Skip to content
2000
image of Triple Negative Breast Cancer Heterogeneity and Tumour Micro-environment-based Model Systems’ Focus on Druggable Targets

Abstract

Fifteen to twenty percent of all cases of breast cancer are TNBC (triple negative breast cancer) and exhibit heterogenic features due to their diverse molecular characteristics. Additionally, their aberrant cell cycling behavior contributes to their metastatic capabilities and aggressive nature. TNBC is the only molecular subtype, which lacks the expression of hormone receptors, like estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). Hence, it is recalcitrant to hormone therapy. Also, the complex and evolving tumour microenvironment (TME) comprises blood vessels, stromal cells, immune cells, metabolic factors, extracellular matrix (ECM), and an integrated perspective of their interconnections as well as their variability with respect to TNBC progression needs to be comprehended for biomarker/druggable target(s) development and/or their validation. Such TME-based model systems can help us understand the relationship between the different TME components that affect tumour growth and metastasis. This review also catalogs biomarkers and TNBC behaviour within the TME. Also, this review discusses and analyses models that replicate various tumour subtypes that can be correlated with variability in treatment responses, thereby facilitating a better understanding of TNBC heterogeneity. Thus, by identifying biomarkers and constructing model systems, we can augment efforts to overcome treatment failure and poor outcomes in TNBC patients. These subtype-specific TNBC model systems, mirroring the intricacies of the TME, have the potential to provide a feasible and innovative approach to target TNBC cells. This review will facilitate the ongoing global efforts to develop efficacious and safe “tailor-made” drugs for TNBC patients.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240387430250508080548
2025-07-04
2025-07-20
Loading full text...

Full text loading...

References

  1. Breast Cancer. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  2. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  3. Thakur K.K. Bordoloi D. Kunnumakkara A.B. Alarming burden of triple-negative breast cancer in India. Clin. Breast Cancer 2018 18 3 e393 e399 10.1016/j.clbc.2017.07.013 28801156
    [Google Scholar]
  4. Jhan J.R. Andrechek E.R. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics 2017 18 17 1595 1609 10.2217/pgs‑2017‑0117 29095114
    [Google Scholar]
  5. Bardia A. Mayer I.A. Diamond J.R. Moroose R.L. Isakoff S.J. Starodub A.N. Shah N.C. O’Shaughnessy J. Kalinsky K. Guarino M. Abramson V. Juric D. Tolaney S.M. Berlin J. Messersmith W.A. Ocean A.J. Wegener W.A. Maliakal P. Sharkey R.M. Govindan S.V. Goldenberg D.M. Vahdat L.T. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol. 2017 35 19 2141 2148 10.1200/JCO.2016.70.8297 28291390
    [Google Scholar]
  6. Jayachandran J. Srinivasan H. Mani K.P. Molecular mechanism involved in epithelial to mesenchymal transition. Arch. Biochem. Biophys. 2021 710 108984 10.1016/j.abb.2021.108984 34252392
    [Google Scholar]
  7. Biffi G. Tuveson D.A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2020 100 1025 1058 32466724
    [Google Scholar]
  8. Shan T. Chen S. Chen X. Lin W.R. Li W. Ma J. Wu T. Ji H. Li Y. Cui X. Kang Y. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells. Int. J. Oncol. 2017 50 1 121 128 10.3892/ijo.2016.3779 27878234
    [Google Scholar]
  9. Manduca N. Maccafeo E. De Maria R. Sistigu A. Musella M. 3D cancer models: One step closer to in vitro human studies. Front. Immunol. 2023 14 1175503 10.3389/fimmu.2023.1175503 37114038
    [Google Scholar]
  10. Global cancer observatory: Data visualization. 2024 Available from: https://gco.iarc.fr/today/en/dataviz/pie?mode=cancer&group_populations=1&sexes=2&types=0-17
  11. Consolidated report of population-based cancer registries: 2012-2016. 2020 Available from: https://www.ncdirindia.org/All_Reports/Report_2020/resources/NCRP_2020_2012_16.pdf
  12. Burstein M.D. Tsimelzon A. Poage G.M. Covington K.R. Contreras A. Fuqua S.A.W. Savage M.I. Osborne C.K. Hilsenbeck S.G. Chang J.C. Mills G.B. Lau C.C. Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res. 2015 21 7 1688 1698 10.1158/1078‑0432.CCR‑14‑0432 25208879
    [Google Scholar]
  13. Jiang Y.Z. Ma D. Suo C. Shi J. Xue M. Hu X. Xiao Y. Yu K.D. Liu Y.R. Yu Y. Zheng Y. Li X. Zhang C. Hu P. Zhang J. Hua Q. Zhang J. Hou W. Ren L. Bao D. Li B. Yang J. Yao L. Zuo W.J. Zhao S. Gong Y. Ren Y.X. Zhao Y.X. Yang Y.S. Niu Z. Cao Z.G. Stover D.G. Verschraegen C. Kaklamani V. Daemen A. Benson J.R. Takabe K. Bai F. Li D.Q. Wang P. Shi L. Huang W. Shao Z.M. Genomic and transcriptomic landscape of triple-negative breast cancers: Subtypes and treatment strategies. Cancer Cell 2019 35 3 428 440.e5 10.1016/j.ccell.2019.02.001 30853353
    [Google Scholar]
  14. Koleckova M. Ehrmann J. Bouchal J. Janikova M. Brisudova A. Srovnal J. Staffova K. Svoboda M. Slaby O. Radova L. Vomackova K. Melichar B. Veverkova L. Kolar Z. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Sci. Rep. 2021 11 1 5145 10.1038/s41598‑021‑84350‑2 33664322
    [Google Scholar]
  15. Weng L. Zhou J. Guo S. Xu N. Ma R. The molecular subtyping and precision medicine in triple-negative breast cancer---based on Fudan TNBC classification. Cancer Cell Int. 2024 24 1 120 10.1186/s12935‑024‑03261‑0 38555429
    [Google Scholar]
  16. Dewi C. Fristiohady A. Amalia R. Khairul Ikram N.K. Ibrahim S. Muchtaridi M. Signaling pathways and natural compounds in triple-negative breast cancer cell line. Molecules 2022 27 12 3661 10.3390/molecules27123661 35744786
    [Google Scholar]
  17. Kumari M. Krishnamurthy P.T. Sola P. Targeted drug therapy to overcome chemoresistance in triple-negative breast cancer. Curr. Cancer Drug Targets 2020 20 8 559 572 10.2174/1568009620666200506110850 32370716
    [Google Scholar]
  18. Lehmann B.D. Pietenpol J.A. Identification and use of biomarkers in treatment strategies for triple‐negative breast cancer subtypes. J. Pathol. 2014 232 2 142 150 10.1002/path.4280 24114677
    [Google Scholar]
  19. Yin L. Duan J.J. Bian X.W. Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  20. Hanahan D. Weinberg R.A. The hallmarks of cancer. Cell 2000 100 1 57 70 10.1016/S0092‑8674(00)81683‑9 10647931
    [Google Scholar]
  21. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  22. Chen X. Yang M. Yin J. Li P. Zeng S. Zheng G. He Z. Liu H. Wang Q. Zhang F. Chen D. Tumor-associated macrophages promote epithelial–mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun. Signal. 2022 20 1 92 10.1186/s12964‑022‑00888‑2 35715860
    [Google Scholar]
  23. Ehmsen S. Ditzel H.J. Signaling pathways essential for triple-negative breast cancer stem-like cells. Stem Cells 2021 39 2 133 143 10.1002/stem.3301 33211379
    [Google Scholar]
  24. Mustafa E.H. Laven-Law G. Kikhtyak Z. Nguyen V. Ali S. Pace A.A. Iggo R. Kebede A. Noll B. Wang S. Winter J.M. Dwyer A.R. Tilley W.D. Hickey T.E. Selective inhibition of CDK9 in triple negative breast cancer. Oncogene 2024 43 3 202 215 10.1038/s41388‑023‑02892‑3 38001268
    [Google Scholar]
  25. Yaswen P. MacKenzie K.L. Keith W.N. Hentosh P. Rodier F. Zhu J. Firestone G.L. Matheu A. Carnero A. Bilsland A. Sundin T. Honoki K. Fujii H. Georgakilas A.G. Amedei A. Amin A. Helferich B. Boosani C.S. Guha G. Ciriolo M.R. Chen S. Mohammed S.I. Azmi A.S. Bhakta D. Halicka D. Niccolai E. Aquilano K. Ashraf S.S. Nowsheen S. Yang X. Therapeutic targeting of replicative immortality. Semin. Cancer Biol. 2015 35 Suppl Suppl. S104 S128 10.1016/j.semcancer.2015.03.007 25869441
    [Google Scholar]
  26. Peng F. Liao M. Qin R. Zhu S. Peng C. Fu L. Chen Y. Han B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022 7 1 286 10.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  27. Li Y. Zhan Z. Yin X. Fu S. Deng X. Targeted therapeutic strategies for triple-negative breast cancer. Front. Oncol. 2021 11 731535 10.3389/fonc.2021.731535 34778045
