Skip to content
2000
image of LncRNA HULC/miR-556-5p Axis Attenuates Ang II-Induced Cardiac Microvascular Endothelial Cell Dysfunction by Suppressing the AMPK/FOXO3 Pathway

Abstract

Introduction

This study aimed to investigate the regulatory mechanism of the LncRNA HULC/miR-556-5p axis in endothelial cell injury associated with heart failure and its impact on endothelial cell function. Specifically, we explored how HULC interacts with miR-556-5p to modulate cell survival, apoptosis, inflammation, and autophagy in response to Ang II-induced injury.

Methods

Human cardiac microvascular endothelial cells (HCMECs) were utilized as the study model. Ang II-induced HCMEC injury was simulated by treating cells with 100 nM Ang II for 24 hours. The expression levels of HULC, miR-556-5p, and related proteins were assessed using techniques, such as real-time quantitative PCR and Western blot. Cell apoptosis was detected using flow cytometry, and inflammatory cytokine release (TNF-α, IL-1β, and IL-6) was analyzed ELISA. Cell viability was assessed using MTT assays. Immunoblotting was employed to evaluate the phosphorylation status of key signaling molecules, including AMPK and FOXO3.

Results

We observed a crucial role of the LncRNA HULC/miR-556-5p axis in Ang II-induced HCMEC injury. Overexpression of HULC significantly suppressed miR-556-5p activity, thereby reducing cell apoptosis and the release of inflammatory cytokines while promoting cell survival. Further experimental results indicated that miR-556-5p regulated cell function by reducing the expression level of FOXO3 and modulating the AMPK signaling pathway. Additionally, miR-556-5p markedly decreased cellular autophagy levels, further supporting its regulatory role in endothelial cell injury associated with heart failure.

Conclusion

This study elucidates the important role of the LncRNA HULC/miR-556-5p axis in endothelial cell injury associated with heart failure. Our findings provide new insights into the pathophysiological mechanisms of heart failure and highlight the potential therapeutic value of targeting this axis to improve endothelial cell function.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240395360251112160900
2026-01-26
2026-01-30
Loading full text...

Full text loading...

