Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Fifteen to twenty percent of all cases of breast cancer are TNBC (triple negative breast cancer) and exhibit heterogenic features due to their diverse molecular characteristics. Additionally, their aberrant cell cycling behavior contributes to their metastatic capabilities and aggressive nature. TNBC is the only molecular subtype, which lacks the expression of hormone receptors, like estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). Hence, it is recalcitrant to hormone therapy. Also, the complex and evolving tumour microenvironment (TME) comprises blood vessels, stromal cells, immune cells, metabolic factors, extracellular matrix (ECM), and an integrated perspective of their interconnections as well as their variability with respect to TNBC progression needs to be comprehended for biomarker/druggable target(s) development and/or their validation. Such TME-based model systems can help us understand the relationship between the different TME components that affect tumour growth and metastasis. This review also catalogs biomarkers and TNBC behaviour within the TME. Also, this review discusses and analyses models that replicate various tumour subtypes that can be correlated with variability in treatment responses, thereby facilitating a better understanding of TNBC heterogeneity. Thus, by identifying biomarkers and constructing model systems, we can augment efforts to overcome treatment failure and poor outcomes in TNBC patients. These subtype-specific TNBC model systems, mirroring the intricacies of the TME, have the potential to provide a feasible and innovative approach to target TNBC cells. This review will facilitate the ongoing global efforts to develop efficacious and safe “tailor-made” drugs for TNBC patients.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240387430250508080548
2025-01-04
2025-12-14
Loading full text...

Full text loading...

References

  1. Breast Cancer2024Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  2. SunY.S. ZhaoZ. YangZ.N. Risk factors and preventions of breast cancer.Int. J. Biol. Sci.201713111387139710.7150/ijbs.21635 29209143
    [Google Scholar]
  3. ThakurK.K. BordoloiD. KunnumakkaraA.B. Alarming burden of triple-negative breast cancer in India.Clin. Breast Cancer2018183e393e39910.1016/j.clbc.2017.07.013 28801156
    [Google Scholar]
  4. JhanJ.R. AndrechekE.R. Triple-negative breast cancer and the potential for targeted therapy.Pharmacogenomics201718171595160910.2217/pgs‑2017‑0117 29095114
    [Google Scholar]
  5. BardiaA. MayerI.A. DiamondJ.R. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer.J. Clin. Oncol.201735192141214810.1200/JCO.2016.70.8297 28291390
    [Google Scholar]
  6. JayachandranJ. SrinivasanH. ManiK.P. Molecular mechanism involved in epithelial to mesenchymal transition.Arch. Biochem. Biophys.202171010898410.1016/j.abb.2021.108984 34252392
    [Google Scholar]
  7. BiffiG. TuvesonD.A. Diversity and biology of cancer-associated fibroblasts.Physiol. Rev.202010010251058 32466724
    [Google Scholar]
  8. ShanT. ChenS. ChenX. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells.Int. J. Oncol.201750112112810.3892/ijo.2016.3779 27878234
    [Google Scholar]
  9. ManducaN. MaccafeoE. De MariaR. SistiguA. MusellaM. 3D cancer models: One step closer to in vitro human studies.Front. Immunol.202314117550310.3389/fimmu.2023.1175503 37114038
    [Google Scholar]
  10. Global cancer observatory: Data visualization2024Available from: https://gco.iarc.fr/today/en/dataviz/pie?mode=cancer&group_populations=1&sexes=2&types=0-17
  11. Consolidated report of population-based cancer registries: 2012-2016.2020Available from: https://www.ncdirindia.org/All_Reports/Report_2020/resources/NCRP_2020_2012_16.pdf
  12. BursteinM.D. TsimelzonA. PoageG.M. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer.Clin. Cancer Res.20152171688169810.1158/1078‑0432.CCR‑14‑0432 25208879
    [Google Scholar]
  13. JiangY.Z. MaD. SuoC. Genomic and transcriptomic landscape of triple-negative breast cancers: Subtypes and treatment strategies.Cancer Cell2019353428440.e510.1016/j.ccell.2019.02.001 30853353
    [Google Scholar]
  14. KoleckovaM. EhrmannJ. BouchalJ. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer.Sci. Rep.2021111514510.1038/s41598‑021‑84350‑2 33664322
    [Google Scholar]
  15. WengL. ZhouJ. GuoS. XuN. MaR. The molecular subtyping and precision medicine in triple-negative breast cancer---based on Fudan TNBC classification.Cancer Cell Int.202424112010.1186/s12935‑024‑03261‑0 38555429
    [Google Scholar]
  16. DewiC. FristiohadyA. AmaliaR. Khairul IkramN.K. IbrahimS. MuchtaridiM. Signaling pathways and natural compounds in triple-negative breast cancer cell line.Molecules20222712366110.3390/molecules27123661 35744786
    [Google Scholar]
  17. KumariM. KrishnamurthyP.T. SolaP. Targeted drug therapy to overcome chemoresistance in triple-negative breast cancer.Curr. Cancer Drug Targets202020855957210.2174/1568009620666200506110850 32370716
    [Google Scholar]
  18. LehmannB.D. PietenpolJ.A. Identification and use of biomarkers in treatment strategies for triple‐negative breast cancer subtypes.J. Pathol.2014232214215010.1002/path.4280 24114677
    [Google Scholar]
  19. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  20. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑9 10647931
    [Google Scholar]
  21. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  22. ChenX. YangM. YinJ. Tumor-associated macrophages promote epithelial–mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling.Cell Commun. Signal.20222019210.1186/s12964‑022‑00888‑2 35715860
    [Google Scholar]
  23. EhmsenS. DitzelH.J. Signaling pathways essential for triple-negative breast cancer stem-like cells.Stem Cells202139213314310.1002/stem.3301 33211379
    [Google Scholar]
  24. MustafaE.H. Laven-LawG. KikhtyakZ. Selective inhibition of CDK9 in triple negative breast cancer.Oncogene202443320221510.1038/s41388‑023‑02892‑3 38001268
    [Google Scholar]
  25. YaswenP. MacKenzieK.L. KeithW.N. Therapeutic targeting of replicative immortality.Semin. Cancer Biol.201535Suppl.S104S128(Suppl.)10.1016/j.semcancer.2015.03.007 25869441
    [Google Scholar]