    [Google Scholar]
  28. Hu X. Zhang Q. Xing W. Wang W. Role of microRNA/lncRNA intertwined with the Wnt/β-catenin axis in regulating the pathogenesis of triple-negative breast cancer. Front. Pharmacol. 2022 13 814971 10.3389/fphar.2022.814971 35814205
    [Google Scholar]
  29. Wang S.M. Genome instability-derived genes are novel prognostic biomarkers for triple-negative breast cancer. Front Cell Dev Biol 2021 9 701073 10.3389/fcell.2021.701073 34322487
    [Google Scholar]
  30. Liubomirski Y. Lerrer S. Meshel T. Rubinstein-Achiasaf L. Morein D. Wiemann S. Körner C. Ben-Baruch A. Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front. Immunol. 2019 10 757 10.3389/fimmu.2019.00757 31031757
    [Google Scholar]
  31. Wang Z. Jiang Q. Dong C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol. Med. 2020 17 1 44 59 10.20892/j.issn.2095‑3941.2019.0210 32296576
    [Google Scholar]
  32. Xiao Y. Ma D. Yang Y.S. Yang F. Ding J.H. Gong Y. Jiang L. Ge L.P. Wu S.Y. Yu Q. Zhang Q. Bertucci F. Sun Q. Hu X. Li D.Q. Shao Z.M. Jiang Y.Z. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022 32 5 477 490 10.1038/s41422‑022‑00614‑0 35105939
    [Google Scholar]
  33. Loizides S. Constantinidou A. Triple negative breast cancer: Immunogenicity, tumor microenvironment, and immunotherapy. Front. Genet. 2023 13 1095839 10.3389/fgene.2022.1095839 36712858
    [Google Scholar]
  34. Shi Z.D. Pang K. Wu Z.X. Dong Y. Hao L. Qin J.X. Wang W. Chen Z.S. Han C.H. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduct. Target. Ther. 2023 8 1 113 10.1038/s41392‑023‑01383‑x 36906600
    [Google Scholar]
  35. Yadav B.S. Chanana P. Jhamb S. Biomarkers in triple negative breast cancer: A review. World J. Clin. Oncol. 2015 6 6 252 263 10.5306/wjco.v6.i6.252 26677438
    [Google Scholar]
  36. Song X. Liu Z. Yu Z. EGFR promotes the development of triple negative breast cancer through JAK/STAT3 signaling. Cancer Manag. Res. 2020 12 703 717 10.2147/CMAR.S225376 32099467
    [Google Scholar]
  37. Changavi A.A. Shashikala A. Ramji A.S. Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas. J. Lab. Physicians 2015 7 2 079 083 10.4103/0974‑2727.163129 26417156
    [Google Scholar]
  38. López-Mejía J.A. Tallabs-Utrilla L.F. Salazar-Sojo P. Mantilla-Ollarves J.C. Sánchez-Carballido M.A. Rocha-Zavaleta L. c-Kit induces migration of triple-negative breast cancer cells and is a promising target for tyrosine kinase inhibitor treatment. Int. J. Mol. Sci. 2022 23 15 8702 10.3390/ijms23158702 35955836
    [Google Scholar]
  39. Massihnia D. Galvano A. Fanale D. Perez A. Castiglia M. Incorvaia L. Listì A. Rizzo S. Cicero G. Bazan V. Castorina S. Russo A. Triple negative breast cancer: Shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget 2016 7 37 60712 60722 10.18632/oncotarget.10858 27474173
    [Google Scholar]
  40. El-Sahli S. Hua K. Sulaiman A. Chambers J. Li L. Farah E. McGarry S. Liu D. Zheng P. Lee S.H. Cui J. Ekker M. Côté M. Alain T. Li X. D’Costa V.M. Wang L. Gadde S. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis. 2021 12 1 8 10.1038/s41419‑020‑03308‑w 33414428
    [Google Scholar]
  41. Liu J.C. Voisin V. Wang S. Wang D.Y. Jones R.A. Datti A. Uehling D. Al-awar R. Egan S.E. Bader G.D. Tsao M. Mak T.W. Zacksenhaus E. Combined deletion of P ten and p53 in mammary epithelium accelerates triple‐negative breast cancer with dependency on e EF 2 K. EMBO Mol. Med. 2014 6 12 1542 1560 10.15252/emmm.201404402 25330770
    [Google Scholar]
  42. Kim S. Park J.M. Park S. Jung E. Ko D. Park M. Seo J. Nam K.D. Kang Y.K. Lee K. Farrand L. Kim Y.J. Kim J.Y. Seo J.H. Suppression of TNBC metastasis by doxazosin, a novel dual inhibitor of c-MET/EGFR. J. Exp. Clin. Cancer Res. 2023 42 1 292 10.1186/s13046‑023‑02866‑z 37924112
    [Google Scholar]
  43. Cheung A. Bax H.J. Josephs D.H. Ilieva K.M. Pellizzari G. Opzoomer J. Bloomfield J. Fittall M. Grigoriadis A. Figini M. Canevari S. Spicer J.F. Tutt A.N. Karagiannis S.N. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016 7 32 52553 52574 10.18632/oncotarget.9651 27248175
    [Google Scholar]
  44. Cheung A. Opzoomer J. Ilieva K.M. Gazinska P. Hoffmann R.M. Mirza H. Marlow R. Francesch-Domenech E. Fittall M. Dominguez Rodriguez D. Clifford A. Badder L. Patel N. Mele S. Pellizzari G. Bax H.J. Crescioli S. Petranyi G. Larcombe-Young D. Josephs D.H. Canevari S. Figini M. Pinder S. Nestle F.O. Gillett C. Spicer J.F. Grigoriadis A. Tutt A.N.J. Karagiannis S.N. Anti-folate receptor alpha–directed antibody therapies restrict the growth of triple-negative breast cancer. Clin. Cancer Res. 2018 24 20 5098 5111 10.1158/1078‑0432.CCR‑18‑0652 30068707
    [Google Scholar]
  45. Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 2020 9 1 217 10.3390/cells9010217 31952344
    [Google Scholar]
  46. Zhang W. Liu H. Zhuang W.L. Li Y. Xie L.P. Hu Y.J. A potential antibody–drug conjugate targeting human LIV1 for the treatment of triple-negative breast cancer. Pharmaceutical Fronts 2023 5 3 e187 e196 10.1055/s‑0043‑1772703
    [Google Scholar]
  47. Huang Y.H. Chu P.Y. Chen J.L. Huang C.T. Huang C.C. Tsai Y.F. Wang Y.L. Lien P.J. Tseng L.M. Liu C.Y. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci. Rep. 2021 11 1 12171 10.1038/s41598‑021‑91588‑3 34108545
    [Google Scholar]
  48. Goldenberg D.M. Stein R. Sharkey R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018 9 48 28989 29006 10.18632/oncotarget.25615 29989029
    [Google Scholar]
  49. Bardia A. Hurvitz S.A. Tolaney S.M. Loirat D. Punie K. Oliveira M. Brufsky A. Sardesai S.D. Kalinsky K. Zelnak A.B. Weaver R. Traina T. Dalenc F. Aftimos P. Lynce F. Diab S. Cortés J. O’Shaughnessy J. Diéras V. Ferrario C. Schmid P. Carey L.A. Gianni L. Piccart M.J. Loibl S. Goldenberg D.M. Hong Q. Olivo M.S. Itri L.M. Rugo H.S. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 2021 384 16 1529 1541 10.1056/NEJMoa2028485 33882206
    [Google Scholar]
  50. Chen C. Li S. Xue J. Qi M. Liu X. Huang Y. Hu J. Dong H. Ling K. PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast cancer. JCI Insight 2021 6 8 e131458 10.1172/jci.insight.131458 33884962
    [Google Scholar]
  51. Castagnoli L. Cancila V. Cordoba-Romero S.L. Faraci S. Talarico G. Belmonte B. Iorio M.V. Milani M. Volpari T. Chiodoni C. Hidalgo-Miranda A. Tagliabue E. Tripodo C. Sangaletti S. Di Nicola M. Pupa S.M. WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 2019 38 21 4047 4060 10.1038/s41388‑019‑0700‑2 30705400
    [Google Scholar]
  52. Bräutigam K. Kabore-Wolff E. Hussain A.F. Polack S. Rody A. Hanker L. Köster F. Inhibitors of PD-1/PD-L1 and ERK1/2 impede the proliferation of receptor positive and triple-negative breast cancer cell lines. J. Cancer Res. Clin. Oncol. 2021 147 10 2923 2933 10.1007/s00432‑021‑03694‑4 34185141
    [Google Scholar]
  53. Schmid P. Cortes J. Pusztai L. McArthur H. Kümmel S. Bergh J. Denkert C. Park Y.H. Hui R. Harbeck N. Takahashi M. Foukakis T. Fasching P.A. Cardoso F. Untch M. Jia L. Karantza V. Zhao J. Aktan G. Dent R. O’Shaughnessy J. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020 382 9 810 821 10.1056/NEJMoa1910549 32101663
    [Google Scholar]
  54. Jerusalem G. De Braud F.G.M. de Jonge M.J.A. Grell P. Gonçalves A. Tan T.J.Y. Greil R. Yap T.A. Lin C-C. Kornbluth K.A. Yang X. Vong C. Choudhury S. Mataraza J. Lee L.H. Otero J.A. Garralda E. 201P Phase II study of taminadenant (A2AR antagonist) + spartalizumab (anti PD-1 antibody) in patients with triple-negative breast cancer (TNBC). Immuno-Oncol Technol. 2022 16 100312 10.1016/j.iotech.2022.100312
    [Google Scholar]
  55. Seitz L.C. Ashok D. Leleti M. Powers J. Rosen B. Miles D. Sharif E. Jin L. Park A. Young S. Rieger A. Schindler U. Karakunnel J. Walters M. Final results of the phase I study in healthy volunteers of AB928, a dual antagonist of the A2aR and A2bR adenosine receptors being studied as an activator of anti-tumor immune response. Ann. Oncol. 2018 29 viii665 10.1093/annonc/mdy303.050