References

  1. Jones N.R. Roalfe A.K. Adoki I. Hobbs F.D.R. Taylor C.J. Survival of patients with chronic heart failure in the community: A systematic review and meta‐analysis. Eur. J. Heart Fail. 2019 21 11 1306 1325 10.1002/ejhf.1594 31523902
    [Google Scholar]
  2. Virani S.S. Alonso A. Benjamin E.J. Heart disease and stroke statistics—2020 update: A report from the american heart association. Circulation 2020 141 9 e139 e596 American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 10.1161/CIR.0000000000000757 31992061
    [Google Scholar]
  3. Roger V.L. Epidemiology of heart failure. Circ. Res. 2013 113 6 646 659 10.1161/CIRCRESAHA.113.300268 23989710
    [Google Scholar]
  4. Brouwers F.P. de Boer R.A. van der Harst P. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur. Heart J. 2013 34 19 1424 1431 10.1093/eurheartj/eht066 23470495
    [Google Scholar]
  5. Kelder J.C. Cramer M.J. van Wijngaarden J. The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation 2011 124 25 2865 2873 10.1161/CIRCULATIONAHA.111.019216 22104551
    [Google Scholar]
  6. Oudejans I. Mosterd A. Bloemen J.A. Clinical evaluation of geriatric outpatients with suspected heart failure: Value of symptoms, signs, and additional tests. Eur. J. Heart Fail. 2011 13 5 518 527 10.1093/eurjhf/hfr021 21422000
    [Google Scholar]
  7. Edelmann F. Knosalla C. Mörike K. Muth C. Prien P. Störk S. on Chronic NCPG, Group HFD: Chronic heart failure. Dtsch. Arztebl. Int. 2018 115 8 124 130 29526184
    [Google Scholar]
  8. Taylor C.J. Ryan R. Nichols L. Gale N. Hobbs F.D.R. Marshall T. Survival following a diagnosis of heart failure in primary care. Fam. Pract. 2017 34 2 cmw145 10.1093/fampra/cmw145 28137979
    [Google Scholar]
  9. Wang Y. Zhang J. Wang Z. Wang C. Ma D. Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction. Heart Fail. Rev. 2022 28 1 169 178 10.1007/s10741‑022‑10224‑y 35266091
    [Google Scholar]
  10. Quarta G. Gori M. Iorio A. Cardiac magnetic resonance in heart failure with preserved ejection fraction: Myocyte, interstitium, microvascular, and metabolic abnormalities. Eur. J. Heart Fail. 2020 22 7 1065 1075 10.1002/ejhf.1961 32654354
    [Google Scholar]
  11. Mohammed S.F. Hussain S. Mirzoyev S.A. Edwards W.D. Maleszewski J.J. Redfield M.M. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015 131 6 550 559 10.1161/CIRCULATIONAHA.114.009625 25552356
    [Google Scholar]
  12. Garcia-Garduño T.C. Padilla-Gutierrez J.R. Cambrón-Mora D. Valle Y. RAAS: A convergent player in ischemic heart failure and cancer. Int. J. Mol. Sci. 2021 22 13 7106 10.3390/ijms22137106 34281199
    [Google Scholar]
  13. Mullens W. Verbrugge F.H. Nijst P. Tang W.H.W. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur. Heart J. 2017 38 24 1872 1882 10.1093/eurheartj/ehx035 28329085
    [Google Scholar]
  14. Schäfer A. Fraccarollo D. Tas P. Schmidt I. Ertl G. Bauersachs J. Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur. J. Heart Fail. 2004 6 2 151 159 10.1016/j.ejheart.2003.10.009 14984722
    [Google Scholar]
  15. Yamamoto E. Kataoka K. Shintaku H. Novel mechanism and role of angiotensin II induced vascular endothelial injury in hypertensive diastolic heart failure. Arterioscler. Thromb. Vasc. Biol. 2007 27 12 2569 2575 10.1161/ATVBAHA.107.153692 17932313
    [Google Scholar]
  16. Molitor M. Rudi W.S. Garlapati V. Nox2+ myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin II receptor type 1. Cardiovasc. Res. 2021 117 1 162 177 10.1093/cvr/cvaa042 32077922
    [Google Scholar]
  17. Luchner A. Stevens T.L. Borgeson D.D. Angiotensin II in the evolution of experimental heart failure. Hypertension 1996 28 3 472 477 10.1161/01.HYP.28.3.472 8794835
    [Google Scholar]
  18. Forrester S.J. Booz G.W. Sigmund C.D. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018 98 3 1627 1738 10.1152/physrev.00038.2017 29873596
    [Google Scholar]
  19. Yan C. Wei S. Han D. LncRNA HULC shRNA disinhibits miR-377-5p to suppress the growth and invasion of hepatocellular carcinoma in vitro and hepatocarcinogenesis in vivo. Ann. Transl. Med. 2020 8 20 1294 10.21037/atm‑20‑5556 33209874
    [Google Scholar]
  20. Liu Y. Zou J. Li B. RUNX3 modulates hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells. Int. J. Mol. Med. 2017 40 1 65 74 10.3892/ijmm.2017.2998 28534977
    [Google Scholar]
  21. Wang Y. Gao H. Cao X. Role of GADD45A in myocardial ischemia/reperfusion through mediation of the JNK/p38 MAPK and STAT3/VEGF pathways. Int. J. Mol. Med. 2022 50 6 144 10.3892/ijmm.2022.5200 36331027
