Skip to content
2000
image of A Cuproptosis-related lncRNA Signature for Prognostic Stratification and Immunotherapeutic Implications in Lung Adenocarcinoma

Abstract

Background

Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer, and there have been disputes over its prognostic biomarker and clinical outcome. Cuproptosis, a novel form of regulated cell death (RCD), has been insufficiently explored in terms of its potential role in LUAD.

Methods

In this study, we developed a machine learning-based integrative procedure for constructing a consensus cuproptosis-related lncRNA signature (CTLNS) using TCGA data and validated it with external datasets.

Results

The CTLNS was identified as an independent predictor of overall survival, showing stable and accurate performance across multiple cohorts. Patients classified into high- and low-risk groups exhibited significant differences in survival outcomes. Functional analyses revealed that the low-risk group was enriched in DNA replication and immune-related pathways, while the high-risk group was associated with onco-genic signaling and cell cycle regulation. Notably, high-risk patients showed increased sensitivity to several chemotherapy agents, including Docetaxel, Cisplatin, Gefitinib, and Paclitaxel, while low-risk patients were more responsive to Nilotinib.

Conclusion

These findings suggest that CTLNS is a reliable biomarker for prognostic prediction and treatment stratification in LUAD, offering potential utility in personalized therapy.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240355806250718044011
2026-01-08
2026-01-30
Loading full text...

Full text loading...