    [Google Scholar]
  56. Koussémou M. Lorenz K. Klotz K.N. The A2B adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS One 2018 13 8 e0202914 10.1371/journal.pone.0202914 30157211
    [Google Scholar]
  57. Sizemore G.M. Sizemore S.T. Seachrist D.D. Keri R.A. GABA(A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2). J. Biol. Chem. 2014 289 35 24102 24113 10.1074/jbc.M114.593582 25012653
    [Google Scholar]
  58. Lan J. Lu H. Samanta D. Salman S. Lu Y. Semenza G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA 2018 115 41 E9640 E9648 10.1073/pnas.1809695115 30242135
    [Google Scholar]
  59. Qasim M. Ricks-Santi L.J. Naab T.J. Rajack F. Beyene D. Abbas M. Kassim O.O. Copeland R.L. Kanaan Y. Inverse correlation of KISS1 and KISS1R expression in triple-negative breast carcinomas from African American women. Cancer Genomics Proteomics 2022 19 6 673 682 10.21873/cgp.20350 36316037
    [Google Scholar]
  60. Guo P. Huang J. Zhu B. Huang A.C. Jiang L. Fang J. Moses M.A. A rationally designed ICAM1 antibody drug conjugate eradicates late-stage and refractory triple-negative breast tumors in vivo. Sci. Adv. 2023 9 18 eabq7866 10.1126/sciadv.abq7866 37146146
    [Google Scholar]
  61. Speyer C.L. Smith J.S. Banda M. DeVries J.A. Mekani T. Gorski D.H. Metabotropic glutamate receptor-1: A potential therapeutic target for the treatment of breast cancer. Breast Cancer Res. Treat. 2012 132 2 565 573 10.1007/s10549‑011‑1624‑x 21681448
    [Google Scholar]
  62. Zheng Q. Banaszak L. Fracci S. Basali D. Dunlap S.M. Hursting S.D. Rich J.N. Hjlemeland A.B. Vasanji A. Berger N.A. Lathia J.D. Reizes O. Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells. Endocr. Relat. Cancer 2013 20 6 797 808 10.1530/ERC‑13‑0329 24025407
    [Google Scholar]
  63. Liao L. Deng L. Zhang Y.L. Yang S.Y. Andriani L. Hu S.Y. Zhang F.L. Shao Z.M. Li D.Q. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple‐negative breast cancer. Clin. Transl. Med. 2023 13 11 e1480 10.1002/ctm2.1480 38009308
    [Google Scholar]
  64. Dutta P. Sarkissyan M. Paico K. Wu Y. Vadgama J.V. MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res. Treat. 2018 170 3 477 486 10.1007/s10549‑018‑4760‑8 29594759
    [Google Scholar]
  65. Chen L. Xu G. Song X. Zhang L. Chen C. Xiang G. Wang S. Zhang Z. Wu F. Yang X. Zhang L. Ma X. Yu J. A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP1 regulation. Cancer Lett. 2024 583 216635 10.1016/j.canlet.2024.216635 38237887
    [Google Scholar]
  66. Singh D.P. Pathak R. Chintalaramulu N. Pandit A. Kumar A. Ebenezer P.J. Kumar S. Duplooy A. White M.E. Jambunathan N. Dharmakumar R. Francis J. Caveolin-1 knockout mitigates breast cancer metastasis to the lungs via integrin α3 dysregulation in 4T1-induced syngeneic breast cancer model. Cancer Gene Ther. 2024 31 11 1658 1668 10.1038/s41417‑024‑00821‑4 39244591
    [Google Scholar]
  67. Naimi A. Zare N. Amjadi E. Soltan M. High claudin-4 antigen expression in triple-negative breast cancer by the immunohistochemistry method. J. Res. Med. Sci. 2022 27 1 20 10.4103/jrms.jrms_1389_20 35419062
    [Google Scholar]
  68. Feigin M.E. Xue B. Hammell M.C. Muthuswamy S.K. G-protein–coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion. Proc. Natl. Acad. Sci. USA 2014 111 11 4191 4196 10.1073/pnas.1320239111 24599592
    [Google Scholar]
  69. Nair S. Aldrich A.J. McDonnell E. Cheng Q. Aggarwal A. Patel P. Williams M.M. Boczkowski D. Lyerly H.K. Morse M.A. Devi G.R. Immunologic targeting of FOXP3 in inflammatory breast cancer cells. PLoS One 2013 8 1 e53150 10.1371/journal.pone.0053150 23341929
    [Google Scholar]
  70. Bhola N.E. Jansen V.M. Koch J.P. Li H. Formisano L. Williams J.A. Grandis J.R. Arteaga C.L. Treatment of triple-negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and notch-dependent cancer stem cell population. Cancer Res. 2016 76 2 440 452 10.1158/0008‑5472.CAN‑15‑1640‑T 26676751
    [Google Scholar]
  71. Basho R.K. Gilcrease M. Murthy R.K. Helgason T. Karp D.D. Meric-Bernstam F. Hess K.R. Herbrich S.M. Valero V. Albarracin C. Litton J.K. Chavez-MacGregor M. Ibrahim N.K. Murray J.L. III Koenig K.B. Hong D. Subbiah V. Kurzrock R. Janku F. Moulder S.L. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 2017 3 4 509 515 10.1001/jamaoncol.2016.5281 27893038
    [Google Scholar]
  72. Rhanine Y. Bonnefoi H. Goncalves A. Debled M. Le Moulec S. Bonichon N. Macgrogan G. Arnedos M. Dubroca-Dehez B. Grellety T. Efficacy of antiandrogens in androgen receptor-positive triple-negative metastatic breast cancer: Real-life data. Breast 2024 73 103667 10.1016/j.breast.2023.103667 38160476
    [Google Scholar]
  73. Spasojevic C. Marangoni E. Vacher S. Assayag F. Meseure D. Château-Joubert S. Humbert M. Karam M. Ricort J.M. Auclair C. Regairaz M. Bièche I. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer. Oncotarget 2018 9 33 23208 23219 10.18632/oncotarget.25292 29796183
    [Google Scholar]
  74. Panigoro S.S. Kurnia D. Kurnia A. Haryono S.J. Albar Z.A. ALDH1 cancer stem cell marker as a prognostic factor in triple‐negative breast cancer. Int. J. Surg. Oncol. 2020 2020 1 1 7 10.1155/2020/7863243 32695508
    [Google Scholar]
  75. Cai Y.C. Yang H. Shan H.B. Su H.F. Jiang W.Q. Shi Y.X. PFKFB4 overexpression facilitates proliferation by promoting the G1/S transition and is associated with a poor prognosis in triple‐negative. Dis. Markers 2021 8824589 10.1155/2021/8824589 34211613
    [Google Scholar]
  76. Umemura S. Shirane M. Takekoshi S. Tokuda Y. Mori K. Osamura R. High expression of thymidine phosphorylase in basal-like breast cancers: Stromal expression in EGFR- and/or CK5/6-positive breast cancers. Oncol. Lett. 2010 1 2 261 266 10.3892/ol_00000046 22966291
    [Google Scholar]
  77. Yang Y. Zhou H. Liu W. Wu J. Yue X. Wang J. Quan L. Liu H. Guo L. Wang Z. Lian X. Zhang Q. Ganoderic acid A exerts antitumor activity against MDA‑MB‑231 human breast cancer cells by inhibiting the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Oncol. Lett. 2018 16 5 6515 6521 10.3892/ol.2018.9475 30405790
    [Google Scholar]
  78. Hussain I. Deb P. Chini A. Obaid M. Bhan A. Ansari K.I. Mishra B.P. Bobzean S.A. Udden S.M.N. Alluri P.G. Das H.K. Brothers R.M. Perrotti L.I. Mandal S.S. HOXA5 expression is elevated in breast cancer and is transcriptionally regulated by estradiol. Front. Genet. 2020 11 592436 10.3389/fgene.2020.592436 33384715
    [Google Scholar]
  79. Williams N.O. Quiroga D. Johnson C. Brufsky A. Chambers M. Bhattacharya S. Patterson M. Sardesai S.D. Stover D. Lustberg M. Noonan A.M. Cherian M. Bystry D.M. Hill K.L. Chen M. Phelps M.A. Grever M. Stephens J.A. Ramaswamy B. Carson W.E. III Wesolowski R. Phase Ib study of HSP90 inhibitor, onalespib (AT13387), in combination with paclitaxel in patients with advanced triple-negative breast cancer. Ther. Adv. Med. Oncol. 2023 15 17588359231217976 10.1177/17588359231217976 38152697
    [Google Scholar]
  80. Gatti‐Mays M.E. Karzai F.H. Soltani S.N. Zimmer A. Green J.E. Lee M.J. Trepel J.B. Yuno A. Lipkowitz S. Nair J. McCoy A. A phase II single arm pilot study of the CHK1 inhibitor prexasertib (LY2606368) in BRCA wild-type, advanced triple-negative breast cancer. Oncologist 2020 25 12 1013 e1824 10.1634/theoncologist.2020‑0491 32510664
    [Google Scholar]
  81. Synnott N.C. Murray A.M. O’Donovan N. Crown J. Duffy M.J. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Prelinical investigation with the anti-p53 drug, APR-246. J Clin Oncol. 2016 34 15_suppl 1082 1082 10.1200/JCO.2016.34.15_suppl.1082
    [Google Scholar]
  82. Tutt A.N.J. Garber J.E. Kaufman B. Viale G. Fumagalli D. Rastogi P. Gelber R.D. de Azambuja E. Fielding A. Balmaña J. Domchek S.M. Gelmon K.A. Hollingsworth S.J. Korde L.A. Linderholm B. Bandos H. Senkus E. Suga J.M. Shao Z. Pippas A.W. Nowecki Z. Huzarski T. Ganz P.A. Lucas P.C. Baker N. Loibl S. McConnell R. Piccart M. Schmutzler R. Steger G.G. Costantino J.P. Arahmani A. Wolmark N. McFadden E. Karantza V. Lakhani S.R. Yothers G. Campbell C. Geyer C.E. Jr Adjuvant olaparib for patients with BRCA1-or BRCA2-mutated breast cancer. N. Engl. J. Med. 2021 384 25 2394 2405 10.1056/NEJMoa2105215 34081848
