Skip to content
2000
image of Artificial Intelligence in the Management of One Health: An Update

Abstract

The One Health concept emphasizes the complex connection between environmental, animal, and human health and calls for cross-sectoral cooperation to improve ecological integrity and advance world health. The need for coordinated, preventative measures has grown more pressing as the frequency and complexity of new health risks caused by urbanization, globalization, and climate change increase. In this regard, current developments in machine learning (ML) and artificial intelligence (AI) are revolutionizing the One Health paradigm by greatly enhancing our ability to monitor, diagnose, and predict diseases. Predictive analytics, deep learning models, and decision support systems are examples of AI-driven technologies that help identify outbreaks early, allocate resources optimally, and reduce the cognitive load on medical staff. Predicting the spread of zoonotic illnesses, tracking antimicrobial resistance (AMR) trends, improving diagnostic precision, and guiding coordinated public health interventions are some of the main uses. Additionally, these technologies are being utilized to forecast health risks associated with pollution and habitat alteration, as well as to enhance environmental monitoring. In addition to highlighting the vital significance of international collaboration, moral leadership, and inclusive policymaking, this review broadens our knowledge of how AI and ML are transforming the One Health paradigm.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240402515250929232435
2025-10-28
2025-12-24
Loading full text...

Full text loading...

References

  1. Prata J.C. Ribeiro A.I. Rocha-Santos T. Prata J.C. Ribeiro A.I. Rocha-Santos T. An introduction to the concept of One Health. One Health Academic Press 2022 1 31 article 1 10.1016/B978‑0‑12‑822794‑7.00004‑6
    [Google Scholar]
  2. Edo G.I. Itoje-akpokiniovo L.O. Obasohan P. Ikpekoro V.O. Samuel P.O. Jikah A.N. Nosu L.C. Ekokotu H.A. Ugbune U. Oghroro E.E.A. Emakpor O.L. Ainyanbhor I.E. Mohammed W.A-S. Akpoghelie P.O. Owheruo J.O. Agbo J.J. Impact of environmental pollution from human activities on water, air quality and climate change. Ecological Frontiers 2024 44 5 874 889 10.1016/j.ecofro.2024.02.014
    [Google Scholar]
  3. Aderamo A. T. Olisakwe H. C. Adebayo Y. A. Esiri E. AI-powered pandemic response framework for offshore oil platforms: Ensuring safety during global health crises. Compr Res Rev Eng Technol 2024 2 1 44 63 10.57219/crret.2024.2.1.0061
    [Google Scholar]
  4. Asaaga F.A. Young J.C. Oommen M.A. Chandarana R. August J. Joshi J. Chanda M.M. Vanak A.T. Srinivas P.N. Hoti S.L. Seshadri T. Purse B.V. Operationalising the “One Health” approach in India: Facilitators of and barriers to effective cross-sector convergence for zoonoses prevention and control. BMC Public Health 2021 21 1 1517 10.1186/s12889‑021‑11545‑7 34362321
    [Google Scholar]
  5. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Aldairem A. Alrashed M. Bin Saleh K. Badreldin H.A. Al Yami M.S. Al Harbi S. Albekairy A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ 2023 23 1 689 10.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  6. Rehman A.U. Li M. Wu B. Ali Y. Rasheed S. Shaheen S. Liu X. Luo R. Zhang J. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Research 2025 5 3 1273 1287 10.1016/j.fmre.2024.04.021 40528990
    [Google Scholar]
  7. Mahajan S. Khan Z. Giri P.P. Linda A.I. Kukreti A. Tondak N. Krishnan N.N. Lahariya A.U. Operationalising ‘One Health’ through Primary Healthcare Approach. 2024 May 10.4103/PMRR.PMRR_8_24