  26. PengF. LiaoM. QinR. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies.Signal Transduct. Target. Ther.20227128610.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  27. LiY. ZhanZ. YinX. FuS. DengX. Targeted therapeutic strategies for triple-negative breast cancer.Front. Oncol.20211173153510.3389/fonc.2021.731535 34778045
    [Google Scholar]
  28. HuX. ZhangQ. XingW. WangW. Role of microRNA/lncRNA intertwined with the Wnt/β-catenin axis in regulating the pathogenesis of triple-negative breast cancer.Front. Pharmacol.20221381497110.3389/fphar.2022.814971 35814205
    [Google Scholar]
  29. WangS.M. Genome instability-derived genes are novel prognostic biomarkers for triple-negative breast cancer.Front. Cell Dev. Biol.2021970107310.3389/fcell.2021.701073 34322487
    [Google Scholar]
  30. LiubomirskiY. LerrerS. MeshelT. Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer.Front. Immunol.20191075710.3389/fimmu.2019.00757 31031757
    [Google Scholar]
  31. WangZ. JiangQ. DongC. Metabolic reprogramming in triple-negative breast cancer.Cancer Biol. Med.2020171445910.20892/j.issn.2095‑3941.2019.0210 32296576
    [Google Scholar]
  32. XiaoY. MaD. YangY.S. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer.Cell Res.202232547749010.1038/s41422‑022‑00614‑0 35105939
    [Google Scholar]
  33. LoizidesS. ConstantinidouA. Triple negative breast cancer: Immunogenicity, tumor microenvironment, and immunotherapy.Front. Genet.202313109583910.3389/fgene.2022.1095839 36712858
    [Google Scholar]
  34. ShiZ.D. PangK. WuZ.X. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies.Signal Transduct. Target. Ther.20238111310.1038/s41392‑023‑01383‑x 36906600
    [Google Scholar]
  35. YadavB.S. ChananaP. JhambS. Biomarkers in triple negative breast cancer: A review.World J. Clin. Oncol.20156625226310.5306/wjco.v6.i6.252 26677438
    [Google Scholar]
  36. SongX. LiuZ. YuZ. EGFR promotes the development of triple negative breast cancer through JAK/STAT3 signaling.Cancer Manag. Res.20201270371710.2147/CMAR.S225376 32099467
    [Google Scholar]
  37. ChangaviAA ShashikalaA RamjiAS Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas.J Lab Physicians2015720798310.4103/0974‑2727.163129 26417156
    [Google Scholar]
  38. López-MejíaJ.A. Tallabs-UtrillaL.F. Salazar-SojoP. Mantilla-OllarvesJ.C. Sánchez-CarballidoM.A. Rocha-ZavaletaL. c-Kit induces migration of triple-negative breast cancer cells and is a promising target for tyrosine kinase inhibitor treatment.Int. J. Mol. Sci.20222315870210.3390/ijms23158702 35955836
    [Google Scholar]
  39. MassihniaD. GalvanoA. FanaleD. Triple negative breast cancer: Shedding light onto the role of pi3k/akt/mtor pathway.Oncotarget2016737607126072210.18632/oncotarget.10858 27474173
    [Google Scholar]
  40. El-SahliS. HuaK. SulaimanA. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature.Cell Death Dis.2021121810.1038/s41419‑020‑03308‑w 33414428
    [Google Scholar]
  41. LiuJ.C. VoisinV. WangS. Combined deletion of P ten and p53 in mammary epithelium accelerates triple‐negative breast cancer with dependency on e EF 2 K.EMBO Mol. Med.20146121542156010.15252/emmm.201404402 25330770
    [Google Scholar]
  42. KimS. ParkJ.M. ParkS. Suppression of TNBC metastasis by doxazosin, a novel dual inhibitor of c-MET/EGFR.J. Exp. Clin. Cancer Res.202342129210.1186/s13046‑023‑02866‑z 37924112
    [Google Scholar]
  43. CheungA. BaxH.J. JosephsD.H. Targeting folate receptor alpha for cancer treatment.Oncotarget2016732525535257410.18632/oncotarget.9651 27248175
    [Google Scholar]
  44. CheungA. OpzoomerJ. IlievaK.M. Anti-folate receptor alpha–directed antibody therapies restrict the growth of triple-negative breast cancer.Clin. Cancer Res.201824205098511110.1158/1078‑0432.CCR‑18‑0652 30068707
    [Google Scholar]
  45. JinW. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition.Cells20209121710.3390/cells9010217 31952344
    [Google Scholar]
  46. ZhangW. LiuH. ZhuangW.L. LiY. XieL.P. HuY.J. A potential antibody–drug conjugate targeting human LIV1 for the treatment of triple-negative breast cancer.Pharmaceutical Fronts202353e187e19610.1055/s‑0043‑1772703
    [Google Scholar]
  47. HuangY.H. ChuP.Y. ChenJ.L. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer.Sci. Rep.20211111217110.1038/s41598‑021‑91588‑3 34108545
    [Google Scholar]
  48. GoldenbergD.M. SteinR. SharkeyR.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target.Oncotarget2018948289892900610.18632/oncotarget.25615 29989029
    [Google Scholar]
  49. BardiaA. HurvitzS.A. TolaneyS.M. Sacituzumab govitecan in metastatic triple-negative breast cancer.N. Engl. J. Med.2021384161529154110.1056/NEJMoa2028485 33882206
    [Google Scholar]
  50. ChenC. LiS. XueJ. PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast cancer.JCI Insight202168e13145810.1172/jci.insight.131458 33884962
    [Google Scholar]
  51. CastagnoliL. CancilaV. Cordoba-RomeroS.L. WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer.Oncogene201938214047406010.1038/s41388‑019‑0700‑2 30705400
    [Google Scholar]
  52. BräutigamK. Kabore-WolffE. HussainA.F. Inhibitors of PD-1/PD-L1 and ERK1/2 impede the proliferation of receptor positive and triple-negative breast cancer cell lines.J. Cancer Res. Clin. Oncol.2021147102923293310.1007/s00432‑021‑03694‑4 34185141
    [Google Scholar]
  53. SchmidP. CortesJ. PusztaiL. Pembrolizumab for early triple-negative breast cancer.N. Engl. J. Med.2020382981082110.1056/NEJMoa1910549 32101663
    [Google Scholar]
  54. JerusalemG. De BraudF.G.M. de JongeM.J.A. 201P Phase II study of taminadenant (A2AR antagonist) + spartalizumab (anti PD-1 antibody) in patients with triple-negative breast cancer (TNBC).Immunooncol. Technol.20221610031210.1016/j.iotech.2022.100312
    [Google Scholar]
  55. SeitzL.C. AshokD. LeletiM. Final results of the phase I study in healthy volunteers of AB928, a dual antagonist of the A2aR and A2bR adenosine receptors being studied as an activator of anti-tumor immune response.Ann. Oncol.201829viii66510.1093/annonc/mdy303.050
    [Google Scholar]
  56. KoussémouM. LorenzK. KlotzK.N. The A2B adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1.PLoS One2018138e020291410.1371/journal.pone.0202914 30157211
    [Google Scholar]
