Skip to content
2000
image of A Novel Combined Therapeutic Approach to Endometriosis: Exosomes Derived from Human Wharton’s Jelly Mesenchymal Stem Cells and Etanercept

Abstract

Introduction

Endometriosis is a chronic disorder characterized by abnormal endometrial tissue growth. This study evaluates a novel combination immunomodulatory treatment involving etanercept (ETN) and exosomes derived from human Wharton's jelly mesenchymal stem cells (hWJMSC-Exo) as a promising alternative to conventional therapies for modulating inflammation in endometriosis.

Methods

Endometrial stromal cells were isolated by enzymatic digestion of eutopic (EuESCs, N = 6) and ectopic (EESCs, N = 6) tissues of endometriosis patients and non-endometriotic controls (CESCs, N = 6). hWJMSC-Exo were confirmed by flow cytometry, SEM, and DLS tests. Cells were treated with varying concentrations of ETN (0-40 µg/ml), hWJMSC-Exo (0-15 μg/ml), and their combination (E+E). IC50 values were determined using the MTT assay at 24, 48, and 72 hours. Protein levels of TNF-α, VEGF-A, and IL-10, and gene expression of MMP-2, MMP-9, MCP-1, aromatase, TSLP, and TGF-β1 were measured using ELISA and RT-PCR, respectively.

Results

The combination of ETN (10 µg/ml) and hWJMSC-Exo (10 μg/ml) at 24 and 48 hours, respectively, reduced protein expression of TNF-α, VEGF-A, and IL-10 in EESCs, EuESCs, and CESCs compared with untreated groups ( < 0.001). Additionally, E+E treatment significantly reduced mRNA expression of MMP-2, MMP-9, MCP-1, aromatase, TSLP, and TGF-β1 in all three groups compared to untreated groups.

Discussion

This combination therapy improves inflammation, angiogenesis, tissue remodeling, and immune regulation in endometriosis. However, clinical validation and long-term safety require further studies with larger sample sizes.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240386032250914233540
2025-09-22
2026-01-30
Loading full text...

Full text loading...