    [Google Scholar]
  8. Pham L.T. Kumar P. Dahana W.D. Nguyen D.H. Promoting global health transdisciplinary research for planetary health: Towards achieving the 2030 Agenda for Sustainable Development. J Glob Health 2023 13 03007 10.7189/jogh.13.03007 37478355
    [Google Scholar]
  9. Archer B.N. Abdelmalik P. Cognat S. Grand P.E. Mott J.A. Pavlin B.I. Barakat A. Dowell S.F. Elmahal O. Golding J.P. Gongal G. Hamblion E. Hersey S. Kato M. Koua E.L. Krause G. Lee C.T. Morgan O. Naidoo D. Pebody R. Sadek M. Sahak M.N. Shindo N. Vicari A. Ihekweazu C. Defining collaborative surveillance to improve decision making for public health emergencies and beyond. Lancet 2023 401 10391 1831 1834 10.1016/S0140‑6736(23)01009‑7 37230104
    [Google Scholar]
  10. About One Health. 2025 Available from: https://www.cdc.gov/one-health/about/index.html
  11. Ara I. Maqbool M. Gani I. Reproductive Health of Women: Implications and attributes. Int J Curr Res Physiol Pharmacol 2022 Nov 8 18
    [Google Scholar]
  12. Aslam B. Khurshid M. Arshad M.I. Muzammil S. Rasool M. Yasmeen N. Shah T. Chaudhry T.H. Rasool M.H. Shahid A. Xueshan X. Baloch Z. Antibiotic resistance: One health one world outlook. Front Cell Infect Microbiol 2021 11 771510 10.3389/fcimb.2021.771510 34900756
    [Google Scholar]
  13. McEwen S.A. Collignon P.J. Antimicrobial resistance: A one health perspective. Microbiol Spectr 2018 6 2 6.2.10 10.1128/microbiolspec.ARBA‑0009‑2017 29600770
    [Google Scholar]
  14. Trinh P. Zaneveld J.R. Safranek S. Rabinowitz P.M. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front Public Health 2018 6 235 10.3389/fpubh.2018.00235 30214898
    [Google Scholar]
  15. Douphrate D.I. Animal agriculture and the one health approach. J Agromed 2021 26 1 85 87 10.1080/1059924X.2021.1849136 33502961
    [Google Scholar]
  16. Marchant-Forde J.N. Boyle L.A. Corrigendum: COVID-19 Effects on Livestock Production: A One Welfare Issue. Front Vet Sci 2020 7 625372 10.3389/fvets.2020.625372 33330730
    [Google Scholar]
  17. Zinsstag J. Crump L. Schelling E. Hattendorf J. Maidane Y.O. Ali K.O. Muhummed A. Umer A.A. Aliyi F. Nooh F. Abdikadir M.I. Ali S.M. Hartinger S. Mäusezahl D. de White M.B.G. Cordon-Rosales C. Castillo D.A. McCracken J. Abakar F. Cercamondi C. Emmenegger S. Maier E. Karanja S. Bolon I. de Castañeda R.R. Bonfoh B. Tschopp R. Probst-Hensch N. Cissé G. Climate change and One Health. FEMS Microbiol Lett 2018 365 11 fny085 10.1093/femsle/fny085 29790983
    [Google Scholar]
  18. Mackenzie J.S. Jeggo M. The one health approach—why is it so important? Trop Med Infect Dis 2019 4 2 88 10.3390/tropicalmed4020088 31159338
    [Google Scholar]
  19. Liao H Lyon CJ Ying B Hu T Climate change, its impact on emerging infectious diseases and new technologies to combat the challenge. 2024 13 1 2356143 Dec 10.1080/22221751.2024.2356143 38767202 PMC11138229
    [Google Scholar]
  20. Shetty S.S. D D. S H. Sonkusare S. Naik P.B. Kumari N S. Madhyastha H. Environmental pollutants and their effects on human health. Heliyon 2023 9 9 e19496 10.1016/j.heliyon.2023.e19496 37662771
    [Google Scholar]
  21. Uddin S Khanom S Islam MR Environmental mercury exposure—a continuing challenge. Mercury Toxicity Singapore Springer Nature Singapore 2023 3 32 10.1007/978‑981‑99‑7719‑2_1
    [Google Scholar]