    [Google Scholar]
  83. Kiiski J.I. Tervasmäki A. Pelttari L.M. Khan S. Mantere T. Pylkäs K. Mannermaa A. Tengström M. Kvist A. Borg Å. Kosma V.M. Kallioniemi A. Schleutker J. Bützow R. Blomqvist C. Aittomäki K. Winqvist R. Nevanlinna H. FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Res. Treat. 2017 166 1 217 226 10.1007/s10549‑017‑4388‑0 28702895
    [Google Scholar]
  84. Wang W. Wu J. Zhang P. Fei X. Zong Y. Chen X. Huang O. He J.R. Chen W. Li Y. Shen K. Zhu L. Prognostic and predictive value of Ki-67 in triple-negative breast cancer. Oncotarget 2016 7 21 31079 31087 10.18632/oncotarget.9075 27145269
    [Google Scholar]
  85. Wang S. Chen X.A. Hu J. Jiang J. Li Y. Chan-Salis K.Y. Gu Y. Chen G. Thomas C. Pugh B.F. Wang Y. ATF4 gene network mediates cellular response to the anticancer PAD inhibitor YW3-56 in triple-negative breast cancer cells. Mol. Cancer Ther. 2015 14 4 877 888 10.1158/1535‑7163.MCT‑14‑1093‑T 25612620
    [Google Scholar]
  86. Yuan Z.Y. Dai T. Wang S.S. Peng R.J. Li X.H. Qin T. Song L.B. Wang X. Overexpression of ETV4 protein in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Ther. 2014 7 1733 1742 10.2147/OTT.S66692 25328406
    [Google Scholar]
  87. Raghuwanshi S. Zhang X. Arbieva Z. Khan I. Mohammed H. Wang Z. Domling A. Camacho C.J. Gartel A.L. Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. Cell Death Discov. 2024 10 1 211 10.1038/s41420‑024‑01929‑0 38697979
    [Google Scholar]
  88. Skor M.N. Wonder E.L. Kocherginsky M. Goyal A. Hall B.A. Cai Y. Conzen S.D. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin. Cancer Res. 2013 19 22 6163 6172 10.1158/1078‑0432.CCR‑12‑3826 24016618
    [Google Scholar]
  89. Wang S. Xia D. Wang X. Cao H. Wu C. Sun Z. Zhang D. Liu H. C/EBPβ regulates the JAK/STAT signaling pathway in triple‐negative breast cancer. FEBS Open Bio 2021 11 4 1250 1258 10.1002/2211‑5463.13138 33660927
    [Google Scholar]
  90. Su J.C. Mar A.C. Wu S.H. Tai W.T. Chu P.Y. Wu C.Y. Tseng L.M. Lee T.C. Chen K.F. Liu C.Y. Chiu H.C. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis. Sci Rep 2016 6 28888 10.1038/srep28888 27364975
    [Google Scholar]
  91. Uddin M.M. Zou Y. Sharma T. Gatla H.R. Vancurova I. Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy. PLoS One 2018 13 8 e0201858 10.1371/journal.pone.0201858 30089134
    [Google Scholar]
  92. Anderson N.M. Simon M.C. The tumor microenvironment. Curr. Biol. 2020 30 16 R921 R925 10.1016/j.cub.2020.06.081 32810447
    [Google Scholar]
  93. Zheng H. Siddharth S. Parida S. Wu X. Sharma D. Tumor microenvironment: Key players in triple-negative breast cancer immunomodulation. Cancers 2021 13 13 3357 10.3390/cancers13133357 34283088
    [Google Scholar]
  94. Liu J. Chen Z. Li Y. Zhao W. Wu J. Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front. Pharmacol. 2021 12 731798 10.3389/fphar.2021.731798 34539412
    [Google Scholar]
  95. Hashimoto K. Nishimura S. Goto K. PD‑1/PD‑L1 immune checkpoint in bone and soft tissue tumors (Review). Mol. Clin. Oncol. 2025 22 4 31 10.3892/mco.2025.2826 39989606
    [Google Scholar]
  96. Lee S. Cho E.Y. Park Y.H. Ahn J.S. Im Y.H. Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol. 2013 52 1 73 81 10.3109/0284186X.2012.731520 23075422
    [Google Scholar]
  97. Revenko A. Carnevalli L.S. Sinclair C. Johnson B. Peter A. Taylor M. Hettrick L. Chapman M. Klein S. Solanki A. Gattis D. Watt A. Hughes A.M. Magiera L. Kar G. Ireland L. Mele D.A. Sah V. Singh M. Walton J. Mairesse M. King M. Edbrooke M. Lyne P. Barry S.T. Fawell S. Goldberg F.W. MacLeod A.R. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J. Immunother. Cancer 2022 10 4 e003892 10.1136/jitc‑2021‑003892 35387780
    [Google Scholar]
  98. Huang X. Cao J. Zu X. Tumor‐associated macrophages: An important player in breast cancer progression. Thorac. Cancer 2022 13 3 269 276 10.1111/1759‑7714.14268 34914196
    [Google Scholar]
  99. Mehdizadeh R. Shariatpanahi S.P. Goliaei B. Rüegg C. Targeting myeloid-derived suppressor cells in combination with tumor cell vaccination predicts anti-tumor immunity and breast cancer dormancy: An in silico experiment. Sci. Rep. 2023 13 1 5875 10.1038/s41598‑023‑32554‑z 37041172
    [Google Scholar]
  100. Abdel-Latif M. Youness R.A. Why natural killer cells in triple negative breast cancer? World J. Clin. Oncol. 2020 11 7 464 476 10.5306/wjco.v11.i7.464 32821652
    [Google Scholar]
  101. Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci. Rep. 2020 10 1 2815 10.1038/s41598‑020‑59736‑3 32071339
    [Google Scholar]
  102. Oshi M. Asaoka M. Tokumaru Y. Yan L. Matsuyama R. Ishikawa T. Endo I. Takabe K. CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int. J. Mol. Sci. 2020 21 18 6968 10.3390/ijms21186968 32971948
    [Google Scholar]
  103. Nasiri F. Kazemi M. Mirarefin S.M.J. Mahboubi Kancha M. Ahmadi Najafabadi M. Salem F. Dashti Shokoohi S. Evazi Bakhshi S. Safarzadeh Kozani P. Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front. Immunol. 2022 13 1018786 10.3389/fimmu.2022.1018786 36483567
    [Google Scholar]
  104. Jin S. Wang Q. Wu H. Pang D. Xu S. Oncolytic viruses for triple negative breast cancer and beyond. Biomark. Res. 2021 9 1 71 10.1186/s40364‑021‑00318‑4 34563270
    [Google Scholar]
  105. Xu M. Zhang T. Xia R. Wei Y. Wei X. Targeting the tumor stroma for cancer therapy. Mol. Cancer 2022 21 1 208 10.1186/s12943‑022‑01670‑1 36324128
    [Google Scholar]
  106. Yang D. Liu J. Qian H. Zhuang Q. Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp. Mol. Med. 2023 55 7 1322 1332 10.1038/s12276‑023‑01013‑0 37394578
    [Google Scholar]
  107. Wang M. Feng R. Chen Z. Shi W. Li C. Liu H. Wu K. Li D. Li X. Identification of cancer-associated fibroblast subtype of triple-negative breast cancer. J. Oncol. 2022 2022 1 14 10.1155/2022/6452636 35505821
    [Google Scholar]
  108. Wu Y. Shum H.C.E. Wu K. Vadgama J. From interaction to intervention: How mesenchymal stem cells affect and target triple-negative breast cancer. Biomedicines 2023 11 4 1182 10.3390/biomedicines11041182 37189800
    [Google Scholar]
  109. Oshi M. Tokumaru Y. Angarita F.A. Lee L. Yan L. Matsuyama R. Endo I. Takabe K. Adipogenesis in triple-negative breast cancer is associated with unfavorable tumor immune microenvironment and with worse survival. Sci. Rep. 2021 11 1 12541 10.1038/s41598‑021‑91897‑7 34131208
    [Google Scholar]
  110. Ingthorsson S. Sigurdsson V. Fridriksdottir A.J.R. Jr Jonasson J.G. Kjartansson J. Magnusson M.K. Gudjonsson T. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture. BMC Res. Notes 2010 3 1 184 10.1186/1756‑0500‑3‑184 20609224
    [Google Scholar]
  111. Fakhrejahani E. Toi M. Tumor angiogenesis: Pericytes and maturation are not to be ignored. J. Oncol. 2012 2012 1 10 10.1155/2012/261750 22007214
    [Google Scholar]
  112. Renner K. Singer K. Koehl G.E. Geissler E.K. Peter K. Siska P.J. Kreutz M. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front. Immunol. 2017 8 248 10.3389/fimmu.2017.00248 28337200
    [Google Scholar]
  113. Sun X. Wang M. Wang M. Yu X. Guo J. Sun T. Li X. Yao L. Dong H. Xu Y. Metabolic reprogramming in triple-negative breast cancer. Front. Oncol. 2020 10 428 10.3389/fonc.2020.00428 32296646
    [Google Scholar]
  114. Koppenol W.H. Bounds P.L. The Warburg effect and metabolic efficiency: Re-crunching the numbers. Science 2009 324 1029 1033
    [Google Scholar]
  115. Xu Y. Xue D. Bankhead A. III Neamati N. Why all the fuss about oxidative phosphorylation (OXPHOS)? J. Med. Chem. 2020 63 23 14276 14307 10.1021/acs.jmedchem.0c01013 33103432
    [Google Scholar]
  116. Schreier A. Zappasodi R. Serganova I. Brown K.A. Demaria S. Andreopoulou E. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer. Front. Oncol. 2023 12 1061789 10.3389/fonc.2022.1061789 36703796
    [Google Scholar]