References

  1. Lao J. Hu P. Wan Y. Shu M. Chen J. Yang H. NEDD4 knockdown suppresses human endometrial stromal cell growth and invasion by regulating PTGS2-mediated ferroptosis in endometriosis. Curr. Mol. Med. 2024 10.2174/0115665240311438241011052341 39501947
    [Google Scholar]
  2. Alimoradi Fard M. Ghafourian M. Mousavi-Salehi A. Moramazi F. Ranjbari N. Immunohistochemical Evaluation of NKP46 receptor expression and the number of nk cells in the endometrium of patients with endometriosis. Iran. J. Immunol. 2024 21 1 27 36 38375785
    [Google Scholar]
  3. Lin Y. Li Y. Li Y. SCM-198 prevents endometriosis by reversing low autophagy of endometrial stromal cell via balancing ERα and PR signals. Front. Endocrinol. 2022 13 858176 10.3389/fendo.2022.858176 35784569
    [Google Scholar]
  4. Fan W. zhang Y, Dai Y, Ma H, Zhao R, Liu Y. Creation of a rat model of ovarian endometriosis: A novel and easy approach to simulating chocolate cysts. Exp. Cell Res. 2025 448 1 114553 10.1016/j.yexcr.2025.114553 40216010
    [Google Scholar]
  5. Ke J. Ye J. Li M. Zhu Z. The role of matrix metalloproteinases in endometriosis: A potential target. Biomolecules 2021 11 11 1739 10.3390/biom11111739 34827737
    [Google Scholar]
  6. Eugeniu C. Eremei Z. Claudiu M. Radu N. Ruslan P. Immunoexpression of matrix metalloproteinases MMP-1, MMP-2, MMP-9 and MMP-14 in extragenital endometriosis and eutopic endometrium. Mold Med J 2020 63 4 6 11
    [Google Scholar]
  7. Quintero-Fabiلn S. Arreola R. Becerril-Villanueva E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019 9 1370 10.3389/fonc.2019.01370 31921634
    [Google Scholar]
  8. Young V.J. Ahmad S.F. Brown J.K. Duncan W.C. Horne A.W. Peritoneal VEGF-A expression is regulated by TGF-β1 through an ID1 pathway in women with endometriosis. Sci. Rep. 2015 5 1 16859 10.1038/srep16859 26577912
    [Google Scholar]
  9. Wang X.Q. Zhou W.J. Luo X.Z. Tao Y. Li D.J. Synergistic effect of regulatory T cells and proinflammatory cytokines in angiogenesis in the endometriotic milieu. Hum. Reprod. 2017 32 6 1304 1317 10.1093/humrep/dex067 28383711
    [Google Scholar]
  10. Kopec M. Szlendak P. Kotarski J. Gogacz M. The influence of ethanol consumption on a course of endometriosis. Ginekol. Pol. 2025 10.5603/gpl.103148 39878755
    [Google Scholar]
  11. Zhao Y. Nichols J.E. Valdez R. Mendelson C.R. Simpson E.R. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol. Endocrinol. 1996 10 11 1350 1357 8923461
    [Google Scholar]
  12. Chang K-K. Liu L-B. Li H. TSLP induced by estrogen stimulates secretion of MCP-1 and IL-8 and growth of human endometrial stromal cells through JNK and NF-κB signal pathways. Int. J. Clin. Exp. Pathol. 2014 7 5 1889 1899 24966899
    [Google Scholar]
  13. Habibi S. Ramazanali F. Favaedi R. Afsharian P. Amirchaghmaghi E. Shahhoseini M. Thymic stromal lymphopoietin (TSLP) is a potent pro-inflammatory mediator which is epigenetically deregulated in endometriosis. J. Reprod. Immunol. 2022 151 103515 10.1016/j.jri.2022.103515 35381481
    [Google Scholar]
  14. Berlanda N. Somigliana E. Frattaruolo M.P. Buggio L. Dridi D. Vercellini P. Surgery versus hormonal therapy for deep endometriosis: Is it a choice of the physician? Eur. J. Obstet. Gynecol. Reprod. Biol. 2017 209 67 71 10.1016/j.ejogrb.2016.07.513 27544308
    [Google Scholar]
  15. Sadłocha M. Toczek J. Major K. Staniczek J. Stojko R. Endometriosis: Molecular pathophysiology and recent treatment strategies—comprehensive literature review. Pharmaceuticals 2024 17 7 827 10.3390/ph17070827 39065678
    [Google Scholar]
  16. Binder U. Skerra A. Strategies for extending the half-life of biotherapeutics: Successes and complications. Expert Opin. Biol. Ther. 2025 25 1 93 118 10.1080/14712598.2024.2436094 39663567
    [Google Scholar]