  22. Landrigan P.J. Fuller R. Acosta N.J.R. Adeyi O. Arnold R. Basu N.N. Baldé A.B. Bertollini R. Bose-O’Reilly S. Boufford J.I. Breysse P.N. Chiles T. Mahidol C. Coll-Seck A.M. Cropper M.L. Fobil J. Fuster V. Greenstone M. Haines A. Hanrahan D. Hunter D. Khare M. Krupnick A. Lanphear B. Lohani B. Martin K. Mathiasen K.V. McTeer M.A. Murray C.J.L. Ndahimananjara J.D. Perera F. Potočnik J. Preker A.S. Ramesh J. Rockström J. Salinas C. Samson L.D. Sandilya K. Sly P.D. Smith K.R. Steiner A. Stewart R.B. Suk W.A. van Schayck O.C.P. Yadama G.N. Yumkella K. Zhong M. The Lancet Commission on pollution and health. Lancet 2018 391 10119 462 512 10.1016/S0140‑6736(17)32345‑0 29056410
    [Google Scholar]
  23. Neethirajan S Artificial intelligence and sensor innovations: Enhancing livestock welfare with a human-centric approach. Human-Centric Intelligent Systems 2024 4 77 92 10.1007/s44230‑023‑00050‑2
    [Google Scholar]
  24. Banerjee A. Chakraborty C. Kumar A. Biswas D. Emerging trends in IoT and big data analytics for biomedical and health care technologies. Handbook of Data Science Approaches for Biomedical Engineering Elsevier 2020 121 152 10.1016/B978‑0‑12‑818318‑2.00005‑2
    [Google Scholar]
  25. Peiffer-Smadja N. Rawson T.M. Ahmad R. Buchard A. Georgiou P. Lescure F.X. Birgand G. Holmes A.H. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin Microbiol Infect 2020 26 5 584 595 10.1016/j.cmi.2019.09.009 31539636
    [Google Scholar]
  26. Bozkurt A Sharma RC Challenging the Status Quo and Exploring the New Boundaries in the Age of Algorithms: Reimagining the Role of Generative AI in Distance Education and Online Learning. Asian Journal of Distance Education 2023 18 1 1 03
    [Google Scholar]
  27. Collins H. Calvo S. Greenberg K. Forman Neall L. Morrison S. Information Needs in the Precision Medicine Era: How Genetics Home Reference Can Help. Interact J Med Res 2016 5 2 e13 10.2196/ijmr.5199 27122232
    [Google Scholar]
  28. Mansour R.F. Amraoui A.E. Nouaouri I. Díaz V.G. Gupta D. Kumar S. Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systems. IEEE Access 2021 9 45137 45146 10.1109/ACCESS.2021.3066365
    [Google Scholar]
  29. Zhao A.P. Li S. Cao Z. Hu P.J-H. Wang J. Xiang Y. Xie D. Lu X. AI for science: Predicting infectious diseases. Journal of Safety Science and Resilience 2024 5 2 130 146 10.1016/j.jnlssr.2024.02.002
    [Google Scholar]
  30. Zhao T. Wang S. Ouyang C. Chen M. Liu C. Zhang J. Yu L. Wang F. Xie Y. Li J. Wang F. Grunwald S. Wong B.M. Zhang F. Qian Z. Xu Y. Yu C. Han W. Sun T. Shao Z. Qian T. Chen Z. Zeng J. Zhang H. Letu H. Zhang B. Wang L. Luo L. Shi C. Su H. Zhang H. Yin S. Huang N. Zhao W. Li N. Zheng C. Zhou Y. Huang C. Feng D. Xu Q. Wu Y. Hong D. Wang Z. Lin Y. Zhang T. Kumar P. Plaza A. Chanussot J. Zhang J. Shi J. Wang L. Artificial intelligence for geoscience: Progress, challenges, and perspectives. Innovation (Camb) 2024 5 5 100691 10.1016/j.xinn.2024.100691 39285902
    [Google Scholar]
  31. Wasilewski T. Kamysz W. Gębicki J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. Biosensors 2024 14 7 356 10.3390/bios14070356 39056632
    [Google Scholar]
  32. Esteva A. Kuprel B. Novoa R.A. Ko J. Swetter S.M. Blau H.M. Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542 7639 115 118 10.1038/nature21056 28117445
    [Google Scholar]
  33. Liu J. Wang X. Ye X. Chen D. Improved health outcomes of nasopharyngeal carcinoma patients 3 years after treatment by the AI-assisted home enteral nutrition management. Front Nutr 2025 11 1481073 10.3389/fnut.2024.1481073 39839291
    [Google Scholar]
  34. Goodman K.E. Lessler J. Cosgrove S.E. Harris A.D. Lautenbach E. Han J.H. Milstone A.M. Massey C.J. Tamma P.D. A Clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum β-lactamase–producing organism. Clin Infect Dis 2016 63 7 896 903 10.1093/cid/ciw425 27358356
    [Google Scholar]