  57. SizemoreG.M. SizemoreS.T. SeachristD.D. KeriR.A. GABA(A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2).J. Biol. Chem.201428935241022411310.1074/jbc.M114.593582 25012653
    [Google Scholar]
  58. LanJ. LuH. SamantaD. SalmanS. LuY. SemenzaG.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment.Proc. Natl. Acad. Sci. USA201811541E9640E964810.1073/pnas.1809695115 30242135
    [Google Scholar]
  59. QasimM. Ricks-SantiL.J. NaabT.J. Inverse correlation of KISS1 and KISS1R expression in triple-negative breast carcinomas from African American women.Cancer Genomics Proteomics202219667368210.21873/cgp.20350 36316037
    [Google Scholar]
  60. GuoP. HuangJ. ZhuB. A rationally designed ICAM1 antibody drug conjugate eradicates late-stage and refractory triple-negative breast tumors in vivo.Sci. Adv.2023918eabq786610.1126/sciadv.abq7866 37146146
    [Google Scholar]
  61. SpeyerC.L. SmithJ.S. BandaM. DeVriesJ.A. MekaniT. GorskiD.H. Metabotropic glutamate receptor-1: A potential therapeutic target for the treatment of breast cancer.Breast Cancer Res. Treat.2012132256557310.1007/s10549‑011‑1624‑x 21681448
    [Google Scholar]
  62. ZhengQ. BanaszakL. FracciS. Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells.Endocr. Relat. Cancer201320679780810.1530/ERC‑13‑0329 24025407
    [Google Scholar]
  63. LiaoL. DengL. ZhangY.L. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple‐negative breast cancer.Clin. Transl. Med.20231311e148010.1002/ctm2.1480 38009308
    [Google Scholar]
  64. DuttaP. SarkissyanM. PaicoK. WuY. VadgamaJ.V. MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis.Breast Cancer Res. Treat.2018170347748610.1007/s10549‑018‑4760‑8 29594759
    [Google Scholar]
  65. ChenL. XuG. SongX. A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP1 regulation.Cancer Lett.202458321663510.1016/j.canlet.2024.216635 38237887
    [Google Scholar]
  66. SinghD.P. PathakR. ChintalaramuluN. Caveolin-1 knockout mitigates breast cancer metastasis to the lungs via integrin α3 dysregulation in 4T1-induced syngeneic breast cancer model.Cancer Gene Ther.202431111658166810.1038/s41417‑024‑00821‑4 39244591
    [Google Scholar]
  67. NaimiA. ZareN. AmjadiE. SoltanM. High claudin-4 antigen expression in triple-negative breast cancer by the immunohistochemistry method.J. Res. Med. Sci.20222712010.4103/jrms.jrms_1389_20 35419062
    [Google Scholar]
  68. FeiginM.E. XueB. HammellM.C. MuthuswamyS.K. G-protein–coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion.Proc. Natl. Acad. Sci. USA2014111114191419610.1073/pnas.1320239111 24599592
    [Google Scholar]
  69. NairS. AldrichA.J. McDonnellE. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.PLoS One201381e5315010.1371/journal.pone.0053150 23341929
    [Google Scholar]
  70. BholaN.E. JansenV.M. KochJ.P. Treatment of triple-negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and notch-dependent cancer stem cell population.Cancer Res.201676244045210.1158/0008‑5472.CAN‑15‑1640‑T 26676751
    [Google Scholar]
  71. BashoR.K. GilcreaseM. MurthyR.K. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab.JAMA Oncol.20173450951510.1001/jamaoncol.2016.5281 27893038
    [Google Scholar]
  72. RhanineY. BonnefoiH. GoncalvesA. Efficacy of antiandrogens in androgen receptor-positive triple-negative metastatic breast cancer: Real-life data.Breast20247310366710.1016/j.breast.2023.103667 38160476
    [Google Scholar]
  73. SpasojevicC. MarangoniE. VacherS. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer.Oncotarget2018933232082321910.18632/oncotarget.25292 29796183
    [Google Scholar]
  74. PanigoroS.S. KurniaD. KurniaA. HaryonoS.J. AlbarZ.A. ALDH1 cancer stem cell marker as a prognostic factor in triple‐negative breast cancer.Int. J. Surg. Oncol.2020202011710.1155/2020/7863243 32695508
    [Google Scholar]
  75. CaiY.C. YangH. ShanH.B. SuH.F. JiangW.Q. ShiY.X. PFKFB4 overexpression facilitates proliferation by promoting the G1/S transition and is associated with a poor prognosis in triple‐negative.Dis. Markers2021882458910.1155/2021/8824589 34211613
    [Google Scholar]
  76. UmemuraS. ShiraneM. TakekoshiS. TokudaY. MoriK. OsamuraR. High expression of thymidine phosphorylase in basal-like breast cancers: Stromal expression in EGFR- and/or CK5/6-positive breast cancers.Oncol. Lett.20101226126610.3892/ol_00000046 22966291
    [Google Scholar]
  77. YangY. ZhouH. LiuW. Ganoderic acid A exerts antitumor activity against MDA MB 231 human breast cancer cells by inhibiting the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway.Oncol. Lett.20181656515652110.3892/ol.2018.9475 30405790
    [Google Scholar]
  78. HussainI. DebP. ChiniA. HOXA5 expression is elevated in breast cancer and is transcriptionally regulated by estradiol.Front. Genet.20201159243610.3389/fgene.2020.592436 33384715
    [Google Scholar]
  79. WilliamsN.O. QuirogaD. JohnsonC. Phase Ib study of HSP90 inhibitor, onalespib (AT13387), in combination with paclitaxel in patients with advanced triple-negative breast cancer.Ther. Adv. Med. Oncol.2023151758835923121797610.1177/17588359231217976 38152697
    [Google Scholar]
  80. Gatti‐MaysM.E. KarzaiF.H. SoltaniS.N. A phase II single arm pilot study of the CHK1 inhibitor prexasertib (LY2606368) in BRCA wild-type, advanced triple-negative breast cancer.Oncologist202025121013e182410.1634/theoncologist.2020‑0491 32510664
    [Google Scholar]
  81. SynnottN.C. MurrayA.M. O’DonovanN. CrownJ. DuffyM.J. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Prelinical investigation with the anti-p53 drug, APR-246.J. Clin. Oncol.20163415_suppl1082210.1200/JCO.2016.34.15_suppl.1082
    [Google Scholar]
  82. TuttA.N.J. GarberJ.E. KaufmanB. Adjuvant olaparib for patients with BRCA1-or BRCA2-mutated breast cancer.N. Engl. J. Med.2021384252394240510.1056/NEJMoa2105215 34081848
    [Google Scholar]
  83. KiiskiJ.I. TervasmäkiA. PelttariL.M. FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population.Breast Cancer Res. Treat.2017166121722610.1007/s10549‑017‑4388‑0 28702895
    [Google Scholar]
  84. WangW. WuJ. ZhangP. Prognostic and predictive value of Ki-67 in triple-negative breast cancer.Oncotarget2016721310793108710.18632/oncotarget.9075 27145269
    [Google Scholar]
  85. WangS. ChenX.A. HuJ. ATF4 gene network mediates cellular response to the anticancer PAD inhibitor YW3-56 in triple-negative breast cancer cells.Mol. Cancer Ther.201514487788810.1158/1535‑7163.MCT‑14‑1093‑T 25612620