  17. Liu M. Li Y. Yuan Y. Jiang M. Yin P. Yang D. Peri-implantation treatment with TNF-α inhibitor for endometriosis and/or adenomyosis women undergoing frozen-thawed embryo transfer: A retrospective cohort study. J. Reprod. Immunol. 2025 167 104415 10.1016/j.jri.2024.104415 39700679
    [Google Scholar]
  18. Yildirim G. Attar R. Ficicioglu C. Karateke A. Ozkan F. Yesildaglar N. Etanercept causes regression of endometriotic implants in a rat model. Arch. Gynecol. Obstet. 2011 283 6 1297 1302 10.1007/s00404‑010‑1543‑9 20544212
    [Google Scholar]
  19. Islimye M. Kilic S. Zulfikaroglu E. Topcu O. Zergeroglu S. Batioglu S. Regression of endometrial autografts in a rat model of endometriosis treated with etanercept. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011 159 1 184 189 10.1016/j.ejogrb.2011.06.029 21741153
    [Google Scholar]
  20. Zulfikaroglu E. Kılıc S. Islimye M. Aydin M. Zergeroglu S. Batioglu S. Efficacy of anti-tumor necrosis factor therapy on endometriosis in an experimental rat model. Arch. Gynecol. Obstet. 2011 283 4 799 804 10.1007/s00404‑010‑1434‑0 20333392
    [Google Scholar]
  21. Sadeghi M. Mohammadi M. Tavakol Afshari J. Iranparast S. Ansari B. Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell. Immunol. 2024 397-398 104813 10.1016/j.cellimm.2024.104813 38364454
    [Google Scholar]
  22. Asadirad A. Ghadiri A.A. Amari A. Ghasemi Dehcheshmeh M. Sadeghi M. Dehnavi S. Sublingual prophylactic administration of OVA-loaded MSC-derived exosomes to prevent allergic sensitization. Int. Immunopharmacol. 2023 120 110405 10.1016/j.intimp.2023.110405 37270928
    [Google Scholar]
  23. Ghafourian M. Mahdavi R. Akbari Jonoush Z. The implications of exosomes in pregnancy: Emerging as new diagnostic markers and therapeutics targets. Cell Commun. Signal. 2022 20 1 51 10.1186/s12964‑022‑00853‑z 35414084
    [Google Scholar]
  24. Alexander M. Hu R. Runtsch M.C. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 2015 6 1 7321 10.1038/ncomms8321 26084661
    [Google Scholar]
  25. Zheng L.W. Lan C.N. Kong Y. Liu L.H. Fan Y.M. Zhang C.J. Exosomal miR-150 derived from BMSCs inhibits TNF-α-mediated osteoblast apoptosis in osteonecrosis of the femoral head by GREM1/NF-κB signaling. Regen. Med. 2022 17 10 739 753 10.2217/rme‑2021‑0169 35938412
    [Google Scholar]
  26. Antar S.A. El-Gammal M.A. Hazem R.M. Moustafa Y.M. Etanercept mitigates cadmium chloride-induced testicular damage in rats “an insight into autophagy, apoptosis, oxidative stress and inflammation”. Environ. Sci. Pollut. Res. Int. 2022 29 19 28194 28207 10.1007/s11356‑021‑18401‑6 34993805
    [Google Scholar]
  27. Sholihah I.A. Barlian A. Anti-inflammatory potency of human wharton’s jelly mesenchymal stem cell-derived exosomes on l2 cell line induced by lipopolysaccharides. Adv. Pharm. Bull. 2024 14 2 434 444 10.34172/apb.2024.027 39206409
    [Google Scholar]
  28. Zhao Y. Pan S. Wu X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit ovarian granulosa cells inflammatory response through inhibition of NF-κB signaling in polycystic ovary syndrome. J. Reprod. Immunol. 2022 152 103638 10.1016/j.jri.2022.103638 35588629
    [Google Scholar]
  29. Dong B. Wang C. Zhang J. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res. Ther. 2021 12 1 204 10.1186/s13287‑021‑02244‑6 33761997
    [Google Scholar]
  30. Thomi G. Surbek D. Haesler V. Joerger-Messerli M. Schoeberlein A. Correction: Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res. Ther. 2022 13 1 364 10.1186/s13287‑022‑03079‑5 35897039
    [Google Scholar]
  31. Niknam B. Baghaei K. Mahmoud Hashemi S. Hatami B. Reza Zali M. Amani D. Human Wharton’s jelly mesenchymal stem cells derived-exosomes enriched by miR-124 promote an anti-fibrotic response in an experimental model of liver fibrosis. Int. Immunopharmacol. 2023 119 110294 10.1016/j.intimp.2023.110294 37167639