    [Google Scholar]
  22. Shao Q. Xia J. Wu P. Ying J. Dexmedetomidine protects cardiac microvascular endothelial cells from the damage of OGD/R through regulation of the PPARδ-mediated autophagy. Microcirc 2021 28 4 e12675
    [Google Scholar]
  23. Zhang Q. Jia M. Wang Y. Wang Q. Wu J. Cell death mechanisms in cerebral ischemia–reperfusion injury. Neurochem. Res. 2022 47 12 3525 3542 10.1007/s11064‑022‑03697‑8 35976487
    [Google Scholar]
  24. Li X. Jin F. Li Y. A novel autophagy‐related lncRNA prognostic risk model for breast cancer. J. Cell. Mol. Med. 2021 25 1 4 14 10.1111/jcmm.15980 33216456
    [Google Scholar]
  25. Liu S. Huttad L. He G. Long noncoding RNA HULC regulates the NF‐κB pathway and represents a promising prognostic biomarker in liver cancer. Cancer Med. 2023 12 4 5124 5136 10.1002/cam4.5263 36213936
    [Google Scholar]
  26. Xing Y. Sui Z. Liu Y. Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. Basic Res. Cardiol. 2022 117 1 20 10.1007/s00395‑022‑00930‑x 35389129
    [Google Scholar]
  27. Szczesny-Malysiak E. Stojak M. Campagna R. Bardoxolone methyl displays detrimental effects on endothelial bioenergetics, suppresses endothelial ET-1 release, and increases endothelial permeability in human microvascular endothelium. Oxid. Med. Cell. Longev. 2020 2020 4678252 10.1155/2020/4678252 33123312
    [Google Scholar]
  28. Neves K.B. Rios F.J. Jones R. Evans T.R.J. Montezano A.C. Touyz R.M. Microparticles from vascular endothelial growth factor pathway inhibitor-treated cancer patients mediate endothelial cell injury. Cardiovasc. Res. 2019 115 5 978 988 10.1093/cvr/cvz021 30753341
    [Google Scholar]
  29. Zuccolo E. Laforenza U. Negri S. Muscarinic M5 receptors trigger acetylcholine‐induced Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. J. Cell. Physiol. 2019 234 4 4540 4562 10.1002/jcp.27234 30191989
    [Google Scholar]
  30. Reichman-Warmusz E. Domal-Kwiatkowska D. Matysiak N. Tissue factor is unregulated in microvascular endothelial cells of patients with heart failure. J. Clin. Pathol. 2016 69 3 221 225 10.1136/jclinpath‑2015‑203172 26281862
    [Google Scholar]
  31. Wang Y. Fan Y. Song Y. Angiotensin II induces apoptosis of cardiac microvascular endothelial cells via regulating PTP1B/PI3K/Akt pathway. In Vitro Cell. Dev. Biol. Anim. 2019 55 10 801 811 10.1007/s11626‑019‑00395‑8 31502193
    [Google Scholar]
  32. Bai J. Wang Q. Qi J. Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia–reperfusion injury. Phytomedicine 2019 63 153035 10.1016/j.phymed.2019.153035 31377586
    [Google Scholar]
  33. Rössig L. Haendeler J. Mallat Z. Congestive heart failure induces endothelial cell apoptosis: Protective role of carvedilol. J. Am. Coll. Cardiol. 2000 36 7 2081 2089 10.1016/S0735‑1097(00)01002‑0 11127444
    [Google Scholar]
  34. Lin Z.B. Ci H.B. Li Y. Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J. Transl. Med. 2017 15 1 4 10.1186/s12967‑016‑1087‑2 28049487
    [Google Scholar]
  35. Ghosh A. Gao L. Thakur A. Siu P.M. Lai C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 2017 24 1 50 10.1186/s12929‑017‑0357‑5 28750629
    [Google Scholar]
  36. Mei B. Liu H. Yang S. Long non-coding RNA expression profile in permanent atrial fibrillation patients with rheumatic heart disease. Eur. Rev. Med. Pharmacol. Sci. 2018 22 20 6940 6947 30402860
    [Google Scholar]
  37. Cheng Z. The FoxO–autophagy axis in health and disease. Trends Endocrinol. Metab. 2019 30 9 658 671 10.1016/j.tem.2019.07.009 31443842
    [Google Scholar]
  38. Liu Y. Wang M. Yu Y. Li C. Zhang C. Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun. Signal. 2023 21 1 202 10.1186/s12964‑023‑01227‑9 37580705
    [Google Scholar]
  39. Chong X. Chen J. Zheng N. PIK3CA mutations-mediated downregulation of circLHFPL2 inhibits colorectal cancer progression via upregulating PTEN. Mol. Cancer 2022 21 1 118 10.1186/s12943‑022‑01531‑x 35619132
    [Google Scholar]
  40. Garcia D. Shaw R.J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 2017 66 6 789 800 10.1016/j.molcel.2017.05.032 28622524
    [Google Scholar]
  41. Herzig S. Shaw R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018 19 2 121 135 10.1038/nrm.2017.95 28974774
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240395360251112160900
Loading
/content/journals/cmm/10.2174/0115665240395360251112160900
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: heart failure ; Ang II ; LncRNA HULC ; AMPK ; endothelial cells ; miR-556-5p ; FOXO3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test