References

  1. Relli V. Trerotola M. Guerra E. Alberti S. Abandoning the notion of non-small cell lung cancer. Trends Mol. Med. 2019 25 7 585 594 31155338
    [Google Scholar]
  2. Cheng T.Y. Cramb S.M. Baade P.D. Youlden D.R. Nwogu C. Reid M.E. The international epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. J. Thorac. Oncol. 2016 11 10 1653 1671 27364315
    [Google Scholar]
  3. Herbst R.S. Morgensztern D. Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018 553 7689 446 454 10.1038/nature25183 29364287
    [Google Scholar]
  4. Reck M. Remon J. Hellmann M.D. First-line immunotherapy for non-small-cell lung cancer. J. Clin. Oncol. 2022 40 6 586 597 34985920
    [Google Scholar]
  5. Melosky B. Wheatley-Price P. Juergens R.A. The rapidly evolving landscape of novel targeted therapies in advanced non-small cell lung cancer. Lung Cancer 2021 160 136 151 34353680
    [Google Scholar]
  6. Brahmer J.R. Tykodi S.S. Chow L.Q. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012 366 26 2455 2465 22658128
    [Google Scholar]
  7. Rizvi N.A. Hellmann M.D. Snyder A. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015 348 6230 124 128 10.1126/science.aaa1348 25765070
    [Google Scholar]
  8. Reck M. Rodríguez-Abreu D. Robinson A.G. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 2016 375 19 1823 1833 10.1056/NEJMoa1606774 27718847
    [Google Scholar]
  9. Garon E.B. Rizvi N.A. Hui R. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015 372 21 2018 2028 10.1056/NEJMoa1501824 25891174
    [Google Scholar]
  10. Antonia S.J. Villegas A. Daniel D. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med. 2017 377 20 1919 1929 10.1056/NEJMoa1709937 28885881
    [Google Scholar]
  11. Hellmann M.D. Paz-Ares L. Bernabe Caro R. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N. Engl. J. Med. 2019 381 21 2020 2031 10.1056/NEJMoa1910231 31562796
    [Google Scholar]
  12. Tang D. Kang R. Berghe T.V. Vandenabeele P. Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 29 5 347 364 10.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  13. Galluzzi L. Vitale I. Aaronson S.A. Molecular mecha-nisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018 25 3 486 541 10.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  14. Hirschhorn T. Stockwell B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 2019 133 130 143 10.1016/j.freeradbiomed.2018.09.043 30268886
    [Google Scholar]
  15. Yuan J. Amin P. Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 2019 20 1 19 33 10.1038/s41583‑018‑0093‑1 30467385
    [Google Scholar]
  16. Tsvetkov P. Coy S. Petrova B. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022 375 6586 1254 1261 10.1126/science.abf0529 35298263
    [Google Scholar]
  17. Cobine P.A. Brady D.C. Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death. Mol. Cell 2022 82 10 1786 1787 10.1016/j.molcel.2022.05.001 35594843
    [Google Scholar]
  18. Fei X. Hu C. Wang X. Construction of a ferroptosis-related long non-coding rna prognostic signature and competing endogenous RNA network in lung adenocarcinoma. Front. Cell Dev. Biol. 2021 9 751490 10.3389/fcell.2021.751490 34820377
    [Google Scholar]
  19. Sun S. Yang Y. Yang Z. Ferroptosis characterization in lung adenocarcinomas reveals prognostic signature with immunotherapeutic implication. Front. Cell Dev. Biol. 2021 9 743724 10.3389/fcell.2021.743724 34746138
    [Google Scholar]
  20. Pan S. Chen L. Song C. Comprehensive molecular analysis of a four-pyroptosis-gene signature with prognosis and immune landscape in lung adenocarcinoma. Genomics 2022 114 3 110355 10.1016/j.ygeno.2022.110355 35364268
    [Google Scholar]
  21. Kopp F. Mendell J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018 172 3 393 407 10.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  22. Guo Y. Qu Z. Li D. Identification of a prognostic ferroptosis-related lncRNA signature in the tumor microenvironment of lung adenocarcinoma. Cell Death Discov. 2021 7 1 190 10.1038/s41420‑021‑00576‑z 34312372
    [Google Scholar]
  23. Yu H. Han Z. Xu Z. An C. Xu L. Xin H. RNA sequencing uncovers the key long non coding RNAs and potential molecular mechanism contributing to XAV939 mediated inhibition of non small cell lung cancer. Oncol. Lett. 2019 17 6 4994 5004 10.3892/ol.2019.10191 31186710
    [Google Scholar]
  24. Gao Y. Zhang N. Zeng Z. LncRNA PCAT1 activates SOX2 and suppresses radioimmune responses via regulating cGAS/STING signalling in non‐small cell lung cancer. Clin. Transl. Med. 2022 12 4 e792 10.1002/ctm2.792 35415876
    [Google Scholar]
  25. Chen D. Liu J. Zang L. Integrated machine learning and bioinformatic analyses constructed a novel stemness-related classifier to predict prognosis and immunotherapy responses for hepatocellular carcinoma patients. Int. J. Biol. Sci. 2022 18 1 360 373 10.7150/ijbs.66913 34975338
    [Google Scholar]
  26. Charoentong P. Finotello F. Angelova M. Pan-cancer immunogenomic analyses reveal genotype-immuno-phenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017 18 1 248 262 10.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  27. Barbie D.A. Tamayo P. Boehm J.S. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009 462 7269 108 112 10.1038/nature08460 19847166
    [Google Scholar]