    [Google Scholar]
  32. Canis M. Donnez J.G. Guzick D.S. Revised american society for reproductive medicine classification of endometriosis: 1996. Fertil. Steril. 1997 67 5 817 821 10.1016/S0015‑0282(97)81391‑X 9130884
    [Google Scholar]
  33. Bustin S.A. Benes V. Garson J.A. The MIQE guidelines: Minimum information for citation of quantitative real-time PCR experiments. Clin. Chem. 2009 55 4 611 622 10.1373/clinchem.2008.112797 19246619
    [Google Scholar]
  34. Eliesen G.A.M. van Drongelen J. van Hove H. Assessment of placental disposition of infliximab and etanercept in women with autoimmune diseases and in the ex vivo perfused placenta. Clin. Pharmacol. Ther. 2020 108 1 99 106 10.1002/cpt.1827 32153014
    [Google Scholar]
  35. Toriu C. Tsubota K. Usui Y. Goto H. Resuming anti-TNF therapy after development of miliary tuberculosis in Behcet’s disease-related uveitis: A case report. J. Ophthalmic Inflamm. Infect. 2023 13 1 52 10.1186/s12348‑023‑00375‑w 38017191
    [Google Scholar]
  36. Atiqi S. Hooijberg F. Loeff F.C. Rispens T. Wolbink G.J. Immunogenicity of TNF-Inhibitors. Front. Immunol. 2020 11 312 10.3389/fimmu.2020.00312 32174918
    [Google Scholar]
  37. Richter O.N. Dorn C. Rِsing B, Flaskamp C, Ulrich U. Tumor necrosis factor alpha secretion by peritoneal macrophages in patients with endometriosis. Arch. Gynecol. Obstet. 2005 271 2 143 147 10.1007/s00404‑003‑0591‑9 14745563
    [Google Scholar]
  38. Rahmawati N.Y. Ahsan F. Santoso B. Role of TNF superfamily members lymphotoxin-α, sCD40L, and TNF-α in endometriosis-related infertility. J. Endometr. Pelvic Pain Disord. 2024 16 2 79 88 10.1177/22840265241231722
    [Google Scholar]
  39. Dymanowska-Dyjak I. Terpiłowska B. Morawska-Michalska I. Immune dysregulation in endometriomas: Implications for inflammation. Int. J. Mol. Sci. 2024 25 9 4802 10.3390/ijms25094802 38732021
    [Google Scholar]
  40. Zhang W. Li K. Jian A. Zhang G. Zhang X. Prospects for potential therapy targeting immune associated factors in endometriosis (Review). Mol. Med. Rep. 2025 31 3 1 20 39717957
    [Google Scholar]
  41. Barrier BF Bates GW Leland MM Leach DA Robinson RD Propst AM Efficacy of anti-tumor necrosis factor therapy in the treatment of spontaneous endometriosis in baboons. Fertil Steril 2004 81 775 9 Suppl. 1 10.1016/j.fertnstert.2003.09.034 15019808
    [Google Scholar]
  42. Li W. Lin A. Qi L. Immunotherapy: A promising novel endometriosis therapy. Front. Immunol. 2023 14 1128301 10.3389/fimmu.2023.1128301 37138868
    [Google Scholar]
  43. Abbaszadeh H. Ghorbani F. Derakhshani M. The effect of Acellularized Wharton’s Jelly-derived exosomes on myeloid differentiation of umbilical cord blood-derived CD34+ hematopoietic stem cells. Gene Rep. 2021 25 101298 10.1016/j.genrep.2021.101298
    [Google Scholar]
  44. Li X. Liu L. Yang J. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 2016 8 72 82 10.1016/j.ebiom.2016.04.030 27428420
    [Google Scholar]
  45. Liang L. Wang L. Zhou S. Exosomes derived from human umbilical cord mesenchymal stem cells repair injured endometrial epithelial cells. J. Assist. Reprod. Genet. 2020 37 2 395 403 10.1007/s10815‑019‑01687‑4 31938932
    [Google Scholar]
  46. Bo C. Wang Y. Angiogenesis signaling in endometriosis: Molecules, diagnosis and treatment (Review). Mol. Med. Rep. 2024 29 3 43 10.3892/mmr.2024.13167 38240108
    [Google Scholar]
  47. Keleş C.D. Vural B. Filiz S. The effects of etanercept and cabergoline on endometriotic implants, uterus and ovaries in rat endometriosis model. J. Reprod. Immunol. 2021 146 103340 10.1016/j.jri.2021.103340 34139652
    [Google Scholar]