    [Google Scholar]
  86. YuanZ.Y. DaiT. WangS.S. Overexpression of ETV4 protein in triple-negative breast cancer is associated with a higher risk of distant metastasis.OncoTargets Ther.201471733174210.2147/OTT.S66692 25328406
    [Google Scholar]
  87. RaghuwanshiS. ZhangX. ArbievaZ. Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies.Cell Death Discov.202410121110.1038/s41420‑024‑01929‑0 38697979
    [Google Scholar]
  88. SkorM.N. WonderE.L. KocherginskyM. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer.Clin. Cancer Res.201319226163617210.1158/1078‑0432.CCR‑12‑3826 24016618
    [Google Scholar]
  89. WangS. XiaD. WangX. C/EBPβ regulates the JAK/STAT signaling pathway in triple‐negative breast cancer.FEBS Open Bio20211141250125810.1002/2211‑5463.13138 33660927
    [Google Scholar]
  90. SuJ.C. MarA.C. WuS.H. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis.Sci. Rep.201662888810.1038/srep28888 27364975
    [Google Scholar]
  91. UddinM.M. ZouY. SharmaT. GatlaH.R. VancurovaI. Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy.PLoS One2018138e020185810.1371/journal.pone.0201858 30089134
    [Google Scholar]
  92. AndersonN.M. SimonM.C. The tumor microenvironment.Curr. Biol.20203016R921R92510.1016/j.cub.2020.06.081 32810447
    [Google Scholar]
  93. ZhengH. SiddharthS. ParidaS. WuX. SharmaD. Tumor microenvironment: Key players in triple-negative breast cancer immunomodulation.Cancers20211313335710.3390/cancers13133357 34283088
    [Google Scholar]
  94. LiuJ. ChenZ. LiY. ZhaoW. WuJ. ZhangZ. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy.Front. Pharmacol.20211273179810.3389/fphar.2021.731798 34539412
    [Google Scholar]
  95. HashimotoK. NishimuraS. GotoK. PD 1/PD L1 immune checkpoint in bone and soft tissue tumors (Review).Mol. Clin. Oncol.20252243110.3892/mco.2025.2826 39989606
    [Google Scholar]
  96. LeeS. ChoE.Y. ParkY.H. AhnJ.S. ImY.H. Prognostic impact of FOXP3 expression in triple-negative breast cancer.Acta Oncol.2013521738110.3109/0284186X.2012.731520 23075422
    [Google Scholar]
  97. RevenkoA. CarnevalliL.S. SinclairC. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer.J. Immunother. Cancer2022104e00389210.1136/jitc‑2021‑003892 35387780
    [Google Scholar]
  98. HuangX. CaoJ. ZuX. Tumor‐associated macrophages: An important player in breast cancer progression.Thorac. Cancer202213326927610.1111/1759‑7714.14268 34914196
    [Google Scholar]
  99. MehdizadehR. ShariatpanahiS.P. GoliaeiB. RüeggC. Targeting myeloid-derived suppressor cells in combination with tumor cell vaccination predicts anti-tumor immunity and breast cancer dormancy: An in silico experiment.Sci. Rep.2023131587510.1038/s41598‑023‑32554‑z 37041172
    [Google Scholar]
  100. Abdel-LatifM. YounessR.A. Why natural killer cells in triple negative breast cancer?World J. Clin. Oncol.202011746447610.5306/wjco.v11.i7.464 32821652
    [Google Scholar]
  101. HuZ. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer.Sci. Rep.2020101281510.1038/s41598‑020‑59736‑3 32071339
    [Google Scholar]
  102. OshiM. AsaokaM. TokumaruY. CD8 T cell score as a prognostic biomarker for triple negative breast cancer.Int. J. Mol. Sci.20202118696810.3390/ijms21186968 32971948
    [Google Scholar]
  103. NasiriF. KazemiM. MirarefinS.M.J. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil.Front. Immunol.202213101878610.3389/fimmu.2022.1018786 36483567
    [Google Scholar]
  104. JinS. WangQ. WuH. PangD. XuS. Oncolytic viruses for triple negative breast cancer and beyond.Biomark. Res.2021917110.1186/s40364‑021‑00318‑4 34563270
    [Google Scholar]
  105. XuM. ZhangT. XiaR. WeiY. WeiX. Targeting the tumor stroma for cancer therapy.Mol. Cancer202221120810.1186/s12943‑022‑01670‑1 36324128
    [Google Scholar]
  106. YangD. LiuJ. QianH. ZhuangQ. Cancer-associated fibroblasts: From basic science to anticancer therapy.Exp. Mol. Med.20235571322133210.1038/s12276‑023‑01013‑0 37394578
    [Google Scholar]
  107. WangM. FengR. ChenZ. Identification of cancer-associated fibroblast subtype of triple-negative breast cancer.J. Oncol.2022202211410.1155/2022/6452636 35505821
    [Google Scholar]
  108. WuY. ShumH.C.E. WuK. VadgamaJ. From interaction to intervention: How mesenchymal stem cells affect and target triple-negative breast cancer.Biomedicines2023114118210.3390/biomedicines11041182 37189800
    [Google Scholar]
  109. OshiM. TokumaruY. AngaritaF.A. Adipogenesis in triple-negative breast cancer is associated with unfavorable tumor immune microenvironment and with worse survival.Sci. Rep.20211111254110.1038/s41598‑021‑91897‑7 34131208
    [Google Scholar]
  110. IngthorssonS. SigurdssonV. FridriksdottirA.J.R. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture.BMC Res. Notes20103118410.1186/1756‑0500‑3‑184 20609224
    [Google Scholar]
  111. FakhrejahaniE. ToiM. Tumor angiogenesis: Pericytes and maturation are not to be ignored.J. Oncol.2012201211010.1155/2012/261750 22007214
    [Google Scholar]
  112. RennerK. SingerK. KoehlG.E. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment.Front. Immunol.2017824810.3389/fimmu.2017.00248 28337200
    [Google Scholar]
  113. SunX. WangM. WangM. Metabolic reprogramming in triple-negative breast cancer.Front. Oncol.20201042810.3389/fonc.2020.00428 32296646
    [Google Scholar]
  114. KoppenolW.H. BoundsP.L. The Warburg effect and metabolic efficiency: Re-crunching the numbers.Science200932410291033
    [Google Scholar]
  115. XuY. XueD. BankheadA. NeamatiN. Why all the fuss about oxidative phosphorylation (OXPHOS)?J. Med. Chem.20206323142761430710.1021/acs.jmedchem.0c01013 33103432
    [Google Scholar]
  116. SchreierA. ZappasodiR. SerganovaI. BrownK.A. DemariaS. AndreopoulouE. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer.Front. Oncol.202312106178910.3389/fonc.2022.1061789 36703796
    [Google Scholar]
  117. LanningN.J. CastleJ.P. SinghS.J. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities.Cancer Metab.201751610.1186/s40170‑017‑0168‑x 28852500
    [Google Scholar]
  118. ZhouM. ZhaoY. DingY. Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol.Mol. Cancer2010913310.1186/1476‑4598‑9‑33
    [Google Scholar]