  28. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  29. Geeleher P. Cox N. Huang R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014 9 9 e107468 10.1371/journal.pone.0107468 25229481
    [Google Scholar]
  30. Geeleher P. Cox N.J. Huang R.S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014 15 3 R47 10.1186/gb‑2014‑15‑3‑r47 24580837
    [Google Scholar]
  31. Thorsson V. Gibbs D.L. Brown S.D. The immune landscape of cancer. Immunity 2018 48 4 812 830.e14 10.1016/j.immuni.2018.03.023 29628290
    [Google Scholar]
  32. Geeleher P. Zhang Z. Wang F. Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies. Genome Res. 2017 27 10 1743 1751 10.1101/gr.221077.117 28847918
    [Google Scholar]
  33. Park E.G. Pyo S.J. Cui Y. Yoon S.H. Nam J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform. 2022 23 1 bbab504 10.1093/bib/bbab504 34891154
    [Google Scholar]
  34. Liu J.H. Li C. Cao L. Zhang C.H. Zhang Z.H. Cucurbitacin B regulates lung cancer cell proliferation and apoptosis via inhibiting the IL-6/STAT3 pathway through the lncRNA XIST/miR-let-7c axis. Pharm. Biol. 2022 60 1 154 162 10.1080/13880209.2021.2016866 34967707
    [Google Scholar]
  35. Sweef O. Mahfouz R. Taşcıoğlu T. Decoding LncRNA in COPD: Unveiling prognostic and diagnostic power and their driving role in lung cancer progression. Int. J. Mol. Sci. 2024 25 16 9001 10.3390/ijms25169001 39201688
    [Google Scholar]
  36. Chen L. Min J. Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022 7 1 378 10.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  37. Xie J. Yang Y. Gao Y. He J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023 22 1 46 10.1186/s12943‑023‑01732‑y 36882769
    [Google Scholar]
  38. Liu Z. Sun M. Lu K. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocar-cinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One 2013 8 10 e77293 10.1371/journal.pone.0077293 24155936
    [Google Scholar]
  39. Yuan Y. Zhou D. Chen F. Yang Z. Gu W. Zhang K. SIX5-activated LINC01468 promotes lung adenocarcinoma progression by recruiting SERBP1 to regulate SERPINE1 mRNA stability and recruiting USP5 to facilitate PAI1 protein deubiquitylation. Cell Death Dis. 2022 13 4 312 10.1038/s41419‑022‑04717‑9 35387981
    [Google Scholar]
  40. Zhu F. Niu R. Shao X. Shao X. FGD5 AS1 promotes cisplatin resistance of human lung adenocarcinoma cell via the miR 142 5p/PD L1 axis. Int. J. Mol. Med. 2020 47 2 523 532 10.3892/ijmm.2020.4816 33416094
    [Google Scholar]
  41. Gao Y. Xie M. Guo Y. Yang Q. Hu S. Li Z. Long non-coding RNA FGD5-AS1 regulates cancer cell proliferation and chemoresistance in gastric cancer through miR-153-3p/CITED2 axis. Front. Genet. 2020 11 715 10.3389/fgene.2020.00715 32849774
    [Google Scholar]
  42. Ma F. Lei Y.Y. Ding M.G. Luo L.H. Xie Y.C. Liu X.L. LncRNA NEAT1 interacted with DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic T cell infiltration via epigenetic inhibition of p53, cGAS, and STING in lung cancer. Front. Genet. 2020 11 250 10.3389/fgene.2020.00250 32296457
    [Google Scholar]
  43. Adriaens C. Standaert L. Barra J. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 2016 22 8 861 868 10.1038/nm.4135 27376578
    [Google Scholar]
  44. Zhou Q. Tang X. Tian X. LncRNA MALAT1 negatively regulates MDSCs in patients with lung cancer. J. Cancer 2018 9 14 2436 2442 10.7150/jca.24796 30026840
    [Google Scholar]
  45. Sun C.C. Zhu W. Li S.J. FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway. Genome Med. 2020 12 1 77 10.1186/s13073‑020‑00773‑y 32878637
    [Google Scholar]
  46. Pang Z. Chen X. Wang Y. Long non-coding RNA C5orf64 is a potential indicator for tumor microenvironment and mutation pattern remodeling in lung adenocarcinoma. Genomics 2021 113 1 291 304 10.1016/j.ygeno.2020.12.010 33309768
    [Google Scholar]
  47. Li Y. Shen R. Wang A. Construction of a prognostic immune-related LncRNA risk model for lung adenocarcinoma. Front. Cell Dev. Biol. 2021 9 648806 10.3389/fcell.2021.648806 33869203
    [Google Scholar]
  48. Liu J. Liu Q. Shen H. Identification and validation of a three pyroptosis-related lncRNA signature for prognosis prediction in lung adenocarcinoma. Front. Genet. 2022 13 838624 10.3389/fgene.2022.838624 35928454
    [Google Scholar]
  49. Chen X. Kang R. Kroemer G. Tang D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 2021 218 6 e20210518 33978684
    [Google Scholar]
  50. Li R. Li J.P. Liu T.T. Prognostic value of genomic instability of m6A-related lncRNAs in lung adenocarcinoma. Front. Cell Dev. Biol. 2022 10 707405 10.3389/fcell.2022.707405 35309906
    [Google Scholar]
  51. Shen Y. Wang S. Wu Y. A novel m6A-Related LncRNA Signature for predicting prognosis, chemotherapy and immunotherapy response in patients with lung adenocarcinoma. Cells 2022 11 15 2399 10.3390/cells11152399 35954243
    [Google Scholar]
  52. Zhang S. Huang Q. Ji T. Li Q. Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: Implications for therapeutic strategies in cancer immunotherapy. Biomark. Res. 2024 12 1 130 10.1186/s40364‑024‑00677‑8 39482784
    [Google Scholar]
  53. Xue Q. Kang R. Klionsky D.J. Tang D. Liu J. Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023 19 8 2175 2195 10.1080/15548627.2023.2200554 37055935
    [Google Scholar]
  54. Dixon S.J. Stockwell B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014 10 1 9 17 10.1038/nchembio.1416 24346035