  35. Yuan K. Luk A. Wei J. Walker A.S. Zhu T. Eyre D.W. Machine learning and clinician predictions of antibiotic resistance in Enterobacterales bloodstream infections. J Infect 2025 90 2 106388 10.1016/j.jinf.2024.106388 39742978
    [Google Scholar]
  36. Huang S. Yang J. Fong S. Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett 2020 471 61 71 10.1016/j.canlet.2019.12.007 31830558
    [Google Scholar]
  37. Kale M. Wankhede N. Pawar R. Ballal S. Kumawat R. Goswami M. Khalid M. Taksande B. Upaganlawar A. Umekar M. Kopalli S.R. Koppula S. AI-driven innovations in Alzheimer’s disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res Rev 2024 101 102497 10.1016/j.arr.2024.102497 39293530
    [Google Scholar]
  38. Gao S. Lima D. A review of the application of deep learning in the detection of Alzheimer’s disease. Int J Cogn Comput Eng 2022 3 1 8 10.1016/j.ijcce.2021.12.002
    [Google Scholar]
  39. Shafaati M. Zandi M. State-of-the-art on monkeypox virus: An emerging zoonotic disease. Infection 2022 50 6 1425 1430 10.1007/s15010‑022‑01935‑3 36192607
    [Google Scholar]
  40. Mirshafiei M. Rashedi H. Yazdian F. Rahdar A. Baino F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater Des 2024 240 112853 10.1016/j.matdes.2024.112853
    [Google Scholar]
  41. Lee H. Engineering in vitro models: Bioprinting of organoids with artificial intelligence. Cyborg Bionic Syst 2023 4 0018 10.34133/cbsystems.0018 37011281
    [Google Scholar]
  42. Zhang Y. Wang C. Qi J. Peng Y. Leave it to large language models! correction and planning with memory integration. Cyborg Bionic Syst 2024 5 0087 10.34133/cbsystems.0087 38550253
    [Google Scholar]
  43. Pradhan B. Bhattacharyya S. Pal K. IoT-Based applications in healthcare devices. J Healthc Eng 2021 2021 1 18 10.1155/2021/6632599 33791084
    [Google Scholar]
  44. Xu G. Xu S. Cao Y. Xiao K. Mao Y. Chen X-B. Dong M. Yu S. AAQ-PEKS: An Attribute-based Anti-Quantum Public Key Encryption Scheme with Keyword Search for E-healthcare Scenarios. Peer-to-Peer Netw Appl 2025 18 2 64 10.1007/s12083‑024‑01842‑4
    [Google Scholar]
  45. Zubair A. Mukhtar R. Ahmed H. Ali M. Emergencies of zoonotic diseases, drivers, and the role of artificial intelligence in tracking the epidemic and pandemics. Decoding Infection and Transmission 2024 2 100032 10.1016/j.dcit.2024.100032
    [Google Scholar]
  46. Nadeem R.M. zia ullah S. Tahir Bajwa M.T. Mahmood M. Saleem D.R.M. Maqbool M.N. Machine learning-based prediction of African Swine Fever (ASF) in Pigs. VFAST Transactions on Software Engineering 2024 12 3 199 216 10.21015/vtse.v12i3.1909
    [Google Scholar]
  47. Castle L.M. Schuh D.A. Reynolds E.E. Furst A.L. Electrochemical sensors to detect bacterial foodborne pathogens. ACS Sens 2021 6 5 1717 1730 10.1021/acssensors.1c00481 33955227
    [Google Scholar]
  48. Fathi M. Haghi Kashani M. Jameii S.M. Mahdipour E. Big data analytics in weather forecasting: A systematic review. Arch Comput Methods Eng 2022 29 2 1247 1275 10.1007/s11831‑021‑09616‑4
    [Google Scholar]
  49. Popescu S.M. Mansoor S. Wani O.A. Kumar S.S. Sharma V. Sharma A. Arya V.M. Kirkham M.B. Hou D. Bolan N. Chung Y.S. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Front Environ Sci 2024 12 1336088 10.3389/fenvs.2024.1336088
    [Google Scholar]
  50. Khanam M.M. Uddin M.K. Kazi J.U. Advances in machine learning for the detection and characterization of microplastics in the environment. Front Environ Sci 2025 13 1573579 10.3389/fenvs.2025.1573579
    [Google Scholar]
  51. Nesterovschi I. Marica I. Andrea Levei E. Bogdan Angyus S. Kenesz M. Teodora Moldovan O. Cîntă Pînzaru S. Subterranean transport of microplastics as evidenced in karst springs and their characterization using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2023 298 122811 10.1016/j.saa.2023.122811 37156178