  119. LiuQ. GuanC. LiuC. LiH. WuJ. SunC. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy.Biomed. Pharmacother.202215611386110.1016/j.biopha.2022.113861 36228375
    [Google Scholar]
  120. HuP. ZhouP. SunT. LiuD. YinJ. LiuL. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA.Breast Cancer Res.202325115110.1186/s13058‑023‑01749‑7 38082285
    [Google Scholar]
  121. CascianoJ.C. PerryC. Cohen-NowakA.J. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer.Br. J. Cancer2020122686888410.1038/s41416‑019‑0711‑3 31942031
    [Google Scholar]
  122. RabionetM. Polonio-AlcaláE. RelatJ. Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds.Mater. Today Bio20211210015510.1016/j.mtbio.2021.100155 34841239
    [Google Scholar]
  123. QuekL.E. van GeldermalsenM. GuanY.F. Glutamine addiction promotes glucose oxidation in triple-negative breast cancer.Oncogene202241344066407810.1038/s41388‑022‑02408‑5 35851845
    [Google Scholar]
  124. MullarkyE. LuckiN.C. Beheshti ZavarehR. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers.Proc. Natl. Acad. Sci. USA201611371778178310.1073/pnas.1521548113 26831078
    [Google Scholar]
  125. ChaY. KimE.S. KooJ. Amino acid transporters and glutamine metabolism in breast cancer.Int. J. Mol. Sci.201819390710.3390/ijms19030907 29562706
    [Google Scholar]
  126. BahceciogluG. BasaraG. EllisB.W. RenX. ZorlutunaP. Breast cancer models: Engineering the tumor microenvironment.Acta Biomater.202010612110.1016/j.actbio.2020.02.006 32045679
    [Google Scholar]
  127. ZolotaV. TzelepiV. PiperigkouZ. Epigenetic alterations in triple-negative breast cancer—The critical role of extracellular matrix.Cancers202113471310.3390/cancers13040713 33572395
    [Google Scholar]
  128. WinklerJ. Abisoye-OgunniyanA. MetcalfK.J. WerbZ. Concepts of extracellular matrix remodelling in tumour progression and metastasis.Nat. Commun.2020111512010.1038/s41467‑020‑18794‑x 33037194
    [Google Scholar]
  129. ChenX. ZhangJ. DaiX. DNA methylation profiles capturing breast cancer heterogeneity.BMC Genomics201920182310.1186/s12864‑019‑6142‑y 31699026
    [Google Scholar]
  130. ChengY. HeC. WangM. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials.Signal Transduct. Target. Ther.2019416210.1038/s41392‑019‑0095‑0 31871779
    [Google Scholar]
  131. SuY. HopfingerN.R. NguyenT.D. PogashT.J. Santucci-PereiraJ. RussoJ. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors.J. Exp. Clin. Cancer Res.201837131410.1186/s13046‑018‑0988‑8 30547810
    [Google Scholar]
  132. HuangY. HongW. WeiX. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis.J. Hematol. Oncol.202215112910.1186/s13045‑022‑01347‑8 36076302
    [Google Scholar]
  133. NandyD. RajamS.M. DuttaD. A three layered histone epigenetics in breast cancer metastasis.Cell Biosci.20201015210.1186/s13578‑020‑00415‑1 32257110
    [Google Scholar]
  134. DebnathP. HuiremR.S. DuttaP. PalchaudhuriS. Epithelial–mesenchymal transition and its transcription factors.Biosci. Rep.2022421BSR2021175410.1042/BSR20211754 34708244
    [Google Scholar]
  135. MarconiG.D. FonticoliL. RajanT.S. Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis.Cells2021107158710.3390/cells10071587 34201858
    [Google Scholar]
  136. Vivas-RuizD.E. RosasP. ProleónA. Pictolysin-III, a hemorrhagic type-III metalloproteinase isolated from Bothrops pictus (Serpentes: Viperidae) venom, reduces mitochondrial respiration and induces cytokine secretion in epithelial and stromal cell lines.Pharmaceutics2023155153310.3390/pharmaceutics15051533 37242775
    [Google Scholar]
  137. MollahF. VaraminiP. Overcoming therapy resistance and relapse in TNBC: Emerging technologies to target breast cancer-associated fibroblasts.Biomedicines2021912192110.3390/biomedicines9121921 34944738
    [Google Scholar]
  138. ZhengY. LiS. TangH. MengX. ZhengQ. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer.Front. Immunol.202314115399010.3389/fimmu.2023.1153990 37426654
    [Google Scholar]
  139. LiuY. HuY. XueJ. Advances in immunotherapy for triple-negative breast cancer.Mol. Cancer202322114510.1186/s12943‑023‑01850‑7 37660039
    [Google Scholar]
  140. NedeljkovićM. DamjanovićA. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge.Cells20198995710.3390/cells8090957 31443516
    [Google Scholar]
  141. StengelC. NewmanS.P. LeeseM.P. PotterB.V.L. ReedM.J. PurohitA. Class III β-tubulin expression and in vitro resistance to microtubule targeting agents.Br. J. Cancer2010102231632410.1038/sj.bjc.6605489 20029418
    [Google Scholar]
  142. MrklićI. PogorelićZ. ĆapkunV. TomićS. Expression of topoisomerase II-α in triple negative breast cancer.Appl. Immunohistochem. Mol. Morphol.201422318218710.1097/PAI.0b013e3182910967 23702653
    [Google Scholar]
  143. PoturnajovaM. KozovskaZ. MatuskovaM. Aldehyde dehydrogenase 1A1 and 1A3 isoforms – Mechanism of activation and regulation in cancer.Cell. Signal.20218711012010.1016/j.cellsig.2021.110120 34428540
    [Google Scholar]
  144. NeophytouC.M. TrougakosI.P. ErinN. PapageorgisP. Apoptosis deregulation and the development of cancer multi-drug resistance.Cancers20211317436310.3390/cancers13174363 34503172
    [Google Scholar]
  145. Kamalabadi-FarahaniM.H. NajafabadiM.R. JabbarpourZ. Apoptotic resistance of metastatic tumor cells in triple negative breast cancer: Roles of death receptor-5.Asian Pac. J. Cancer Prev.20192061743174810.31557/APJCP.2019.20.6.1743 31244295
    [Google Scholar]
  146. LiY.J. FahrmannJ.F. AftabizadehM. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids.Cell Rep.202239911087010.1016/j.celrep.2022.110870
    [Google Scholar]
  147. PrzanowskiP. PrzanowskaR.K. GuertinM.J. ANKLE1 cleaves mitochondrial DNA and contributes to cancer risk by promoting apoptosis resistance and metabolic dysregulation.Commun. Biol.20236123110.1038/s42003‑023‑04611‑w 36859531
    [Google Scholar]
  148. ShafeiM.A. ForshawT. DavisJ. BCATc modulates crosstalk between the PI3K/Akt and the Ras/ERK pathway regulating proliferation in triple negative breast cancer.Oncotarget202011211971198710.18632/oncotarget.27607 32523652
    [Google Scholar]
  149. El-GuindyD.M. IbrahimF.M.K. AliD.A. Hypoxia-induced autophagy in triple negative breast cancer: Association with prognostic variables, patients’ survival and response to neoadjuvant chemotherapy.Virchows Arch.2023482582383710.1007/s00428‑023‑03527‑4 36939902