  117. Lanning N.J. Castle J.P. Singh S.J. Leon A.N. Tovar E.A. Sanghera A. MacKeigan J.P. Filipp F.V. Graveel C.R. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer Metab. 2017 5 1 6 10.1186/s40170‑017‑0168‑x 28852500
    [Google Scholar]
  118. Zhou M. Zhao Y. Ding Y. Liu H. Liu Z. Fodstad O. Riker A.I. Kamarajugadda S. Lu J. Owen L.B. Ledoux S.P. Tan M. Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol. Mol. Cancer 2010 9 1 33 10.1186/1476‑4598‑9‑33
    [Google Scholar]
  119. Liu Q. Guan C. Liu C. Li H. Wu J. Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed. Pharmacother. 2022 156 113861 10.1016/j.biopha.2022.113861 36228375
    [Google Scholar]
  120. Hu P. Zhou P. Sun T. Liu D. Yin J. Liu L. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA. Breast Cancer Res. 2023 25 1 151 10.1186/s13058‑023‑01749‑7 38082285
    [Google Scholar]
  121. Casciano J.C. Perry C. Cohen-Nowak A.J. Miller K.D. Vande Voorde J. Zhang Q. Chalmers S. Sandison M.E. Liu Q. Hedley A. McBryan T. Tang H.Y. Gorman N. Beer T. Speicher D.W. Adams P.D. Liu X. Schlegel R. McCarron J.G. Wakelam M.J.O. Gottlieb E. Kossenkov A.V. Schug Z.T. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br. J. Cancer 2020 122 6 868 884 10.1038/s41416‑019‑0711‑3 31942031
    [Google Scholar]
  122. Rabionet M. Polonio-Alcalá E. Relat J. Yeste M. Sims-Mourtada J. Kloxin A.M. Planas M. Feliu L. Ciurana J. Puig T. Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds. Mater. Today Bio 2021 12 100155 10.1016/j.mtbio.2021.100155 34841239
    [Google Scholar]
  123. Quek L.E. van Geldermalsen M. Guan Y.F. Wahi K. Mayoh C. Balaban S. Pang A. Wang Q. Cowley M.J. Brown K.K. Turner N. Hoy A.J. Holst J. Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene 2022 41 34 4066 4078 10.1038/s41388‑022‑02408‑5 35851845
    [Google Scholar]
  124. Mullarky E. Lucki N.C. Beheshti Zavareh R. Anglin J.L. Gomes A.P. Nicolay B.N. Wong J.C.Y. Christen S. Takahashi H. Singh P.K. Blenis J. Warren J.D. Fendt S.M. Asara J.M. DeNicola G.M. Lyssiotis C.A. Lairson L.L. Cantley L.C. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. USA 2016 113 7 1778 1783 10.1073/pnas.1521548113 26831078
    [Google Scholar]
  125. Cha Y. Kim E.S. Koo J. Amino acid transporters and glutamine metabolism in breast cancer. Int. J. Mol. Sci. 2018 19 3 907 10.3390/ijms19030907 29562706
    [Google Scholar]
  126. Bahcecioglu G. Basara G. Ellis B.W. Ren X. Zorlutuna P. Breast cancer models: Engineering the tumor microenvironment. Acta Biomater. 2020 106 1 21 10.1016/j.actbio.2020.02.006 32045679
    [Google Scholar]
  127. Zolota V. Tzelepi V. Piperigkou Z. Kourea H. Papakonstantinou E. Argentou M.I. Karamanos N.K. Epigenetic alterations in triple-negative breast cancer—The critical role of extracellular matrix. Cancers 2021 13 4 713 10.3390/cancers13040713 33572395
    [Google Scholar]
  128. Winkler J. Abisoye-Ogunniyan A. Metcalf K.J. Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020 11 1 5120 10.1038/s41467‑020‑18794‑x 33037194
    [Google Scholar]
  129. Chen X. Zhang J. Dai X. DNA methylation profiles capturing breast cancer heterogeneity. BMC Genomics 2019 20 1 823 10.1186/s12864‑019‑6142‑y 31699026
    [Google Scholar]
  130. Cheng Y. He C. Wang M. Ma X. Mo F. Yang S. Han J. Wei X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2019 4 1 62 10.1038/s41392‑019‑0095‑0 31871779
    [Google Scholar]
  131. Su Y. Hopfinger N.R. Nguyen T.D. Pogash T.J. Santucci-Pereira J. Russo J. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors. J. Exp. Clin. Cancer Res. 2018 37 1 314 10.1186/s13046‑018‑0988‑8 30547810
    [Google Scholar]
  132. Huang Y. Hong W. Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022 15 1 129 10.1186/s13045‑022‑01347‑8 36076302
    [Google Scholar]
  133. Nandy D. Rajam S.M. Dutta D. A three layered histone epigenetics in breast cancer metastasis. Cell Biosci. 2020 10 1 52 10.1186/s13578‑020‑00415‑1 32257110
    [Google Scholar]
  134. Debnath P. Huirem R.S. Dutta P. Palchaudhuri S. Epithelial–mesenchymal transition and its transcription factors. Biosci. Rep. 2022 42 1 BSR20211754 10.1042/BSR20211754 34708244
    [Google Scholar]
  135. Marconi G.D. Fonticoli L. Rajan T.S. Pierdomenico S.D. Trubiani O. Pizzicannella J. Diomede F. Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells 2021 10 7 1587 10.3390/cells10071587 34201858
    [Google Scholar]
  136. Vivas-Ruiz D.E. Rosas P. Proleón A. Torrejón D. Lazo F. Tenorio-Ricca A.B. Guajardo F. Almarza C. Andrades V. Astorga J. Oropesa D. Toledo J. Vera M.J. Martínez J. Araya-Maturana R. Dubois-Camacho K. Hermoso M.A. Alvarenga V.G. Sanchez E.F. Yarlequé A. Oliveira L.S. Urra F.A. Pictolysin-III, a hemorrhagic type-III metalloproteinase isolated from Bothrops pictus (Serpentes: Viperidae) venom, reduces mitochondrial respiration and induces cytokine secretion in epithelial and stromal cell lines. Pharmaceutics 2023 15 5 1533 10.3390/pharmaceutics15051533 37242775
    [Google Scholar]
  137. Mollah F. Varamini P. Overcoming therapy resistance and relapse in TNBC: Emerging technologies to target breast cancer-associated fibroblasts. Biomedicines 2021 9 12 1921 10.3390/biomedicines9121921 34944738
    [Google Scholar]
  138. Zheng Y. Li S. Tang H. Meng X. Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front. Immunol. 2023 14 1153990 10.3389/fimmu.2023.1153990 37426654
    [Google Scholar]
  139. Liu Y. Hu Y. Xue J. Li J. Yi J. Bu J. Zhang Z. Qiu P. Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol. Cancer 2023 22 1 145 10.1186/s12943‑023‑01850‑7 37660039
    [Google Scholar]
  140. Nedeljković M. Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells 2019 8 9 957 10.3390/cells8090957 31443516
    [Google Scholar]
  141. Stengel C. Newman S.P. Leese M.P. Potter B.V.L. Reed M.J. Purohit A. Class III β-tubulin expression and in vitro resistance to microtubule targeting agents. Br. J. Cancer 2010 102 2 316 324 10.1038/sj.bjc.6605489 20029418
    [Google Scholar]
  142. Mrklić I. Pogorelić Z. Ćapkun V. Tomić S. Expression of topoisomerase II-α in triple negative breast cancer. Appl. Immunohistochem. Mol. Morphol. 2014 22 3 182 187 10.1097/PAI.0b013e3182910967 23702653
    [Google Scholar]
  143. Poturnajova M. Kozovska Z. Matuskova M. Aldehyde dehydrogenase 1A1 and 1A3 isoforms – Mechanism of activation and regulation in cancer. Cell. Signal. 2021 87 110120 10.1016/j.cellsig.2021.110120 34428540
    [Google Scholar]
  144. Neophytou C.M. Trougakos I.P. Erin N. Papageorgis P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers 2021 13 17 4363 10.3390/cancers13174363 34503172
    [Google Scholar]
  145. Kamalabadi-Farahani M. H Najafabadi M.R. Jabbarpour Z. Apoptotic resistance of metastatic tumor cells in triple negative breast cancer: Roles of death receptor-5. Asian Pac. J. Cancer Prev. 2019 20 6 1743 1748 10.31557/APJCP.2019.20.6.1743 31244295
    [Google Scholar]
  146. Li Y.J. Fahrmann J.F. Aftabizadeh M. Zhao Q. Tripathi S.C. Zhang C. Yuan Y. Ann D. Hanash S. Yu H. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep. 2022 39 9 110870 10.1016/j.celrep.2022.110870
    [Google Scholar]
  147. Przanowski P. Przanowska R.K. Guertin M.J. ANKLE1 cleaves mitochondrial DNA and contributes to cancer risk by promoting apoptosis resistance and metabolic dysregulation. Commun. Biol. 2023 6 1 231 10.1038/s42003‑023‑04611‑w 36859531
    [Google Scholar]
  148. Shafei M.A. Forshaw T. Davis J. Flemban A. Qualtrough D. Dean S. Perks C. Dong M. Newman R. Conway M.E. BCATc modulates crosstalk between the PI3K/Akt and the Ras/ERK pathway regulating proliferation in triple negative breast cancer. Oncotarget 2020 11 21 1971 1987 10.18632/oncotarget.27607 32523652
    [Google Scholar]
  149. El-Guindy D.M. Ibrahim F.M.K. Ali D.A. El-Horany H.E.S. Sabry N.M. Elkholy R.A. Mansour W. Helal D.S. Hypoxia-induced autophagy in triple negative breast cancer: Association with prognostic variables, patients’ survival and response to neoadjuvant chemotherapy. Virchows Arch. 2023 482 5 823 837 10.1007/s00428‑023‑03527‑4 36939902
