Skip to content
2000
image of Non-coding RNAs PROX1-AS1 and miR-647: Potential Interaction and Prognostic Value in Gastric Cancer

Abstract

Background

Gastric cancer (GC) remains one of the most common malignancies and the third cause of cancer-related deaths worldwide. Non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, can contribute to the pathogenesis and progression of GC and therefore could be its potent diagnostic and prognostic biomarkers. The aim of our work was to estimate the expression of PROX1-AS1 (Prospero Homeobox 1 Antisense RNA 1) and miR-647 (microRNA-647) in GC and investigate their potential interaction and clinical significance.

Methods

The study included tumor and adjacent non-tumor tissues from 110 GC patients and plasma samples from 65 GC patients; 38 sectional normal gastric tissue samples and 49 plasma samples of healthy donors were included as controls. Expression levels of both ncRNAs were quantified in all samples by using real-time polymerase chain reaction (RT-PCR) and their possible correlations with the clinical and pathological characteristics of patients were analyzed. A potential inverse correlation between PROХ1-AS1 and miR-647 expression was addressed by in vitro experiments in a panel of cancer cell lines.

Results

The expression of PROX1-AS1 and miR-647 was not significantly different in tissues of GC patients and sectional normal gastric tissue samples. However, they have demonstrated a negative correlation both in the tumor and the adjacent non-tumor tissue of GC patients. PROX1-AS1 expression was significantly decreased in GC tissues, whereas the miR-647 expression was increased. The expression of the ncRNAs was associated with clinical and pathological characteristics of GC patients. The overexpression of miR-647 led to a significant decrease in PROX1-AS1 expression in five cancer cell lines, including the GC cell line SNU-1.

