Skip to content
2000
image of Comprehensive Analysis of Ferroptosis-related Genes in Liver Cancer: Implications for Prognosis and Therapy

Abstract

Introduction

This study aimed to investigate the role and prognostic significance of ferroptosis-related genes in hepatocellular carcinoma (HCC), with the goal of identifying potential biomarkers and therapeutic targets to improve early diagnosis and develop personalized treatment strategies for HCC.

Methods

Various bioinformatics techniques were employed, including differential expression analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, consensus clustering, and Cox regression analysis.

Results

A total of 886 differentially expressed genes (DEGs) were identified, 35 of which were associated with ferroptosis. Immune cell infiltration analysis revealed significant alterations in the immune microenvironment, particularly involving regulatory T cells (Tregs), Th17 cells, and mast cells. The ferroptosis gene interaction network identified key genes, including and , with high connectivity, suggesting their critical roles in HCC. The Cox regression model demonstrated genes, such as , , , and , to be associated with poorer prognosis ( < 0.001), with an area under the curve (AUC) of 0.78 for risk prediction. Consensus clustering divided patients into two subgroups with significant survival differences (log-rank < 0.001).

Discussion

The findings underscored the crucial involvement of ferroptosis-related genes in the pathogenesis and progression of HCC. Key genes, such as and , appeared to influence both tumor biology and immune landscape, offering insights into mechanisms of tumor immune evasion and therapy resistance. While the study provided a robust computational framework, experimental validation is needed to confirm these observations and assess their translational potential.

Conclusion

This study has highlighted the potential role of ferroptosis-related genes in hepatocellular carcinoma and identified , , , and as key factors associated with poor prognosis.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240382155251126080335
2026-01-13
2026-01-30
Loading full text...

Full text loading...