    [Google Scholar]
  150. Li Z.L. Zhang H.L. Huang Y. Huang J.H. Sun P. Zhou N.N. Chen Y.H. Mai J. Wang Y. Yu Y. Zhou L.H. Li X. Yang D. Peng X.D. Feng G.K. Tang J. Zhu X.F. Deng R. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat. Commun. 2020 11 1 3806 10.1038/s41467‑020‑17395‑y 32732922
    [Google Scholar]
  151. Li J. He D. Li S. Xiao J. Zhu Z. Ferroptosis: The emerging player in remodeling triple-negative breast cancer. Front. Immunol. 2023 14 1284057 10.3389/fimmu.2023.1284057 37928550
    [Google Scholar]
  152. Wu J. Zhu Y. Luo M. Li L. Comprehensive analysis of pyroptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front. Immunol. 2021 12 748221 10.3389/fimmu.2021.748221 34659246
    [Google Scholar]
  153. Li F. Sun H. Yu Y. Che N. Han J. Cheng R. Zhao N. Guo Y. Huang C. Zhang D. Correction: RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer. Cell Death Dis. 2023 14 9 607 10.1038/s41419‑023‑06052‑z 37709745
    [Google Scholar]
  154. Piasecka D. Braun M. Kordek R. Sadej R. Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J. Cancer Res. Clin. Oncol. 2018 144 8 1401 1411 10.1007/s00432‑018‑2689‑2 29923083
    [Google Scholar]
  155. Volovat S.R. Volovat C. Hordila I. Hordila D.A. Mirestean C.C. Miron O.T. Lungulescu C. Scripcariu D.V. Stolniceanu C.R. Konsoulova-Kirova A.A. Grigorescu C. Stefanescu C. Volovat C.C. Augustin I. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: A review. Front. Oncol. 2020 10 526850 10.3389/fonc.2020.526850 33330019
    [Google Scholar]
  156. Fu Y. Yang Q. Yang H. Zhang X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front. Mol. Biosci. 2023 10 1162463 10.3389/fmolb.2023.1162463 37122564
    [Google Scholar]
  157. Das P.K. Siddika A. Rashel K.M. Auwal A. Soha K. Rahman M.A. Pillai S. Islam F. Roles of long noncoding RNA in triple‐negative breast cancer. Cancer Med. 2023 12 20 20365 20379 10.1002/cam4.6600 37795578
    [Google Scholar]
  158. Meidhof S. Brabletz S. Lehmann W. Preca B.T. Mock K. Ruh M. Schüler J. Berthold M. Weber A. Burk U. Lübbert M. Puhr M. Culig Z. Wellner U. Keck T. Bronsert P. Küsters S. Hopt U.T. Stemmler M.P. Brabletz T. ZEB 1‐associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 2015 7 6 831 847 10.15252/emmm.201404396 25872941
    [Google Scholar]
  159. Wang C. Zheng X. Shen C. Shi Y. MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J. Exp. Clin. Cancer Res. 2012 31 1 58 10.1186/1756‑9966‑31‑58 22713668
    [Google Scholar]
  160. Wang Y. Yu Y. Tsuyada A. Ren X. Wu X. Stubblefield K. Rankin-Gee E.K. Wang S.E. Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011 30 12 1470 1480 10.1038/onc.2010.531 21102523
    [Google Scholar]
  161. Cuiffo B.G. Campagne A. Bell G.W. Lembo A. Orso F. Lien E.C. Bhasin M.K. Raimo M. Hanson S.E. Marusyk A. El-Ashry D. Hematti P. Polyak K. Mechta-Grigoriou F. Mariani O. Volinia S. Vincent-Salomon A. Taverna D. Karnoub A.E. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 2014 15 6 762 774 10.1016/j.stem.2014.10.001 25515522
    [Google Scholar]
  162. Martello G. Rosato A. Ferrari F. Manfrin A. Cordenonsi M. Dupont S. Enzo E. Guzzardo V. Rondina M. Spruce T. Parenti A.R. Daidone M.G. Bicciato S. Piccolo S. A MicroRNA targeting dicer for metastasis control. Cell 2010 141 7 1195 1207 10.1016/j.cell.2010.05.017 20603000
    [Google Scholar]
  163. Damiano V. Brisotto G. Borgna S. di Gennaro A. Armellin M. Perin T. Guardascione M. Maestro R. Santarosa M. Epigenetic silencing of miR‐200c in breast cancer is associated with aggressiveness and is modulated by ZEB1. Genes Chromosomes Cancer 2017 56 2 147 158 10.1002/gcc.22422 27717206
    [Google Scholar]
  164. Li H.Y. Liang J.L. Kuo Y.L. Lee H.H. Calkins M.J. Chang H.T. Lin F.C. Chen Y.C. Hsu T.I. Hsiao M. Ger L.P. Lu P-J. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res. 2017 19 1 133 10.1186/s13058‑017‑0918‑2
    [Google Scholar]
  165. Ma L. Young J. Prabhala H. Pan E. Mestdagh P. Muth D. Teruya-Feldstein J. Reinhardt F. Onder T.T. Valastyan S. Westermann F. Speleman F. Vandesompele J. Weinberg R.A. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 2010 12 3 247 256 10.1038/ncb2024 20173740
    [Google Scholar]
  166. Qi L. Bart J. Tan L.P. Platteel I. Sluis T. Huitema S. Harms G. Fu L. Hollema H. Berg A. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 2009 9 1 163 10.1186/1471‑2407‑9‑163 19473551
    [Google Scholar]
  167. Du Y. Wei N. Ma R. Jiang S. Song D. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 2020 11 9 731 10.1038/s41419‑020‑02952‑6 32908121
    [Google Scholar]
  168. Kim S. Lee E. Jung J. Lee J.W. Kim H.J. Kim J. Yoo H. Lee H.J. Chae S.Y. Jeon S.M. Son B.H. Gong G. Sharan S.K. Chang S. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer. Oncogene 2018 37 22 2982 2991 10.1038/s41388‑018‑0124‑4 29527004
    [Google Scholar]
  169. Jiang S. Zhang L.F. Zhang H.W. Hu S. Lu M.H. Liang S. Li B. Li Y. Li D. Wang E.D. Liu M.F. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012 31 8 1985 1998 10.1038/emboj.2012.45 22354042
    [Google Scholar]
  170. Li S. Li Q. Lü J. Zhao Q. Li D. Shen L. Wang Z. Liu J. Xie D. Cho W.C. Xu S. Yu Z. Targeted inhibition of miR-221/222 promotes cell sensitivity to cisplatin in triple-negative breast cancer MDA-MB-231 cells. Front. Genet. 2020 10 1278 10.3389/fgene.2019.01278 32010177
    [Google Scholar]
  171. Han X. Yan S. Weijie Z. Feng W. Liuxing W. Mengquan L. Qingxia F. Critical role of miR-10b in transforming growth factor-β1-induced epithelial–mesenchymal transition in breast cancer. Cancer Gene Ther. 2014 21 2 60 67 10.1038/cgt.2013.82 24457988
    [Google Scholar]
  172. Zeng H. Wang L. Wang J. Chen T. Li H. Zhang K. Chen J. Zhen S. Tuluhong D. Li J. Wang S. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch. Biochem. Biophys. 2018 651 52 60 10.1016/j.abb.2018.05.018 29802821
    [Google Scholar]
  173. Bolandghamat Pour Z. Nourbakhsh M. Mousavizadeh K. Madjd Z. Ghorbanhosseini S.S. Abdolvahabi Z. Hesari Z. Ezzati Mobasser S. Suppression of nicotinamide phosphoribosyltransferase expression by miR-154 reduces the viability of breast cancer cells and increases their susceptibility to doxorubicin. BMC Cancer 2019 19 1 1027 10.1186/s12885‑019‑6221‑0 31675930
    [Google Scholar]
  174. Wang M. Cai W.R. Meng R. Chi J.R. Li Y.R. Chen A.X. Yu Y. Cao X.C. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin. Biochem. Biophys. Res. Commun. 2018 501 1 48 54 10.1016/j.bbrc.2018.04.129 29678577
    [Google Scholar]
  175. Xie H. Xiao R. He Y. He L. Xie C. Chen J. Hong Y. MicroRNA‑100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol. Lett. 2021 22 6 816 10.3892/ol.2021.13077 34671430
    [Google Scholar]
  176. Liu M. Li Z. Han X. Shi J. Tu D. Song W. Zhang J. Qiu X. Ren Y. Zhen L. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in Breast Cancer. Sci. Rep. 2017 7 1 15929 10.1038/s41598‑017‑16175‑x 29162879
    [Google Scholar]
  177. Liu M. Gong C. Xu R. Chen Y. Wang X. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2. Cell. Mol. Biol. Lett. 2019 24 1 47 10.1186/s11658‑019‑0168‑7 31308851
    [Google Scholar]
  178. García-García F. Salinas-Vera Y.M. García-Vázquez R. Marchat L.A. Rodríguez-Cuevas S. López-González J.S. Carlos-Reyes Á. Ramos-Payán R. Aguilar-Medina M. Pérez-Plasencia C. Ruíz-García E. López-Camarillo C. miR‑145‑5p is associated with pathological complete response to neoadjuvant chemotherapy and impairs cell proliferation by targeting TGFβR2 in breast cancer. Oncol. Rep. 2019 41 6 3527 3534 31002371
    [Google Scholar]
  179. Shi S. Chen X. Liu H. Yu K. Bao Y. Chai J. Gao H. Zou L. LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/β-catenin pathway. Gene 2019 683 47 53 10.1016/j.gene.2018.10.014 30300682
    [Google Scholar]
  180. Tao L. Wu Y.Q. Zhang S.P. MiR-21-5p enhances the progression and paclitaxel resistance in drug-resistant breast cancer cell lines by targeting PDCD4. Neoplasma 2019 66 5 746 755 10.4149/neo_2018_181207N930 31169019
    [Google Scholar]