Conclusion

We have demonstrated a negative correlation between PROX1-AS1 and miR-647 in both GC tissues and the cancer cell lines. In addition, expression of both ncRNAs was associated with the primary tumor size. Therefore, these ncRNAs might have potential prognostic value.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240343937250426134726
2025-05-05
2025-11-02
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Fattahi S. Kosari-Monfared M. Ghadami E. Golpour M. Khodadadi P. Ghasemiyan M. Akhavan-Niaki H. Infection‐associated epigenetic alterations in gastric cancer: New insight in cancer therapy. J. Cell. Physiol. 2018 233 12 9261 9270 10.1002/jcp.27030 30076708
    [Google Scholar]
  3. Zhou Z. Lin Z. Pang X. Tariq M.A. Ao X. Li P. Wang J. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget 2018 9 27 19443 19458 10.18632/oncotarget.23821 29721215
    [Google Scholar]
  4. Shi X. Sun M. Liu H. Yao Y. Song Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett. 2013 339 2 159 166 10.1016/j.canlet.2013.06.013 23791884
    [Google Scholar]
  5. Ling H. Fabbri M. Calin G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 2013 12 11 847 865 10.1038/nrd4140 24172333
    [Google Scholar]
  6. Rafiee A. Riazi-Rad F. Havaskary M. Nuri F. Long noncoding RNAs: Regulation, function and cancer. Biotechnol. Genet. Eng. Rev. 2018 34 2 153 180 10.1080/02648725.2018.1471566 30071765
    [Google Scholar]
  7. Rawlings-Goss R.A. Campbell M.C. Tishkoff S.A. Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers. BMC Med. Genomics 2014 7 1 53 10.1186/1755‑8794‑7‑53 25169894
    [Google Scholar]
  8. Xie S.S. Jin J. Xu X. Zhuo W. Zhou T-H. Emerging roles of non-coding RNAs in gastric cancer: Pathogenesis and clinical implications. World J. Gastroenterol. 2016 22 3 1213 1223 10.3748/wjg.v22.i3.1213 26811659
    [Google Scholar]
  9. Yang F. Bi J. Xue X. Zheng L. Zhi K. Hua J. Fang G. Up‐regulated long non‐coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012 279 17 3159 3165 10.1111/j.1742‑4658.2012.08694.x 22776265
    [Google Scholar]
  10. Sun M. Xia R. Jin F. Xu T. Liu Z. De W. Liu X. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol. 2014 35 2 1065 1073 10.1007/s13277‑013‑1142‑z 24006224
    [Google Scholar]
  11. Bhattacharjee R. Prabhakar N. Kumar L. Bhattacharjee A. Kar S. Malik S. Kumar D. Ruokolainen J. Negi A. Jha N.K. Kesari K.K. Crosstalk between long noncoding RNA and microRNA in Cancer. Cell Oncol. 2023 46 4 885 908 10.1007/s13402‑023‑00806‑9 37245177
    [Google Scholar]
  12. Sun B. Liu C. Li H. Zhang L. Luo G. Liang S. Lü M. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol. Lett. 2020 19 1 595 605 10.3892/ol.2019.11182 31897175
    [Google Scholar]
  13. Jiang W. Meng K. Yang T. Long non-coding RNA PROX1-AS1 promotes the proliferation and migration in gastric cancer by epigenetically activating FGFR1. Panminerva Med. 2023 65 3 434 436 10.23736/S0031‑0808.19.03709‑1 31355614
    [Google Scholar]
  14. Rudzinska M. Czarnecka-Chrebelska K.H. Kuznetsova E.B. Maryanchik S.V. Parodi A. Korolev D.O. Potoldykova N. Svetikova Y. Vinarov A.Z. Nemtsova M.V. Zamyatnin A.A. Long non-coding PROX1-AS1 expression correlates with renal cell carcinoma metastasis and aggressiveness. Noncoding RNA 2021 7 2 25 10.3390/ncrna7020025 33920185
    [Google Scholar]
  15. Tu B. Ye L. Cao Q. Gong S. Jiang M. Li H. Identification of a five-miRNA signature as a novel potential prognostic biomarker in patients with nasopharyngeal carcinoma. Hereditas 2022 159 1 3 10.1186/s41065‑021‑00214‑9 34998434
    [Google Scholar]
  16. Ye X. Qiu R. He X. Hu Z. Zheng F. Huang X. Xie X. Chen F. Ou H. Lin G. miR-647 inhibits hepatocellular carcinoma cell progression by targeting protein tyrosine phosphatase receptor type F. Bioengineered 2022 13 1 1090 1102 10.1080/21655979.2021.2017628 34969357
    [Google Scholar]
  17. Liu S. Qu D. Li W. He C. Li S. Wu G. Zhao Q. Shen L. Zhang J. Zheng J. miR-647 and miR-1914 promote cancer progression equivalently by downregulating nuclear factor IX in colorectal cancer. Mol. Med. Rep. 2017 16 6 8189 8199 10.3892/mmr.2017.7675 28990086
    [Google Scholar]
  18. Zhang X. Zhang M. Wang G. Tian Y. He X. Tumor promotor role of miR‑647 in gastric cancer via repression of TP73. Mol. Med. Rep. 2018 18 4 3744 3750 10.3892/mmr.2018.9358 30106095
    [Google Scholar]