  48. Zhang X.T. Zhang Y-L. Chen S. Chen S. Human umbilical cord mesenchymal stem cells derived-exosomes on VEGF-A in hypoxic-induced mice retinal astrocytes and mice model of retinopathy of prematurity. Int. J. Ophthalmol. 2024 17 7 1238 1247 10.18240/ijo.2024.07.07 39026907
    [Google Scholar]
  49. Fan Y.Y. Chen H.Y. Chen W. Liu Y.N. Fu Y. Wang L.N. Expression of inflammatory cytokines in serum and peritoneal fluid from patients with different stages of endometriosis. Gynecol. Endocrinol. 2018 34 6 507 512 10.1080/09513590.2017.1409717 29308924
    [Google Scholar]
  50. Li M-Q. Wang Y. Chang K-K. CD4+Foxp3+ regulatory T cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic lesions. Cell Death Dis. 2014 5 10 e1436 e6 10.1038/cddis.2014.414 25275597
    [Google Scholar]
  51. Chang K.K. Liu L.B. Jin L.P. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis. 2017 8 3 e2666 e6 10.1038/cddis.2017.95 28300844
    [Google Scholar]
  52. Degboé Y. Rauwel B. Baron M. Polarization of rheumatoid macrophages by TNF targeting through an IL-10/STAT3 mechanism. Front. Immunol. 2019 10 3 10.3389/fimmu.2019.00003 30713533
    [Google Scholar]
  53. Matsuzaki S. Pouly J.L. Canis M. IL-10 is not anti-fibrotic but pro-fibrotic in endometriosis: IL-10 treatment of endometriotic stromal cells in vitro promotes myofibroblast proliferation and collagen type I protein expression. Hum. Reprod. 2023 38 1 14 29 10.1093/humrep/deac248 36413036
    [Google Scholar]
  54. Suen J.L. Chang Y. Shiu Y.S. IL‐10 from plasmacytoid dendritic cells promotes angiogenesis in the early stage of endometriosis. J. Pathol. 2019 249 4 485 497 10.1002/path.5339 31418859
    [Google Scholar]
  55. Barbe A.M. Berbets A.M. Davydenko I.S. Koval H.D. Yuzko V.O. Yuzko O.M. Expression and significance of matrix metalloproteinase-2 and matrix metalloproteinas-9 in endometriosis. J. Med. Life 2020 13 3 314 320 10.25122/jml‑2020‑0117 33072202
    [Google Scholar]
  56. Xue H. Sun K. Xie W. Etanercept attenuates short-term cigarette-smoke-exposure-induced pulmonary arterial remodelling in rats by suppressing the activation of TNF-α/NF-κB signal and the activities of MMP-2 and MMP-9. Pulm. Pharmacol. Ther. 2012 25 3 208 215 10.1016/j.pupt.2012.02.006 22724137
    [Google Scholar]
  57. Gupta A. El-Amin S.F. Levy H.J. Sze-Tu R. Ibim S.E. Maffulli N. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. J. Orthop. Surg. Res. 2020 15 1 49 10.1186/s13018‑020‑1553‑7 32054483
    [Google Scholar]
  58. Xiao F. Liu X. Guo S.W. Platelets and regulatory T cells may induce a type 2 immunity that is conducive to the progression and fibrogenesis of endometriosis. Front. Immunol. 2020 11 610963 10.3389/fimmu.2020.610963 33381124
    [Google Scholar]
  59. Segawa R. Shigeeda K. Hatayama T. EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line. J. Dermatol. Sci. 2018 89 3 290 298 10.1016/j.jdermsci.2017.12.008 29279286
    [Google Scholar]
  60. Grund E.M. Kagan D. Tran C.A. Tumor necrosis factor-α regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol. Pharmacol. 2008 73 5 1394 1404 10.1124/mol.107.042176 18252806
    [Google Scholar]
  61. Ulukus M. Ulukus E.C. Tavmergen Goker E.N. Tavmergen E. Zheng W. Arici A. Expression of interleukin-8 and monocyte chemotactic protein 1 in women with endometriosis. Fertil. Steril. 2009 91 3 687 693 10.1016/j.fertnstert.2007.12.067 18314120
    [Google Scholar]
  62. Heidari S. Kolahdouz-Mohammadi R. Khodaverdi S. Tajik N. Delbandi A.A. Expression levels of MCP-1, HGF, and IGF-1 in endometriotic patients compared with non-endometriotic controls. BMC Womens Health 2021 21 1 422 10.1186/s12905‑021‑01560‑6 34930225
    [Google Scholar]
  63. Kageyama Y. Kobayashi H. Kato N. Shimazu M. Etanercept reduces the serum levels of macrophage chemotactic protein-1 in patients with rheumatoid arthritis. Mod. Rheumatol. 2009 19 4 372 378 10.3109/s10165‑009‑0175‑z 19458908
    [Google Scholar]
