2 gene inhibition is associated with mitochondrial dysfunction and increased stroke susceptibility in an animal model of complex human disease. J. Am. Heart Assoc. 2016 5 2 002701 10.1161/JAHA.115.002701 26888427
    [Google Scholar]
  43. Xie W. He Q. Zhang Y. Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury. Cell Death Dis. 2023 14 10 663 10.1038/s41419‑023‑06195‑z 37816709
    [Google Scholar]
  44. Michaelis J.B. Brunstein M.E. Bozkurt S. Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nat. Commun. 2022 13 1 5164 10.1038/s41467‑022‑32564‑x 36056001
    [Google Scholar]
  45. Zhang J.R. Shen S.Y. Zhai M.Y. Augmented microglial endoplasmic reticulum-mitochondria contacts mediate depression-like behavior in mice induced by chronic social defeat stress. Nat. Commun. 2024 15 1 5199 10.1038/s41467‑024‑49597‑z 38890305
    [Google Scholar]
  46. Asih P.R. Poljak A. Kassiou M. Ke Y.D. Ittner L.M. Differential mitochondrial protein interaction profile between human translocator protein and its A147T polymorphism variant. PLoS One 2022 17 5 0254296 10.1371/journal.pone.0254296 35522669
    [Google Scholar]
  47. Shoshan-Barmatz V. Pittala S. Mizrachi D. VDAC1 and the TSPO: Expression, interactions, and associated functions in health and disease states. Int. J. Mol. Sci. 2019 20 13 3348 10.3390/ijms20133348 31288390
    [Google Scholar]
  48. Nomura M. Shimizu S. Sugiyama T. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J. Biol. Chem. 2003 278 3 2058 2065 10.1074/jbc.M207880200 12426317
    [Google Scholar]
  49. Cesnekova J. Rodinova M. Hansikova H. Zeman J. Stiburek L. Loss of mitochondrial AAA proteases AFG3L2 and YME1L impairs mitochondrial structure and respiratory chain biogenesis. Int. J. Mol. Sci. 2018 19 12 3930 10.3390/ijms19123930 30544562
    [Google Scholar]
  50. Pareek G. Pallanck L.J. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet. 2020 16 10 1009118 10.1371/journal.pgen.1009118 33075064
    [Google Scholar]
  51. Zanotti A. Coelho J.P.L. Kaylani D. The human signal peptidase complex acts as a quality control enzyme for membrane proteins. Science 2022 378 6623 996 1000 10.1126/science.abo5672 36454823
    [Google Scholar]
  52. Yang Y Zhang J Defective prelamin A processing promotes unconventional necroptosis driven by nuclear RIPK1. Nat. Cell Biol. 2024 26 4 567 580 10.1038/s41556‑024‑01374‑2 38538837
    [Google Scholar]
  53. Wu H. Carvalho P. Voeltz G.K. Here, there, and everywhere: The importance of ER membrane contact sites. Science 2018 361 6401 eaan5835 10.1126/science.aan5835 30072511
    [Google Scholar]
  54. Madreiter-Sokolowski C.T. Ramadani-Muja J. Ziomek G. Tracking intra‐ and inter‐organelle signaling of mitochondria. FEBS J. 2019 286 22 4378 4401 10.1111/febs.15103 31661602
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240411988251128121911
Loading
/content/journals/cmm/10.2174/0115665240411988251128121911
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test