  181. Lee J.W. Guan W. Han S. Hong D.K. Kim L.S. Kim H. Micro RNA ‐708‐3p mediates metastasis and chemoresistance through inhibition of epithelial‐to‐mesenchymal transition in breast cancer. Cancer Sci. 2018 109 5 1404 1413 10.1111/cas.13588 29575368
    [Google Scholar]
  182. di Gennaro A. Damiano V. Brisotto G. Armellin M. Perin T. Zucchetto A. Guardascione M. Spaink H.P. Doglioni C. Snaar-Jagalska B.E. Santarosa M. Maestro R. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ. 2018 25 12 2165 2180 10.1038/s41418‑018‑0103‑x 29666469
    [Google Scholar]
  183. Drago-Ferrante R. Pentimalli F. Carlisi D. Blasio A.D. Saliba C. Baldacchino S. Degaetano J. Debono J. Caruana-Dingli G. Grech G. Scerri C. Tesoriere G. Giordano A. Vento R. Fiore R.D. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget 2017 8 17 28939 28958 10.18632/oncotarget.15960 28423652
    [Google Scholar]
  184. Cheng S. Huang Y. Lou C. He Y. Zhang Y. Zhang Q. FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol. Ther. 2019 20 3 328 337 10.1080/15384047.2018.1529101 30336071
    [Google Scholar]
  185. Zuo J. Yu Y. Zhu M. Jing W. Yu M. Chai H. Liang C. Tu J. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation. Cancer Biomark. 2018 21 2 383 392 10.3233/CBM‑170642 29103027
    [Google Scholar]
  186. Yang L.W. Wu X.J. Liang Y. Ye G.Q. Che Y. Wu X.Z. Zhu X.J. Fan H.L. Fan X.P. Xu J.F. miR‐155 increases stemness and decitabine resistance in triple‐negative breast cancer cells by inhibiting TSPAN5. Mol. Carcinog. 2020 59 4 447 461 10.1002/mc.23167 32096299
    [Google Scholar]
  187. Yeh W.L. Tsai C.F. Chen D.R. Peri-foci adipose-derived stem cells promote chemoresistance in breast cancer. Stem Cell Res. Ther. 2017 8 1 177 10.1186/s13287‑017‑0630‑2 28750689
    [Google Scholar]
  188. You F. Luan H. Sun D. Cui T. Ding P. Tang H. Sun D. miRNA-106a promotes breast cancer cell proliferation, clonogenicity, migration, and invasion through inhibiting apoptosis and chemosensitivity. DNA Cell Biol. 2019 38 2 198 207 10.1089/dna.2018.4282 30570350
    [Google Scholar]
  189. Yi D. Xu L. Wang R. Lu X. Sang J. miR‐381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biol. Int. 2019 43 1 12 21 10.1002/cbin.11071 30444043
    [Google Scholar]
  190. Li Y. Liang Y. Sang Y. Song X. Zhang H. Liu Y. Jiang L. Yang Q. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis. 2018 9 1 14 10.1038/s41419‑017‑0030‑7 29323124
    [Google Scholar]
  191. Cooper S.J. von Roemeling C.A. Kang K.H. Marlow L.A. Grebe S.K. Menefee M.E. Tun H.W. Colon-Otero G. Perez E.A. Copland J.A. Reexpression of tumor suppressor, sFRP1, leads to antitumor synergy of combined HDAC and methyltransferase inhibitors in chemoresistant cancers. Mol. Cancer Ther. 2012 11 10 2105 2115 10.1158/1535‑7163.MCT‑11‑0873 22826467
    [Google Scholar]
  192. Shen M. Dong C. Ruan X. Yan W. Cao M. Pizzo D. Wu X. Yang L. Liu L. Ren X. Wang S.E. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Cancer Res. 2019 79 14 3608 3621 10.1158/0008‑5472.CAN‑18‑4055 31118200
    [Google Scholar]
  193. Weng Y.S. Tseng H.Y. Chen Y.A. Shen P.C. Al Haq A.T. Chen L.M. Tung Y.C. Hsu H.L. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol. Cancer 2019 18 1 42 10.1186/s12943‑019‑0988‑0 30885232
    [Google Scholar]
  194. Son D. Kim Y. Lim S. Kang H.G. Kim D.H. Park J.W. Cheong W. Kong H.K. Han W. Park W.Y. Chun K.H. Park J.H. miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer. Cancer Lett. 2019 454 224 233 10.1016/j.canlet.2019.04.006 31004703
    [Google Scholar]
  195. Qiu P. Guo Q. Yao Q. Chen J. Lin J. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS One 2021 16 11 e0254283 10.1371/journal.pone.0254283 34797837
    [Google Scholar]
  196. Krishnan K. Steptoe A.L. Martin H.C. Pattabiraman D.R. Nones K. Waddell N. Mariasegaram M. Simpson P.T. Lakhani S.R. Vlassov A. Grimmond S.M. Cloonan N. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 2013 19 12 1767 1780 10.1261/rna.042143.113 24158791
    [Google Scholar]
  197. Portoso M. Ragazzini R. Brenčič Ž. Moiani A. Michaud A. Vassilev I. Wassef M. Servant N. Sargueil B. Margueron R. PRC 2 is dispensable forHOTAIR ‐Mediated transcriptional repression. EMBO J. 2017 36 8 981 994 10.15252/embj.201695335 28167697
    [Google Scholar]
  198. Zuo Y. Li Y. Zhou Z. Ma M. Fu K. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed. Pharmacother. 2017 95 922 928 10.1016/j.biopha.2017.09.005 28915533
    [Google Scholar]
  199. Liu A.N. Qu H.J. Gong W.J. Xiang J.Y. Yang M.M. Zhang W. LncRNA AWPPH and miRNA‐21 regulates cancer cell proliferation and chemosensitivity in triple‐negative breast cancer by interacting with each other. J. Cell. Biochem. 2019 120 9 14860 14866 10.1002/jcb.28747 31033015
    [Google Scholar]
  200. Yang F. Shen Y. Zhang W. Jin J. Huang D. Fang H. Ji W. Shi Y. Tang L. Chen W. Zhou G. Guan X. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ. 2018 25 12 2209 2220 10.1038/s41418‑018‑0123‑6 29844570
    [Google Scholar]
  201. Zhang Y. He Q. Hu Z. Feng Y. Fan L. Tang Z. Yuan J. Shan W. Li C. Hu X. Tanyi J.L. Fan Y. Huang Q. Montone K. Dang C.V. Zhang L. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat. Struct. Mol. Biol. 2016 23 6 522 530 10.1038/nsmb.3211 27111890
    [Google Scholar]
  202. Chen F. Chen J. Yang L. Liu J. Zhang X. Zhang Y. Tu Q. Yin D. Lin D. Wong P.P. Huang D. Xing Y. Zhao J. Li M. Liu Q. Su F. Su S. Song E. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat. Cell Biol. 2019 21 4 498 510 10.1038/s41556‑019‑0299‑0 30936474
    [Google Scholar]
  203. Liang Y. Song X. Li Y. Sang Y. Zhang N. Zhang H. Liu Y. Duan Y. Chen B. Guo R. Zhao W. Wang L. Yang Q. A novel long non-coding RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer. Cell Death Dis. 2018 9 5 563 10.1038/s41419‑018‑0582‑1 29752439
    [Google Scholar]
  204. Zheng P. Dong L. Zhang B. Dai J. Zhang Y. Wang Y. Qin S. Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Histochem. Cell Biol. 2019 152 4 281 291 10.1007/s00418‑019‑01794‑4 31352515
    [Google Scholar]
  205. Tang T. Cheng Y. She Q. Jiang Y. Chen Y. Yang W. Li Y. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed. Pharmacother. 2018 107 338 346 10.1016/j.biopha.2018.07.076 30098551
    [Google Scholar]
  206. Wang R. Zhang T. Yang Z. Jiang C. Seng J. Long non‐coding RNA FTH 1P3 activates paclitaxel resistance in breast cancer through miR‐206/ ABCB 1. J. Cell. Mol. Med. 2018 22 9 4068 4075 10.1111/jcmm.13679 29971911
    [Google Scholar]
  207. Han J. Han B. Wu X. Hao J. Dong X. Shen Q. Pang H. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol. Appl. Pharmacol. 2018 359 55 61 10.1016/j.taap.2018.09.018 30244121
    [Google Scholar]
  208. Gooding A.J. Zhang B. Gunawardane L. Beard A. Valadkhan S. Schiemann W.P. The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers. Oncogene 2019 38 12 2020 2041 10.1038/s41388‑018‑0586‑4 30467380
    [Google Scholar]
  209. Wu J. Chen H. Ye M. Wang B. Zhang Y. Sheng J. Meng T. Chen H. Downregulation of long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression. Biomed. Pharmacother. 2019 115 108869 10.1016/j.biopha.2019.108869 31864836
    [Google Scholar]
  210. Shin V.Y. Chen J. Cheuk I.W.Y. Siu M.T. Ho C.W. Wang X. Jin H. Kwong A. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis. 2019 10 4 270 10.1038/s41419‑019‑1513‑5 30894512
    [Google Scholar]
  211. Eades G. Wolfson B. Zhang Y. Li Q. Yao Y. Zhou Q. lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol. Cancer Res. 2015 13 2 330 338 10.1158/1541‑7786.MCR‑14‑0251 25253741
    [Google Scholar]
  212. Yang W. Gu J. Wang X. Wang Y. Feng M. Zhou D. Guo J. Zhou M. Inhibition of circular RNA CDR1as increases chemosensitivity of 5‐FU‐resistant BC cells through up‐regulating miR‐7. J. Cell. Mol. Med. 2019 23 5 3166 3177 10.1111/jcmm.14171 30884120
    [Google Scholar]
  213. Liu P. Zou Y. Li X. Yang A. Ye F. Zhang J. Wei W. Kong Y. circGNB1 facilitates triple-negative breast cancer progression by regulating miR-141-5p-IGF1R axis. Front. Genet. 2020 11 193 10.3389/fgene.2020.00193 32194644