  19. Ma H. Wang P. Li Y. Yang Y. Zhan S. Gao Y. Decreased expression of serum miR-647 is associated with poor prognosis in gastric cancer. Int. J. Clin. Exp. Pathol. 2019 12 7 2552 2558 31934082
    [Google Scholar]
  20. Song X. Bi Y. Guo W. Long noncoding RNA PROX1-AS1 promotes tumor progression and aggressiveness by sponging miR-647 in gastric cancer. Minerva Med. 2021 112 3 421 423 10.23736/S0026‑4806.19.06223‑2 31726808
    [Google Scholar]
  21. Vetchinkina E.A. Kalinkin A.I. Kuznetsova E.B. Kiseleva A.E. Alekseeva E.A. Nemtsova M.V. Bure I.V. Diagnostic and prognostic significance of expression of long non-coding RNA PROX1-AS1 and microrna MIR-647 in gastric cancer. Adv. Mol. Oncol. 2022 9 4 50 60 10.17650/2313‑805X‑2022‑9‑4‑50‑60
    [Google Scholar]
  22. Rothenberg S.M. Mohapatra G. Rivera M.N. Winokur D. Greninger P. Nitta M. Sadow P.M. Sooriyakumar G. Brannigan B.W. Ulman M.J. Perera R.M. Wang R. Tam A. Ma X.J. Erlander M. Sgroi D.C. Rocco J.W. Lingen M.W. Cohen E.E.W. Louis D.N. Settleman J. Haber D.A. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res. 2010 70 6 2158 2164 10.1158/0008‑5472.CAN‑09‑3458 20215515
    [Google Scholar]
  23. Ku J.L. Park J.G. Biology of SNU cell lines. Cancer Res. Treat. 2005 37 1 1 19 10.4143/crt.2005.37.1.1 19956504
    [Google Scholar]
  24. Ghandi M. Huang F.W. Jané-Valbuena J. Kryukov G.V. Lo C.C. McDonald E.R. Barretina J. Gelfand E.T. Bielski C.M. Li H. Hu K. Andreev-Drakhlin A.Y. Kim J. Hess J.M. Haas B.J. Aguet F. Weir B.A. Rothberg M.V. Paolella B.R. Lawrence M.S. Akbani R. Lu Y. Tiv H.L. Gokhale P.C. de Weck A. Mansour A.A. Oh C. Shih J. Hadi K. Rosen Y. Bistline J. Venkatesan K. Reddy A. Sonkin D. Liu M. Lehar J. Korn J.M. Porter D.A. Jones M.D. Golji J. Caponigro G. Taylor J.E. Dunning C.M. Creech A.L. Warren A.C. McFarland J.M. Zamanighomi M. Kauffmann A. Stransky N. Imielinski M. Maruvka Y.E. Cherniack A.D. Tsherniak A. Vazquez F. Jaffe J.D. Lane A.A. Weinstock D.M. Johannessen C.M. Morrissey M.P. Stegmeier F. Schlegel R. Hahn W.C. Getz G. Mills G.B. Boehm J.S. Golub T.R. Garraway L.A. Sellers W.R. Next-generation characterization of the cancer cell line encyclopedia. Nature 2019 569 7757 503 508 10.1038/s41586‑019‑1186‑3 31068700
    [Google Scholar]
  25. Ahmed D. Eide P.W. Eilertsen I.A. Danielsen S.A. Eknæs M. Hektoen M. Lind G.E. Lothe R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013 2 9 e71 e71 10.1038/oncsis.2013.35 24042735
    [Google Scholar]
  26. Klijn C. Durinck S. Stawiski E.W. Haverty P.M. Jiang Z. Liu H. Degenhardt J. Mayba O. Gnad F. Liu J. Pau G. Reeder J. Cao Y. Mukhyala K. Selvaraj S.K. Yu M. Zynda G.J. Brauer M.J. Wu T.D. Gentleman R.C. Manning G. Yauch R.L. Bourgon R. Stokoe D. Modrusan Z. Neve R.M. de Sauvage F.J. Settleman J. Seshagiri S. Zhang Z. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol. 2015 33 3 306 312 10.1038/nbt.3080 25485619
    [Google Scholar]
  27. Arabsolghar R. Azimi T. Rasti M. Mutant p53 binds to estrogen receptor negative promoter via DNMT1 and HDAC1 in MDA-MB-468 breast cancer cells. Mol. Biol. Rep. 2013 40 3 2617 2625 10.1007/s11033‑012‑2348‑7 23242655
    [Google Scholar]
  28. Barretina J. Caponigro G. Stransky N. Venkatesan K. Margolin A.A. Kim S. Wilson C.J. Lehár J. Kryukov G.V. Sonkin D. Reddy A. Liu M. Murray L. Berger M.F. Monahan J.E. Morais P. Meltzer J. Korejwa A. Jané-Valbuena J. Mapa F.A. Thibault J. Bric-Furlong E. Raman P. Shipway A. Engels I.H. Cheng J. Yu G.K. Yu J. Aspesi P. de Silva M. Jagtap K. Jones M.D. Wang L. Hatton C. Palescandolo E. Gupta S. Mahan S. Sougnez C. Onofrio R.C. Liefeld T. MacConaill L. Winckler W. Reich M. Li N. Mesirov J.P. Gabriel S.B. Getz G. Ardlie K. Chan V. Myer V.E. Weber B.L. Porter J. Warmuth M. Finan P. Harris J.L. Meyerson M. Golub T.R. Morrissey M.P. Sellers W.R. Schlegel R. Garraway L.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012 483 7391 603 607 10.1038/nature11003 22460905
    [Google Scholar]
  29. Sinha R. Winer A.G. Chevinsky M. Jakubowski C. Chen Y.B. Dong Y. Tickoo S.K. Reuter V.E. Russo P. Coleman J.A. Sander C. Hsieh J.J. Hakimi A.A. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat. Commun. 2017 8 1 15165 10.1038/ncomms15165 28489074
    [Google Scholar]