    [Google Scholar]
  150. LiZ.L. ZhangH.L. HuangY. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation.Nat. Commun.2020111380610.1038/s41467‑020‑17395‑y 32732922
    [Google Scholar]
  151. LiJ. HeD. LiS. XiaoJ. ZhuZ. Ferroptosis: The emerging player in remodeling triple-negative breast cancer.Front. Immunol.202314128405710.3389/fimmu.2023.1284057 37928550
    [Google Scholar]
  152. WuJ. ZhuY. LuoM. LiL. Comprehensive analysis of pyroptosis-related genes and tumor microenvironment infiltration characterization in breast cancer.Front. Immunol.20211274822110.3389/fimmu.2021.748221 34659246
    [Google Scholar]
  153. LiF. SunH. YuY. Correction: RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer.Cell Death Dis.202314960710.1038/s41419‑023‑06052‑z 37709745
    [Google Scholar]
  154. PiaseckaD. BraunM. KordekR. SadejR. RomanskaH. MicroRNAs in regulation of triple-negative breast cancer progression.J. Cancer Res. Clin. Oncol.201814481401141110.1007/s00432‑018‑2689‑2 29923083
    [Google Scholar]
  155. VolovatS.R. VolovatC. HordilaI. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: A review.Front. Oncol.20201052685010.3389/fonc.2020.526850 33330019
    [Google Scholar]
  156. FuY. YangQ. YangH. ZhangX. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer.Front. Mol. Biosci.202310116246310.3389/fmolb.2023.1162463 37122564
    [Google Scholar]
  157. DasP.K. SiddikaA. RashelK.M. Roles of long noncoding RNA in triple‐negative breast cancer.Cancer Med.20231220203652037910.1002/cam4.6600 37795578
    [Google Scholar]
  158. MeidhofS. BrabletzS. LehmannW. ZEB 1‐associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat.EMBO Mol. Med.20157683184710.15252/emmm.201404396 25872941
    [Google Scholar]
  159. WangC. ZhengX. ShenC. ShiY. MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells.J. Exp. Clin. Cancer Res.20123115810.1186/1756‑9966‑31‑58 22713668
    [Google Scholar]
  160. WangY. YuY. TsuyadaA. Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM.Oncogene201130121470148010.1038/onc.2010.531 21102523
    [Google Scholar]
  161. CuiffoB.G. CampagneA. BellG.W. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis.Cell Stem Cell201415676277410.1016/j.stem.2014.10.001 25515522
    [Google Scholar]
  162. MartelloG. RosatoA. FerrariF. A MicroRNA targeting dicer for metastasis control.Cell201014171195120710.1016/j.cell.2010.05.017 20603000
    [Google Scholar]
  163. DamianoV. BrisottoG. BorgnaS. Epigenetic silencing of miR‐200c in breast cancer is associated with aggressiveness and is modulated by ZEB1.Genes Chromosomes Cancer201756214715810.1002/gcc.22422 27717206
    [Google Scholar]
  164. LiH.Y. LiangJ.L. KuoY.L. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer.Breast Cancer Res.201719113310.1186/s13058‑017‑0918‑2
    [Google Scholar]
  165. MaL. YoungJ. PrabhalaH. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis.Nat. Cell Biol.201012324725610.1038/ncb2024 20173740
    [Google Scholar]
  166. QiL. BartJ. TanL.P. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma.BMC Cancer20099116310.1186/1471‑2407‑9‑163 19473551
    [Google Scholar]
  167. DuY. WeiN. MaR. JiangS. SongD. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer.Cell Death Dis.202011973110.1038/s41419‑020‑02952‑6 32908121
    [Google Scholar]
  168. KimS. LeeE. JungJ. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer.Oncogene201837222982299110.1038/s41388‑018‑0124‑4 29527004
    [Google Scholar]
  169. JiangS. ZhangL.F. ZhangH.W. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells.EMBO J.20123181985199810.1038/emboj.2012.45 22354042
    [Google Scholar]
  170. LiS. LiQ. LüJ. Targeted inhibition of miR-221/222 promotes cell sensitivity to cisplatin in triple-negative breast cancer MDA-MB-231 cells.Front. Genet.202010127810.3389/fgene.2019.01278 32010177
    [Google Scholar]
  171. HanX. YanS. WeijieZ. Critical role of miR-10b in transforming growth factor-β1-induced epithelial–mesenchymal transition in breast cancer.Cancer Gene Ther.2014212606710.1038/cgt.2013.82 24457988
    [Google Scholar]
  172. ZengH. WangL. WangJ. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2.Arch. Biochem. Biophys.2018651526010.1016/j.abb.2018.05.018 29802821
    [Google Scholar]
  173. Bolandghamat PourZ. NourbakhshM. MousavizadehK. Suppression of nicotinamide phosphoribosyltransferase expression by miR-154 reduces the viability of breast cancer cells and increases their susceptibility to doxorubicin.BMC Cancer2019191102710.1186/s12885‑019‑6221‑0 31675930
    [Google Scholar]
  174. WangM. CaiW.R. MengR. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin.Biochem. Biophys. Res. Commun.20185011485410.1016/j.bbrc.2018.04.129 29678577
    [Google Scholar]
  175. XieH. XiaoR. HeY. MicroRNA 100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1.Oncol. Lett.202122681610.3892/ol.2021.13077 34671430
    [Google Scholar]
  176. LiuM. LiZ. HanX. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in Breast Cancer.Sci. Rep.2017711592910.1038/s41598‑017‑16175‑x 29162879
    [Google Scholar]
  177. LiuM. GongC. XuR. ChenY. WangX. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2.Cell. Mol. Biol. Lett.20192414710.1186/s11658‑019‑0168‑7 31308851
    [Google Scholar]
  178. García-GarcíaF. Salinas-VeraY.M. García-VázquezR. miR 145 5p is associated with pathological complete response to neoadjuvant chemotherapy and impairs cell proliferation by targeting TGFβR2 in breast cancer.Oncol. Rep.201941635273534 31002371
    [Google Scholar]
  179. ShiS. ChenX. LiuH. LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/β-catenin pathway.Gene2019683475310.1016/j.gene.2018.10.014 30300682
    [Google Scholar]
  180. TaoL. WuY.Q. ZhangS.P. MiR-21-5p enhances the progression and paclitaxel resistance in drug-resistant breast cancer cell lines by targeting PDCD4.Neoplasma201966574675510.4149/neo_2018_181207N930 31169019
    [Google Scholar]
  181. LeeJ.W. GuanW. HanS. HongD.K. KimL.S. KimH. Micro RNA ‐708‐3p mediates metastasis and chemoresistance through inhibition of epithelial‐to‐mesenchymal transition in breast cancer.Cancer Sci.201810951404141310.1111/cas.13588 29575368
    [Google Scholar]