References

  1. Ganesan P. Kulik L.M. Hepatocellular Carcinoma. Clin. Liver Dis. 2023 27 1 85 102 10.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  2. Rich N.E. Changing epidemiology of hepatocellular carcinoma within the united states and worldwide. Surg. Oncol. Clin. N. Am. 2024 33 1 1 12 10.1016/j.soc.2023.06.004 37945136
    [Google Scholar]
  3. Chan Y.T. Zhang C. Wu J. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol. Cancer 2024 23 1 189 10.1186/s12943‑024‑02101‑z
    [Google Scholar]
  4. Mou Y. Wang J. Wu J. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 2019 12 1 34 10.1186/s13045‑019‑0720‑y
    [Google Scholar]
  5. Zhao L. Zhou X. Xie F. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022 42 2 88 116 10.1002/cac2.12250 35133083
    [Google Scholar]
  6. Zhu X. Li S. Ferroptosis, necroptosis, and pyroptosis in gastrointestinal cancers: The chief culprits of tumor progression and drug resistance. Adv. Sci. 2023 10 26 2300824 10.1002/advs.202300824 37436087
    [Google Scholar]
  7. Huang Y. Wang S. Ke A. Guo K. Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochim. Biophys. Acta Rev. Cancer 2023 1878 1 188848 10.1016/j.bbcan.2022.188848 36502929
    [Google Scholar]
  8. Zuo Y.B. Zhang Y.F. Zhang R. Ferroptosis in Cancer Progression: Role of Noncoding RNAs. Int. J. Biol. Sci. 1843 18 5 1829 1843 10.7150/ijbs.66917 35342359
    [Google Scholar]
  9. Wu J. Wang Y. Jiang R. Ferroptosis in liver disease: New insights into disease mechanisms. Cell Death Discov. 2021 7 1 276 10.1038/s41420‑021‑00660‑4
    [Google Scholar]
  10. Wang Y. Wu X. Ren Z. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist. Updat. 2023 66 100916 10.1016/j.drup.2022.100916 36610291
    [Google Scholar]
  11. Zhang R. Chen J. Wang S. Zhang W. Zheng Q. Cai R. Ferroptosis in Cancer Progression. Cells 2023 12 14 1820 10.3390/cells12141820 37508485
    [Google Scholar]
  12. Zheng S. Guan X.Y. Ferroptosis: Promising approach for cancer and cancer immunotherapy. Cancer Lett. 2023 561 216152 10.1016/j.canlet.2023.216152 37023938
    [Google Scholar]
  13. Kim J.W. Lee J.Y. Oh M. Lee E.W. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp. Mol. Med. 2023 55 8 1620 1631 10.1038/s12276‑023‑01077‑y 37612411
    [Google Scholar]
  14. Ye L. Wen X. Qin J. Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis. 2024 15 196 10.1038/s41419‑024‑06584‑y
    [Google Scholar]
  15. Ajoolabady A. Tang D. Kroemer G. Ren J. Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy. Br. J. Cancer 2023 128 2 190 205 10.1038/s41416‑022‑01998‑x 36229582
    [Google Scholar]
  16. Pan F. Lin X. Hao L. Wang T. Song H. Wang R. The critical role of ferroptosis in hepatocellular carcinoma. Front. Cell Dev. Biol. 2022 10 882571 10.3389/fcell.2022.882571
    [Google Scholar]
  17. Liu S. Wang Z. Zhu R. Wang F. Cheng Y. Liu Y. Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2. J. Vis. Exp. 2021 175 10.3791/62528
    [Google Scholar]
  18. Yan L. Han X. Zhang M. Integrative analysis of TBI data reveals Lgmn as a key player in immune cell-mediated ferroptosis. BMC Genomics 2023 24 1 747 10.1186/s12864‑023‑09842‑z
    [Google Scholar]
  19. Li C. Deans N.C. Buell C.R. “Simple Tidy GeneCoEx”: A gene co‐expression analysis workflow powered by tidyverse and graph‐based clustering in R. Plant Genome 2023 16 2 e20323 10.1002/tpg2.20323 37063055
    [Google Scholar]
  20. Wu T. Hu E. Xu S. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141
    [Google Scholar]
  21. Shi Y. Wang Y. Dong H. Crosstalk of ferroptosis regulators and tumor immunity in pancreatic adenocarcinoma: Novel perspective to mRNA vaccines and personalized immunotherapy. Apoptosis 2023 28 9-10 1423 1435 10.1007/s10495‑023‑01868‑8 37369808
    [Google Scholar]
  22. Gu Z. Hübschmann D. Make interactive complex heatmaps in R. Bioinformatics 2022 38 5 1460 1462 10.1093/bioinformatics/btab806 34864868
    [Google Scholar]
  23. Engebretsen S. Bohlin J. Statistical predictions with glmnet. Clin. Epigenetics 2019 11 1 123 10.1186/s13148‑019‑0730‑1
    [Google Scholar]
  24. Li X. Lei J. Shi Y. Peng Z. Gong M. Shu X. Developing a riskscore model based on angiogenesis-related lncRNAs for colon adenocarcinoma prognostic prediction. Curr. Med. Chem. 2024 31 17 2449 2466 10.2174/0109298673277243231108071620 37961859
    [Google Scholar]
  25. Craven K.E. Gökmen-Polar Y. Badve S.S. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci. Rep. 2021 11 4691 10.1038/s41598‑021‑83913‑7
    [Google Scholar]
  26. Zheng L. Analysis of hepatocellular carcinoma associated with hepatitis B virus. J. Cell. Mol. Med. 2023 27 16 2271 2277 10.1111/jcmm.17867 37517004
    [Google Scholar]
  27. Zhou M. Liu B. Shen J. Immunotherapy for hepatocellular carcinoma. Clin. Exp. Med. 2022 23 3 569 577 10.1007/s10238‑022‑00874‑5 36001163
    [Google Scholar]
  28. Mo Y. Zou Z. Chen E. Targeting ferroptosis in hepatocellular carcinoma. Hepatol. Int. 2024 18 1 32 49 10.1007/s12072‑023‑10593‑y
    [Google Scholar]
  29. Liang J.Y. Wang D.S. Lin H.C. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma. Int. J. Biol. Sci. 2020 16 13 2430 2441 10.7150/ijbs.45050
    [Google Scholar]
  30. Donne R. Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023 77 5 1773 1796 10.1002/hep.32740 35989535
    [Google Scholar]
  31. Oura K. Morishita A. Tani J. Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: A review. Int. J. Mol. Sci. 2021 22 11 5801 10.3390/ijms22115801
    [Google Scholar]
  32. Li W. Liu J. Zhang D. Gu L. Zhao H. The prognostic significance and potential mechanism of ferroptosis-related genes in hepatocellular carcinoma. Front. Genet. 2022 13 844624 10.3389/fgene.2022.844624
    [Google Scholar]
  33. Chen J. Hong J.H. Huang Y. EZH2 mediated metabolic rewiring promotes tumor growth independently of histone methyltransferase activity in ovarian cancer. Mol. Cancer 2023 22 1 85 10.1186/s12943‑023‑01786‑y
    [Google Scholar]
  34. Zimmerman S.M. Lin P.N. Souroullas G.P. Non-canonical functions of EZH2 in cancer. Front. Oncol. 2023 13 1233953 10.3389/fonc.2023.1233953
    [Google Scholar]
  35. Zhang T. Guo Z. Huo X. Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor. EBioMedicine 2022 77 103872 10.1016/j.ebiom.2022.103872 35158113
    [Google Scholar]
  36. Chen S. Zhao L. Liu J. Inhibition of KIF20A enhances the immunotherapeutic effect of hepatocellular carcinoma by enhancing c-Myc ubiquitination. Cancer Lett. 2024 598 217105 10.1016/j.canlet.2024.217105 38971490
    [Google Scholar]
  37. Meng X. Peng X. Ouyang W. Musashi-2 Deficiency triggers colorectal cancer ferroptosis by downregulating the MAPK signaling cascade to inhibit HSPB1 phosphorylation. Biol. Proced. Online 2023 25 1 32 10.1186/s12575‑023‑00222‑1
    [Google Scholar]
  38. Zhao X. Richardson D.R. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim. Biophys. Acta Rev. Cancer 2023 1878 3 188871 10.1016/j.bbcan.2023.188871 36841367
    [Google Scholar]
  39. Chang J. Lo Z.H.Y. Alenizi S. Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers 2023 15 2 2779 10.3390/cancers15102779
    [Google Scholar]
  40. Tang W. Sun G. Ji G.W. Single-cell RNA-sequencing atlas reveals an FABP1-dependent immunosuppressive environment in hepatocellular carcinoma. J. Immunother. Cancer 2023 11 11 e007030 10.1136/jitc‑2023‑007030
    [Google Scholar]
  41. Wang J. Huang Q. Hu X. Disrupting circadian rhythm via the PER1–HK2 axis reverses trastuzumab resistance in gastric cancer. Cancer Res. 2022 82 8 1503 1517 10.1158/0008‑5472.CAN‑21‑1820 35255118
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240382155251126080335
Loading
/content/journals/cmm/10.2174/0115665240382155251126080335
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test