    [Google Scholar]
  55. Kim B.E. Nevitt T. Thiele D.J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008 4 3 176 185 10.1038/nchembio.72 18277979
    [Google Scholar]
  56. Ishida S. Andreux P. Poitry-Yamate C. Auwerx J. Hanahan D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA 2013 110 48 19507 19512 10.1073/pnas.1318431110 24218578
    [Google Scholar]
  57. Blockhuys S. Wittung-Stafshede P. Copper chaperone Atox1 plays role in breast cancer cell migration. Biochem. Biophys. Res. Commun. 2017 483 1 301 304 10.1016/j.bbrc.2016.12.148 28027931
    [Google Scholar]
  58. Stepien M. Jenab M. Freisling H. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European prospective investigation into cancer and nutrition cohort. Carcinogenesis 2017 38 7 699 707 10.1093/carcin/bgx051 28575311
    [Google Scholar]
  59. Denoyer D. Masaldan S. La Fontaine S. Cater M.A. Targeting copper in cancer therapy: ‘Copper that cancer’. Metallomics 2015 7 11 1459 1476 10.1039/C5MT00149H 26313539
    [Google Scholar]
  60. Tan H.Y. Wang N. Zhang C. Chan Y.T. Yuen M.F. Feng Y. Lysyl oxidase‐like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology 2021 73 6 2326 2341 10.1002/hep.31600 33068461
    [Google Scholar]
  61. Zhao L. Pei R. Ding Y. LOXL4 shuttled by tumor cells–derived extracellular vesicles promotes immune escape in hepatocellular carcinoma by activating the STAT1/PD-L1 axis. J. Immunother. 2024 47 2 64 76 10.1097/CJI.0000000000000496 38047403
    [Google Scholar]
  62. Li R. Wang Y. Zhang X. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol. Cancer 2019 18 1 18 10.1186/s12943‑019‑0948‑8 30704479
    [Google Scholar]
  63. Lin Y. Jian Z. Jin H. Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial–mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death Dis. 2020 11 1 34 10.1038/s41419‑019‑2188‑7 31949128
    [Google Scholar]
  64. Huang T. Cao L. Feng N. Xu B. Dong Y. Wang M.N. 6 -methyladenosine (m 6 A)-mediated lncRNA DLGAP1-AS1enhances breast canceradriamycin resistance through miR-299-3p/WTAP feedback loop. Bioengineered 2021 12 2 10935 10944 10.1080/21655979.2021.2000198 34866525
    [Google Scholar]
  65. Li X. Shang D. Shen H. Song J. Hao G. Tian Y. ZSCAN16 promotes proliferation, migration and invasion of bladder cancer via regulating NF-kB, AKT, mTOR, P38 and other genes. Biomed. Pharmacother. 2020 126 110066 10.1016/j.biopha.2020.110066 32172065
    [Google Scholar]
  66. Liu J. Liu R. Liu Y. ZSCAN16-AS1 expedites hepatocellular carcinoma progression via modulating the miR-181c-5p/SPAG9 axis to activate the JNK pathway. Cell Cycle 2021 20 12 1134 1146 10.1080/15384101.2021.1919828 34097562
    [Google Scholar]
  67. Li Z. Pan C. Wang Z. LncRNA PCBP1-AS1 correlated with the functional states of cancer cells and inhibited lung adenocarcinoma metastasis by suppressing the EMT progression. Carcinogenesis 2021 42 7 931 939 10.1093/carcin/bgab047 34107009
    [Google Scholar]
  68. Uboveja A. Satija Y.K. Siraj F. Sharma I. Saluja D. p73 – NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis 2020 9 2 12 10.1038/s41389‑020‑0193‑4 32029709
    [Google Scholar]
  69. Aly J.M. Lewis T.D. Parikh T. Britten J. Malik M. Catherino W.H. NAV3, a tumor suppressor gene, is decreased in uterine leiomyoma tissue and cells. Reprod. Sci. 2020 27 3 925 934 10.1007/s43032‑019‑00096‑3 32046415
    [Google Scholar]
  70. Cohen-Dvashi H. Ben-Chetrit N. Russell R. Navigator‐3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol. Med. 2015 7 3 299 314 10.15252/emmm.201404134 25678558
    [Google Scholar]
  71. Brahmer J. Reckamp K.L. Baas P. Nivolumab versus Docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl. J. Med. 2015 373 2 123 135 10.1056/NEJMoa1504627 26028407
    [Google Scholar]
  72. Borghaei H. Paz-Ares L. Horn L. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N. Engl. J. Med. 2015 373 17 1627 1639 10.1056/NEJMoa1507643 26412456
    [Google Scholar]
  73. Herbst R.S. Baas P. Kim D.W. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016 387 10027 1540 1550 10.1016/S0140‑6736(15)01281‑7 26712084
    [Google Scholar]
  74. Planchard D Popat S Kerr K Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018 29 iv192 237.(Suppl. 4) 10.1093/annonc/mdy275 30285222
    [Google Scholar]
  75. Tsao M.S. Kerr K.M. Kockx M. PD-L1 immuno-histochemistry comparability study in real-life clinical samples: Results of blueprint phase 2 project. J. Thorac. Oncol. 2018 13 9 1302 1311 10.1016/j.jtho.2018.05.013 29800747
    [Google Scholar]
  76. Coudray N. Ocampo P.S. Sakellaropoulos T. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018 24 10 1559 1567 10.1038/s41591‑018‑0177‑5 30224757
    [Google Scholar]
  77. Gataa I. Mezquita L. Rossoni C. Tumour-infiltrating lymphocyte density is associated with favourable outcome in patients with advanced non–small cell lung cancer treated with immunotherapy. Eur. J. Cancer 2021 145 221 229 10.1016/j.ejca.2020.10.017 33516050
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240355806250718044011
Loading
/content/journals/cmm/10.2174/0115665240355806250718044011
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: long non-coding RNA ; prognosis ; Lung adenocarcinoma ; cuproptosis ; immune cell infiltration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test