    [Google Scholar]
  52. Holzinger A. Saranti A. Angerschmid A. Retzlaff C.O. Gronauer A. Pejakovic V. Medel-Jimenez F. Krexner T. Gollob C. Stampfer K. Digital transformation in smart farm and forest operations needs human-centered ai: Challenges and future directions. Sensors 2022 22 8 3043 10.3390/s22083043 35459028
    [Google Scholar]
  53. M Bublitz F. Oetomo A. S Sahu K. Kuang A. X Fadrique L. E Velmovitsky P. M Nobrega R. P Morita P. Disruptive technologies for environment and health research: An overview of artificial intelligence, blockchain, and internet of things. Int J Environ Res Public Health 2019 16 20 20 10.3390/ijerph16203847 31614632
    [Google Scholar]
  54. Liu X. Lu D. Zhang A. Liu Q. Jiang G. Data-Driven machine learning in environmental pollution: Gains and problems. Environ Sci Technol 2022 56 4 2124 2133 10.1021/acs.est.1c06157 35084840
    [Google Scholar]
  55. Topuz K Davazdahemami B Delen D A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases. Annals of Operations Research 2023 1 25 05 10.1007/s10479‑023‑05377‑4 37361089 PMC10189691
    [Google Scholar]
  56. Keshavamurthy R. Dixon S. Pazdernik K.T. Charles L.E. Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches. One Health 2022 15 100439 10.1016/j.onehlt.2022.100439 36277100
    [Google Scholar]
  57. Shahid O. Nasajpour M. Pouriyeh S. Parizi R.M. Han M. Valero M. Li F. Aledhari M. Sheng Q.Z. Machine learning research towards combating COVID-19: Virus detection, spread prevention, and medical assistance. J Biomed Inform 2021 117 103751 10.1016/j.jbi.2021.103751 33771732
    [Google Scholar]
  58. Kapsiani S. Howlin B.J. Random forest classification for predicting lifespan-extending chemical compounds. Sci Rep 2021 11 1 13812 10.1038/s41598‑021‑93070‑6 34226569
    [Google Scholar]
  59. Yasir M. Karim A.M. Malik S.K. Bajaffer A.A. Azhar E.I. Application of Decision-Tree-Based Machine Learning Algorithms for Prediction of Antimicrobial Resistance. Antibiotics 2022 11 11 1593 10.3390/antibiotics11111593 36421237
    [Google Scholar]
  60. Ahalt S. Avillach P. Boyles R. Bradford K. Cox S. Davis-Dusenbery B. Grossman R.L. Krishnamurthy A. Manning A. Paten B. Philippakis A. Borecki I. Chen S.H. Kaltman J. Ladwa S. Schwartz C. Thomson A. Davis S. Leaf A. Lyons J. Sheets E. Bis J.C. Conomos M. Culotti A. Desain T. Digiovanna J. Domazet M. Gogarten S. Gutierrez-Sacristan A. Harris T. Heavner B. Jain D. O’Connor B. Osborn K. Pillion D. Pleiness J. Rice K. Rupp G. Serret-Larmande A. Smith A. Stedman J.P. Stilp A. Barsanti T. Cheadle J. Erdmann C. Farlow B. Gartland-Gray A. Hayes J. Hiles H. Kerr P. Lenhardt C. Madden T. Mieczkowska J.O. Miller A. Patton P. Rathbun M. Suber S. Asare J. Building a collaborative cloud platform to accelerate heart, lung, blood, and sleep research. J Am Med Inform Assoc 2023 30 7 1293 1300 10.1093/jamia/ocad048 37192819
    [Google Scholar]
  61. Sayers E.W. Cavanaugh M. Clark K. Ostell J. Pruitt K.D. Karsch-Mizrachi I. GenBank. Nucleic Acids Res 2019 47 D1 D94 D99 10.1093/nar/gky989 30365038
    [Google Scholar]
  62. Urban M. Cuzick A. Seager J. Nonavinakere N. Sahoo J. Sahu P. Iyer V.L. Khamari L. Martinez M.C. Hammond-Kosack K.E. PHI-base – the multi-species pathogen–host interaction database in 2025. Nucleic Acids Res 2025 53 D1 D826 D838 10.1093/nar/gkae1084 39588765
    [Google Scholar]
  63. Alzubaidi L. Zhang J. Humaidi A.J. Al-Dujaili A. Duan Y. Al-Shamma O. Santamaría J. Fadhel M.A. Al-Amidie M. Farhan L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data 2021 8 1 53 10.1186/s40537‑021‑00444‑8 33816053