  182. di GennaroA. DamianoV. BrisottoG. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness.Cell Death Differ.201825122165218010.1038/s41418‑018‑0103‑x 29666469
    [Google Scholar]
  183. Drago-FerranteR. PentimalliF. CarlisiD. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation.Oncotarget2017817289392895810.18632/oncotarget.15960 28423652
    [Google Scholar]
  184. ChengS. HuangY. LouC. HeY. ZhangY. ZhangQ. FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation.Cancer Biol. Ther.201920332833710.1080/15384047.2018.1529101 30336071
    [Google Scholar]
  185. ZuoJ. YuY. ZhuM. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation.Cancer Biomark.201821238339210.3233/CBM‑170642 29103027
    [Google Scholar]
  186. YangL.W. WuX.J. LiangY. miR‐155 increases stemness and decitabine resistance in triple‐negative breast cancer cells by inhibiting TSPAN5.Mol. Carcinog.202059444746110.1002/mc.23167 32096299
    [Google Scholar]
  187. YehW.L. TsaiC.F. ChenD.R. Peri-foci adipose-derived stem cells promote chemoresistance in breast cancer.Stem Cell Res. Ther.20178117710.1186/s13287‑017‑0630‑2 28750689
    [Google Scholar]
  188. YouF. LuanH. SunD. miRNA-106a promotes breast cancer cell proliferation, clonogenicity, migration, and invasion through inhibiting apoptosis and chemosensitivity.DNA Cell Biol.201938219820710.1089/dna.2018.4282 30570350
    [Google Scholar]
  189. YiD. XuL. WangR. LuX. SangJ. miR‐381 overcomes cisplatin resistance in breast cancer by targeting MDR1.Cell Biol. Int.2019431122110.1002/cbin.11071 30444043
    [Google Scholar]
  190. LiY. LiangY. SangY. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1.Cell Death Dis.2018911410.1038/s41419‑017‑0030‑7 29323124
    [Google Scholar]
  191. CooperS.J. von RoemelingC.A. KangK.H. Reexpression of tumor suppressor, sFRP1, leads to antitumor synergy of combined HDAC and methyltransferase inhibitors in chemoresistant cancers.Mol. Cancer Ther.201211102105211510.1158/1535‑7163.MCT‑11‑0873 22826467
    [Google Scholar]
  192. ShenM. DongC. RuanX. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2.Cancer Res.201979143608362110.1158/0008‑5472.CAN‑18‑4055 31118200
    [Google Scholar]
  193. WengY.S. TsengH.Y. ChenY.A. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer.Mol. Cancer20191814210.1186/s12943‑019‑0988‑0 30885232
    [Google Scholar]
  194. SonD. KimY. LimS. miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer.Cancer Lett.201945422423310.1016/j.canlet.2019.04.006 31004703
    [Google Scholar]
  195. QiuP. GuoQ. YaoQ. ChenJ. LinJ. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer.PLoS One20211611e025428310.1371/journal.pone.0254283 34797837
    [Google Scholar]
  196. KrishnanK. SteptoeA.L. MartinH.C. miR-139-5p is a regulator of metastatic pathways in breast cancer.RNA201319121767178010.1261/rna.042143.113 24158791
    [Google Scholar]
  197. PortosoM. RagazziniR. BrenčičŽ. PRC 2 is dispensable forHOTAIR ‐Mediated transcriptional repression.EMBO J.201736898199410.15252/embj.201695335 28167697
    [Google Scholar]
  198. ZuoY. LiY. ZhouZ. MaM. FuK. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer.Biomed. Pharmacother.20179592292810.1016/j.biopha.2017.09.005 28915533
    [Google Scholar]
  199. LiuA.N. QuH.J. GongW.J. XiangJ.Y. YangM.M. ZhangW. LncRNA AWPPH and miRNA‐21 regulates cancer cell proliferation and chemosensitivity in triple‐negative breast cancer by interacting with each other.J. Cell. Biochem.20191209148601486610.1002/jcb.28747 31033015
    [Google Scholar]
  200. YangF. ShenY. ZhangW. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer.Cell Death Differ.201825122209222010.1038/s41418‑018‑0123‑6 29844570
    [Google Scholar]
  201. ZhangY. HeQ. HuZ. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer.Nat. Struct. Mol. Biol.201623652253010.1038/nsmb.3211 27111890
    [Google Scholar]
  202. ChenF. ChenJ. YangL. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells.Nat. Cell Biol.201921449851010.1038/s41556‑019‑0299‑0 30936474
    [Google Scholar]
  203. LiangY. SongX. LiY. A novel long non-coding RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer.Cell Death Dis.20189556310.1038/s41419‑018‑0582‑1 29752439
    [Google Scholar]
  204. ZhengP. DongL. ZhangB. Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19.Histochem. Cell Biol.2019152428129110.1007/s00418‑019‑01794‑4 31352515
    [Google Scholar]
  205. TangT. ChengY. SheQ. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer.Biomed. Pharmacother.201810733834610.1016/j.biopha.2018.07.076 30098551
    [Google Scholar]
  206. WangR. ZhangT. YangZ. JiangC. SengJ. Long non‐coding RNA FTH 1P3 activates paclitaxel resistance in breast cancer through miR‐206/ABCB 1.J. Cell. Mol. Med.20182294068407510.1111/jcmm.13679 29971911
    [Google Scholar]
  207. HanJ. HanB. WuX. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway.Toxicol. Appl. Pharmacol.2018359556110.1016/j.taap.2018.09.018 30244121
    [Google Scholar]
  208. GoodingA.J. ZhangB. GunawardaneL. BeardA. ValadkhanS. SchiemannW.P. The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers.Oncogene201938122020204110.1038/s41388‑018‑0586‑4 30467380
    [Google Scholar]
  209. WuJ. ChenH. YeM. Downregulation of long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression.Biomed. Pharmacother.201911510886910.1016/j.biopha.2019.108869 31864836
    [Google Scholar]
  210. ShinV.Y. ChenJ. CheukI.W.Y. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness.Cell Death Dis.201910427010.1038/s41419‑019‑1513‑5 30894512
    [Google Scholar]
  211. EadesG. WolfsonB. ZhangY. LiQ. YaoY. ZhouQ. lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6.Mol. Cancer Res.201513233033810.1158/1541‑7786.MCR‑14‑0251 25253741
    [Google Scholar]
  212. YangW. GuJ. WangX. Inhibition of circular RNA CDR1as increases chemosensitivity of 5‐FU‐resistant BC cells through up‐regulating miR‐7.J. Cell. Mol. Med.20192353166317710.1111/jcmm.14171 30884120
    [Google Scholar]
  213. LiuP. ZouY. LiX. circGNB1 facilitates triple-negative breast cancer progression by regulating miR-141-5p-IGF1R axis.Front. Genet.20201119310.3389/fgene.2020.00193 32194644
    [Google Scholar]
  214. LiangY. SongX. LiY. circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer.Oncogene201938426850686610.1038/s41388‑019‑0926‑z 31406252