  64. Wang S. Jiang W. Lv S. Human umbilical cord mesenchymal stem cells-derived exosomes exert anti-inflammatory effects on osteoarthritis chondrocytes. Aging 2023 15 18 9544 9560 10.18632/aging.205034 37724890
    [Google Scholar]
  65. Fotouhi A. Hosseini M. Aghebati-Maleki A. The Impact of Wharton’s Jelly-derived Exosomes on the Production of Inflammatory Mediators from HIG-82 Synoviocytes. Iran. J. Immunol. 2024 21 3 243 254 39306730
    [Google Scholar]
  66. Gupta P. Neupane Y.R. Parvez S. Kohli K. Sultana Y. Combinatorial chemosensitive nanomedicine approach for the treatment of breast cancer. Curr. Mol. Med. 2023 23 9 876 888 10.2174/1566524023666220819122948 35986537
    [Google Scholar]
  67. Matsuzaki S. Canis M. Pouly J.L. Déchelotte P.J. Mage G. Analysis of aromatase and 17β-hydroxysteroid dehydrogenase type 2 messenger ribonucleic acid expression in deep endometriosis and eutopic endometrium using laser capture microdissection. Fertil. Steril. 2006 85 2 308 313 10.1016/j.fertnstert.2005.08.017 16595205
    [Google Scholar]
  68. De Abreu L.G. Silveira V.S. Scrideli C.A. Endometriosis does not alter aromatase gene expression (CYP19A1) in mural lutein-granulosa cells of women undergoing assisted reproduction techniques–a pilot study. J. Endometr. 2011 3 4 177 182 10.5301/JE.2012.9070
    [Google Scholar]
  69. Szaflik T. Smolarz B. Mroczkowska B. Kulig B. Soja M. Romanowicz H. An analysis of ESR2 and CYP19A1 gene expression levels in women with endometriosis. In Vivo 2020 34 4 1765 1771 10.21873/invivo.11970 32606145
    [Google Scholar]
  70. Frasor J. Weaver A.E. Pradhan M. Mehta K. Synergistic up-regulation of prostaglandin E synthase expression in breast cancer cells by 17β-estradiol and proinflammatory cytokines. Endocrinology 2008 149 12 6272 6279 10.1210/en.2008‑0352 18703630
    [Google Scholar]
  71. Sheikh K. Amjad M. Irfan M. Exploring TGF-β signaling in cancer progression: Prospects and therapeutic strategies. OncoTargets Ther. 2025 18 233 262 10.2147/OTT.S493643 39989503
    [Google Scholar]
  72. Hariyanto N.I. Yo E.C. Wanandi S.I. Regulation and Signaling of TGF-β Autoinduction. Int. J. Mol. Cell. Med. 2021 10 4 234 247 35875336
    [Google Scholar]
  73. Young V.J. Ahmad S.F. Duncan W.C. Horne A.W. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum. Reprod. Update 2017 23 5 548 559 10.1093/humupd/dmx016 28903471
    [Google Scholar]
  74. Sullivan D.E. Ferris M. Pociask D. Brody A.R. Tumor necrosis factor-α induces transforming growth factor-β1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am. J. Respir. Cell Mol. Biol. 2005 32 4 342 349 10.1165/rcmb.2004‑0288OC 15653932
    [Google Scholar]
  75. Sullivan D.E. Ferris M. Nguyen H. Abboud E. Brody A.R. TNF‐α induces TGF‐β 1 expression in lung fibroblasts at the transcriptional level via AP‐1 activation. J. Cell. Mol. Med. 2009 13 8b 1866 1876 10.1111/j.1582‑4934.2008.00647.x 20141610
    [Google Scholar]
  76. Hu J. Chen Y. Huang Y. Su Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-β1/Smad 2/3 signaling pathway. Exp. Mol. Pathol. 2020 115 104468 10.1016/j.yexmp.2020.104468 32445750
    [Google Scholar]
  77. Hajazimian S. Maleki M. Mehrabad S.D. Isazadeh A. Human Wharton’s jelly stem cells inhibit endometriosis through apoptosis induction. Reproduction 2020 159 5 549 558 10.1530/REP‑19‑0597 32155128
    [Google Scholar]
  78. Kalamegam G. Sait K.H.W. Ahmed F. Human Wharton’s jelly stem cell (hWJSC) extracts inhibit ovarian cancer cell lines OVCAR3 and SKOV3 in vitro by inducing cell cycle arrest and apoptosis. Front. Oncol. 2018 8 592 10.3389/fonc.2018.00592 30581772
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240386032250914233540
Loading
/content/journals/cmm/10.2174/0115665240386032250914233540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test