    [Google Scholar]
  214. Liang Y. Song X. Li Y. Su P. Han D. Ma T. Guo R. Chen B. Zhao W. Sang Y. Zhang N. Li X. Zhang H. Liu Y. Duan Y. Wang L. Yang Q. circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene 2019 38 42 6850 6866 10.1038/s41388‑019‑0926‑z 31406252
    [Google Scholar]
  215. Pei X. Zhang Y. Wang X. Xue B. Sun M. Li H. Circular RNA circ-ZEB1 acts as an oncogene in triple negative breast cancer via sponging miR-448. Int. J. Biochem. Cell Biol. 2020 126 105798 10.1016/j.biocel.2020.105798 32629026
    [Google Scholar]
  216. Du W.W. Yang W. Li X. Fang L. Wu N. Li F. Chen Y. He Q. Liu E. Yang Z. Awan F.M. Liu M. Yang B.B. The circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasion. Mol. Ther. 2020 28 5 1287 1298 10.1016/j.ymthe.2020.03.002 32229309
    [Google Scholar]
  217. Xing Z. Wang R. Wang X. Liu J. Zhang M. Feng K. Wang X. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis. Cell Death Discov. 2021 7 1 218 10.1038/s41420‑021‑00604‑y 34420029
    [Google Scholar]
  218. Zeng K. He B. Yang B.B. Xu T. Chen X. Xu M. Liu X. Sun H. Pan Y. Wang S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer 2018 17 1 160 10.1186/s12943‑018‑0914‑x 30454010
    [Google Scholar]
  219. Zheng S. Huang Q. Zheng Z. Zhang Z. Guo G. circGFRA1 affects the sensitivity of triple-negative breast cancer cells to paclitaxel via the miR-361-5p/TLR4 pathway. J. Biochem. 2021 169 5 601 611 10.1093/jb/mvaa148 33481008
    [Google Scholar]
  220. Chen B. Wei W. Huang X. Xie X. Kong Y. Dai D. Yang L. Wang J. Tang H. Xie X. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics 2018 8 14 4003 4015 10.7150/thno.24106 30083277
    [Google Scholar]
  221. Chen T. Wang X. Li C. Zhang H. Liu Y. Han D. Li Y. Li Z. Luo D. Zhang N. Zheng M. Chen B. Wang L. Zhao W. Yang Q. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene 2021 40 15 2756 2771 10.1038/s41388‑021‑01739‑z 33714984
    [Google Scholar]
  222. Wang X. Xue B. Zhang Y. Guo G. Duan X. Dou D. Up-regulated circBACH2 contributes to cell proliferation, invasion, and migration of triple-negative breast cancer. Cell Death Dis. 2021 12 5 412 10.1038/s41419‑021‑03684‑x 33875646
    [Google Scholar]
  223. Zheng X. Huang M. Xing L. Yang R. Wang X. Jiang R. Zhang L. Chen J. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol. Cancer 2020 19 1 73 10.1186/s12943‑020‑01183‑9 32264877
    [Google Scholar]
  224. Liu F. Hu L. Pei Y. Zheng K. Wang W. Li S. Qiu E. Shang G. Zhang J. Zhang X. Long non-coding RNA AFAP1-AS1 accelerates the progression of melanoma by targeting miR-653-5p/RAI14 axis. BMC Cancer 2020 20 1 258 10.1186/s12885‑020‑6665‑2 32228518
    [Google Scholar]
  225. Zhang C. Yu Z. Yang S. Liu Y. Song J. Mao J. Li M. Zhao Y. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol. Cancer 2024 23 1 33 10.1186/s12943‑024‑01944‑w 38355583
    [Google Scholar]
  226. Yu J. Wang H. Shen W. Zhou Y. Cui J. Li H. Gao B. Hsa_circ_0007823 overexpression suppresses the progression of triple-negative breast cancer via regulating miR-182-5p-FOXO1 axis. Breast Cancer 2023 15 695 708 10.2147/BCTT.S417547 37873520
    [Google Scholar]
  227. Fan Y. Wang J. Jin W. Sun Y. Xu Y. Wang Y. Liang X. Su D. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol. Cancer 2021 20 1 25 10.1186/s12943‑021‑01321‑x 33530981
    [Google Scholar]
  228. Dou D. Ren X. Han M. Xu X. Ge X. Gu Y. Wang X. Zhao S. CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis. Cancer Cell Int. 2020 20 1 454 10.1186/s12935‑020‑01547‑7 32944002
    [Google Scholar]
  229. Li Y. Shi P. Zheng T. Ying Z. Jiang D. Circular RNA hsa_circ_0131242 promotes triple-negative breast cancer progression by sponging hsa-miR-2682. OncoTargets Ther. 2020 13 4791 4798 10.2147/OTT.S246957 32547106
    [Google Scholar]
  230. Zhou Y. Ma G. Peng S. Tuo M. Li Y. Qin X. Yu Q. Kuang S. Cheng H. Li J. Circ_0000520 contributes to triple‐negative breast cancer progression through mediating the miR‐1296/ZFX axis. Thorac. Cancer 2021 12 18 2427 2438 10.1111/1759‑7714.14085 34324278
    [Google Scholar]
  231. Hu J. Ji C. Hua K. Wang X. Deng X. Li J. Graham D. Fang L. Hsa_circ_0091074 regulates TAZ expression via microRNA‑1297 in triple negative breast cancer cells. Int. J. Oncol. 2020 56 5 1314 1326 10.3892/ijo.2020.5000 32319577
    [Google Scholar]
  232. Wang Q. Liang D. Shen P. Yu Y. Yan Y. You W. Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis. Transl. Oncol. 2021 14 8 101045 10.1016/j.tranon.2021.101045 34023560
    [Google Scholar]
  233. Cheng G.J. Leung E.Y. Singleton D.C. In vitro breast cancer models for studying mechanisms of resistance to endocrine therapy. Explor. Target. Antitumor Ther. 2022 3 3 297 320 10.37349/etat.2022.00084 36045910
    [Google Scholar]
  234. Singh S. Tran S. Putman J. Tavana H. Three-dimensional models of breast cancer–fibroblasts interactions. Exp. Biol. Med. 2020 245 10 879 888 10.1177/1535370220917366 32276543
    [Google Scholar]
  235. Wang H. Najibi A.J. Sobral M.C. Seo B.R. Lee J.Y. Wu D. Li A.W. Verbeke C.S. Mooney D.J. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat. Commun. 2020 11 1 5696 10.1038/s41467‑020‑19540‑z 33173046
    [Google Scholar]
  236. Wishart A.L. Conner S.J. Guarin J.R. Fatherree J.P. Peng Y. McGinn R.A. Crews R. Naber S.P. Hunter M. Greenberg A.S. Oudin M.J. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci. Adv. 2020 6 43 eabc3175 10.1126/sciadv.abc3175 33087348
    [Google Scholar]
  237. Reynolds D.S. Tevis K.M. Blessing W.A. Colson Y.L. Zaman M.H. Grinstaff M.W. Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Sci. Rep. 2017 7 1 10382 10.1038/s41598‑017‑10863‑4 28871147
    [Google Scholar]
  238. Fitzpatrick P.A. Akrap N. Söderberg E.M.V. Harrison H. Thomson G.J. Landberg G. Robotic mammosphere assay for high-throughput screening in triple-negative breast cancer. SLAS Discov 2017 22 7 827 836 10.1177/2472555217692321 28346100
    [Google Scholar]
  239. Divoux J. Florent R. Jacobs M. Lequesne J. Grellard J.M. San C. Grossi S. Kerdja K. Clarisse B. Boudier G. Cherifi F. Briand M. Dolivet E. Johnson A. Dubois B. Harter V. Lacroix J. Raboutet C. Marie B. Rousseau N. Blanc-Fournier C. Vaur D. Figeac M. Poulain L. Weiswald L.B. Emile G. The TRIPLEX study: Use of patient-derived tumor organoids as an innovative tool for precision medicine in triple-negative breast cancer. BMC Cancer 2023 23 1 883 10.1186/s12885‑023‑11362‑8 37726786
    [Google Scholar]
  240. Ayuso J.M. Virumbrales-Muñoz M. Lang J.M. Beebe D.J. A role for microfluidic systems in precision medicine. Nat. Commun. 2022 13 1 3086 10.1038/s41467‑022‑30384‑7 35654785
    [Google Scholar]
  241. Bittman-Soto X.S. Thomas E.S. Ganshert M.E. Mendez-Santacruz L.L. Harrell J.C. The transformative role of 3D culture models in triple-negative breast cancer research. Cancers 2024 16 10 1859 10.3390/cancers16101859 38791938
    [Google Scholar]
  242. Boix-Montesinos P. Soriano-Teruel P.M. Armiñán A. Orzáez M. Vicent M.J. The past, present, and future of breast cancer models for nanomedicine development. Adv. Drug Deliv. Rev. 2021 173 306 330 10.1016/j.addr.2021.03.018 33798642
    [Google Scholar]
  243. Brooks D. Zimmer A. Wakefield L. Lyle L.T. Difilippantonio S. Tucci F.C. Illiano S. Annunziata C.M. Steeg P.S. Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target. Oncotarget 2018 9 34 23462 23481 10.18632/oncotarget.25231 29805748
    [Google Scholar]
  244. Aprelikova O. Tomlinson C.C. Hoenerhoff M. Hixon J.A. Durum S.K. Qiu T. He S. Burkett S. Liu Z.Y. Swanson S.M. Green J.E. Development and preclinical application of an immunocompetent transplant model of basal breast cancer with lung, liver, and brain metastases. PLoS One 2016 11 5 e0155262 10.1371/journal.pone.0155262 27171183
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240387430250508080548
Loading
/content/journals/cmm/10.2174/0115665240387430250508080548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test