    [Google Scholar]
  215. PeiX. ZhangY. WangX. XueB. SunM. LiH. Circular RNA circ-ZEB1 acts as an oncogene in triple negative breast cancer via sponging miR-448.Int. J. Biochem. Cell Biol.202012610579810.1016/j.biocel.2020.105798 32629026
    [Google Scholar]
  216. DuW.W. YangW. LiX. The circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasion.Mol. Ther.20202851287129810.1016/j.ymthe.2020.03.002 32229309
    [Google Scholar]
  217. XingZ. WangR. WangX. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis.Cell Death Discov.20217121810.1038/s41420‑021‑00604‑y 34420029
    [Google Scholar]
  218. ZengK. HeB. YangB.B. The pro-metastasis effect of circANKS1B in breast cancer.Mol. Cancer201817116010.1186/s12943‑018‑0914‑x 30454010
    [Google Scholar]
  219. ZhengS. HuangQ. ZhengZ. ZhangZ. GuoG. circGFRA1 affects the sensitivity of triple-negative breast cancer cells to paclitaxel via the miR-361-5p/TLR4 pathway.J. Biochem.2021169560161110.1093/jb/mvaa148 33481008
    [Google Scholar]
  220. ChenB. WeiW. HuangX. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression.Theranostics20188144003401510.7150/thno.24106 30083277
    [Google Scholar]
  221. ChenT. WangX. LiC. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation.Oncogene202140152756277110.1038/s41388‑021‑01739‑z 33714984
    [Google Scholar]
  222. WangX. XueB. ZhangY. GuoG. DuanX. DouD. Up-regulated circBACH2 contributes to cell proliferation, invasion, and migration of triple-negative breast cancer.Cell Death Dis.202112541210.1038/s41419‑021‑03684‑x 33875646
    [Google Scholar]
  223. ZhengX. HuangM. XingL. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer.Mol. Cancer20201917310.1186/s12943‑020‑01183‑9 32264877
    [Google Scholar]
  224. LiuF. HuL. PeiY. Long non-coding RNA AFAP1-AS1 accelerates the progression of melanoma by targeting miR-653-5p/RAI14 axis.BMC Cancer202020125810.1186/s12885‑020‑6665‑2 32228518
    [Google Scholar]
  225. ZhangC. YuZ. YangS. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner.Mol. Cancer20242313310.1186/s12943‑024‑01944‑w 38355583
    [Google Scholar]
  226. YuJ. WangH. ShenW. Hsa_circ_0007823 overexpression suppresses the progression of triple-negative breast cancer via regulating miR-182-5p-FOXO1 axis.Breast Cancer20231569570810.2147/BCTT.S417547 37873520
    [Google Scholar]
  227. FanY. WangJ. JinW. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer.Mol. Cancer20212012510.1186/s12943‑021‑01321‑x 33530981
    [Google Scholar]
  228. DouD. RenX. HanM. CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis.Cancer Cell Int.202020145410.1186/s12935‑020‑01547‑7 32944002
    [Google Scholar]
  229. LiY. ShiP. ZhengT. YingZ. JiangD. Circular RNA hsa_circ_0131242 promotes triple-negative breast cancer progression by sponging hsa-miR-2682.OncoTargets Ther.2020134791479810.2147/OTT.S246957 32547106
    [Google Scholar]
  230. ZhouY. MaG. PengS. Circ_0000520 contributes to triple‐negative breast cancer progression through mediating the miR‐1296/ZFX axis.Thorac. Cancer202112182427243810.1111/1759‑7714.14085 34324278
    [Google Scholar]
  231. HuJ. JiC. HuaK. Hsa_circ_0091074 regulates TAZ expression via microRNA 1297 in triple negative breast cancer cells.Int. J. Oncol.20205651314132610.3892/ijo.2020.5000 32319577
    [Google Scholar]
  232. WangQ. LiangD. ShenP. YuY. YanY. YouW. Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis.Transl. Oncol.202114810104510.1016/j.tranon.2021.101045 34023560
    [Google Scholar]
  233. ChengG.J. LeungE.Y. SingletonD.C. In vitro breast cancer models for studying mechanisms of resistance to endocrine therapy.Explor. Target. Antitumor Ther.20223329732010.37349/etat.2022.00084 36045910
    [Google Scholar]
  234. SinghS. TranS. PutmanJ. TavanaH. Three-dimensional models of breast cancer–fibroblasts interactions.Exp. Biol. Med.20202451087988810.1177/1535370220917366 32276543
    [Google Scholar]
  235. WangH. NajibiA.J. SobralM.C. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors.Nat. Commun.2020111569610.1038/s41467‑020‑19540‑z 33173046
    [Google Scholar]
  236. WishartA.L. ConnerS.J. GuarinJ.R. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis.Sci. Adv.2020643eabc317510.1126/sciadv.abc3175 33087348
    [Google Scholar]
  237. ReynoldsD.S. TevisK.M. BlessingW.A. ColsonY.L. ZamanM.H. GrinstaffM.W. Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment.Sci. Rep.2017711038210.1038/s41598‑017‑10863‑4 28871147
    [Google Scholar]
  238. FitzpatrickP.A. AkrapN. SöderbergE.M.V. HarrisonH. ThomsonG.J. LandbergG. Robotic mammosphere assay for high-throughput screening in triple-negative breast cancer.SLAS Discov.201722782783610.1177/2472555217692321 28346100
    [Google Scholar]
  239. DivouxJ. FlorentR. JacobsM. The TRIPLEX study: Use of patient-derived tumor organoids as an innovative tool for precision medicine in triple-negative breast cancer.BMC Cancer202323188310.1186/s12885‑023‑11362‑8 37726786
    [Google Scholar]
  240. AyusoJ.M. Virumbrales-MuñozM. LangJ.M. BeebeD.J. A role for microfluidic systems in precision medicine.Nat. Commun.2022131308610.1038/s41467‑022‑30384‑7 35654785
    [Google Scholar]
  241. Bittman-SotoX.S. ThomasE.S. GanshertM.E. Mendez-SantacruzL.L. HarrellJ.C. The transformative role of 3D culture models in triple-negative breast cancer research.Cancers20241610185910.3390/cancers16101859 38791938
    [Google Scholar]
  242. Boix-MontesinosP. Soriano-TeruelP.M. ArmiñánA. OrzáezM. VicentM.J. The past, present, and future of breast cancer models for nanomedicine development.Adv. Drug Deliv. Rev.202117330633010.1016/j.addr.2021.03.018 33798642
    [Google Scholar]
  243. BrooksD. ZimmerA. WakefieldL. Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target.Oncotarget2018934234622348110.18632/oncotarget.25231 29805748
    [Google Scholar]
  244. AprelikovaO. TomlinsonC.C. HoenerhoffM. Develop-ment and preclinical application of an immunocompetent transplant model of basal breast cancer with lung, liver, and brain metastases.PLoS One2016115e015526210.1371/journal.pone.0155262 27171183
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240387430250508080548
Loading
/content/journals/cmm/10.2174/0115665240387430250508080548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test