    [Google Scholar]
  64. Coghlan S. Coghlan B. One Health, Bioethics, and Nonhuman Ethics. Am J Bioeth 2018 18 11 3 5 10.1080/15265161.2018.1524224 30475184
    [Google Scholar]
  65. Capps B. One health ethics. Bioethics 2022 36 4 348 355 10.1111/bioe.12984 34897757
    [Google Scholar]
  66. Rizzo D.M. Lichtveld M. Mazet J.A.K. Togami E. Miller S.A. Plant health and its effects on food safety and security in a One Health framework: Four case studies. One Health Outlook 2021 3 1 6 10.1186/s42522‑021‑00038‑7 33829143
    [Google Scholar]
  67. Sinclair J.R. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev Sci Tech 2019 38 1 145 154 10.20506/rst.38.1.2949 31564744
    [Google Scholar]
  68. Morrison L. Zembower T.R. Antimicrobial Resistance. Gastrointest Endosc Clin N Am 2020 30 4 619 635 10.1016/j.giec.2020.06.004 32891221
    [Google Scholar]
  69. USDA ‘ONE HEALTH’ Approach – Fact sheet. 2021 Available from: https://www.usda.gov/sites/default/files/documents/fact-sheetone-health-06-16-2016.pdf.
  70. Prouillac C. Use of antimicrobials in a french veterinary teaching hospital: A retrospective study. Antibiotics 2021 10 11 1369 10.3390/antibiotics10111369 34827307
    [Google Scholar]
  71. Japan Antimicrobial Resistant Bacterial Bank. Available from: https://jarbb.jp/en/. 2023
  72. Yopa D.S. Massom D.M. Kiki G.M. Sophie R.W. Fasine S. Thiam O. Zinaba L. Ngangue P. Barriers and enablers to the implementation of one health strategies in developing countries: A systematic review. Front Public Health 2023 11 1252428 10.3389/fpubh.2023.1252428 38074697
    [Google Scholar]
  73. Sibim A.C. Chiba de Castro W.A. Kmetiuk L.B. Biondo A.W. One Health Index applied to countries in South America. Front Public Health 2024 12 1394118 10.3389/fpubh.2024.1394118 39440173
    [Google Scholar]
  74. Ministry of Health and Family Welfare, Home | स्वास्थ्य एवं परिवार कल्याण मंत्रालय | भारत सरकार. Available from: https://mohfw.gov.in/ (Accessed June 13, 2025).
  75. ICMR Data Repository. Available from: https://data.icmr.org.in/ (Accessed June 13, 2025).
  76. AIIMS - All India Institute Of Medical Science. Available from: https://www.aiims.edu/index.php/en (Accessed June 13, 2025)
  77. National Centre for Disease Control (NCDC). Available from: https://ncdc.mohfw.gov.in/ (Accessed June 13, 2025).
  78. National Health Authority | GOI. Available from: https://nha.gov.in/ (Accessed June 13, 2025).
  79. Home | Department of animal husbandry and dairying. Available from: https:www.dahd.gov.in/ (Accessed June 13, 2025).
  80. Animal Welfare Board of India. Available from: https://awbi.gov.in/ (Accessed June 13, 2025).
  81. Veterinary Council of India | VCI. Available from: https://vci.dahd.gov.in/ (Accessed June 13, 2025).
  82. NADRES v2 AI-Enabled. Available from: https://nivedi.res.in/Nadres_v2/livestockdiseaseforecast (Accessed June 13, 2025).
  83. NIAH:Overview. Available from: https://www.naro.go.jp/english/laboratory/niah/overview/index.html (Accessed June 13, 2025).
  84. Ministry of Environment, Forest and Climate Change. Available from: https://moef.gov.in/ (Accessed June 13, 2025).
  85. CPCB | Central Pollution Control Board. Available from: https://cpcb.nic.in/ (Accessed June 13, 2025).
  86. Welcome To Forest Survey of India. Available from: https://www.fsi.nic.in/ (Accessed June 13, 2025).
/content/journals/cmm/10.2174/0115665240402515250929232435
Loading
/content/journals/cmm/10.2174/0115665240402515250929232435
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: AI/ML ; deep learning ; treatment ; AMR ; zoonosis ; one health
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test