  30. Ikediobi O.N. Davies H. Bignell G. Edkins S. Stevens C. O’Meara S. Santarius T. Avis T. Barthorpe S. Brackenbury L. Buck G. Butler A. Clements J. Cole J. Dicks E. Forbes S. Gray K. Halliday K. Harrison R. Hills K. Hinton J. Hunter C. Jenkinson A. Jones D. Kosmidou V. Lugg R. Menzies A. Mironenko T. Parker A. Perry J. Raine K. Richardson D. Shepherd R. Small A. Smith R. Solomon H. Stephens P. Teague J. Tofts C. Varian J. Webb T. West S. Widaa S. Yates A. Reinhold W. Weinstein J.N. Stratton M.R. Futreal P.A. Wooster R. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol. Cancer Ther. 2006 5 11 2606 2612 10.1158/1535‑7163.MCT‑06‑0433 17088437
    [Google Scholar]
  31. Seitz S. Waβmuth P. Plaschke J. Schackert H.K. Karsten U. Santibanez-Koref M.F. Schlag P.M. Scherneck S. Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines. Genes Chromosomes Cancer 2003 37 1 29 35 10.1002/gcc.10196 12661003
    [Google Scholar]
  32. Shubin V. Shelygin Y. Achkasov S. Sushkov O. Nazarov I. Ponomarenko A. Alimova I. Loginova A. Tsukanov A. Microsatellite instability in Russian patients with colorectal cancer. Int. J. Mol. Sci. 2022 23 13 7062 10.3390/ijms23137062 35806077
    [Google Scholar]
  33. Yan H. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  34. Hoshino I. The usefulness of microRNA in urine and saliva as a biomarker of gastroenterological cancer. Int. J. Clin. Oncol. 2021 26 8 1431 1440 10.1007/s10147‑021‑01911‑1 33835295
    [Google Scholar]
  35. Robotti M. Scebba F. Angeloni D. Circulating biomarkers for cancer detection: Could salivary microRNAs be an opportunity for ovarian cancer diagnostics? Biomedicines 2023 11 3 652 10.3390/biomedicines11030652 36979630
    [Google Scholar]
  36. Wang P. Guo Q. Qi Y. Hao Y. Gao Y. Zhi H. Zhang Y. Sun Y. Zhang Y. Xin M. Zhang Y. Ning S. Li X. LncACTdb 3.0: An updated database of experimentally supported ceRNA interactions and personalized networks contributing to precision medicine. Nucleic Acids Res. 2022 50 D1 D183 D189 10.1093/nar/gkab1092 34850125
    [Google Scholar]
  37. Shen Y. Xia E. Bhandari A. Wang X. Guo G. LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci. Rep. 2018 38 5 BSR20180862 10.1042/BSR20180862 30061172
    [Google Scholar]
  38. Chen Y. Lu B. Liu L. Pan X. Jiang C. Xu H. Long non-coding RNA PROX1-AS1 knockdown upregulates microRNA-519d-3p to promote chemosensitivity of retinoblastoma cells via targeting SOX2. Cell Cycle 2021 20 20 2149 2159 10.1080/15384101.2021.1971352 34583623
    [Google Scholar]
  39. Liu J. Zhan W. Chen G. Yan S. Chen W. Li R. SP1-induced PROX1-AS1 contributes to tumor progression by regulating miR-326/FBXL20 axis in colorectal cancer. Cell. Signal. 2023 101 110503 10.1016/j.cellsig.2022.110503 36374774
    [Google Scholar]
  40. Guo T. Wang W. Ji Y. Zhang M. Xu G. Lin S. LncRNA PROX1-AS1 facilitates gastric cancer progression via miR-877-5p/PD-L1 axis. Cancer Manag. Res. 2021 13 2669 2680 10.2147/CMAR.S275352 33776485
    [Google Scholar]
  41. Qin K. Tian G. Chen G. Zhou D. Tang K. miR‐647 inhibits glioma cell proliferation, colony formation and invasion by regulating HOXA9. J. Gene Med. 2020 22 3 e3153 10.1002/jgm.3153 31881106
    [Google Scholar]
  42. Du L. Wang X. Yin Y. Zhang Y. Jia J. Lu B. Xue W. Qu C. Qi J. Identification of a potentially functional circRNA-miRNA-mRNA ceRNA regulatory network in bladder cancer by analysis of microarray data. Transl. Androl. Urol. 2021 10 1 24 36 10.21037/tau‑20‑660 33532293
    [Google Scholar]
  43. Cao W. Wei W. Zhan Z. Xie D. Xie Y. Xiao Q. Role of miR-647 in human gastric cancer suppression. Oncol. Rep. 2017 37 3 1401 1411 10.3892/or.2017.5383 28098914
    [Google Scholar]
  44. Pan X. Ji X. Zhang R. Zhou Z. Zhong Y. Peng W. Sun N. Xu X. Xia L. Li P. Lu J. Tu J. Landscape of somatic mutations in gastric cancer assessed using next‑generation sequencing analysis. Oncol. Lett. 2018 16 4 4863 4870 10.3892/ol.2018.9314 30250552
    [Google Scholar]
  45. Katona B.W. Rustgi A.K. Gastric cancer genomics: Advances and future directions. Cell. Mol. Gastroenterol. Hepatol. 2017 3 2 211 217 10.1016/j.jcmgh.2017.01.003 28275688
    [Google Scholar]
  46. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2012 41 D1 D991 D995 10.1093/nar/gks1193 23193258
    [Google Scholar]
  47. Biomedical informatics institute. Available from: https://bioinfo.henu.edu.cn/
  48. GEO accession: GSE57303. 2019 Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57303
  49. Qian Z. Zhu G. Tang L. Wang M. Zhang L. Fu J. Huang C. Fan S. Sun Y. Lv J. Dong H. Gao B. Su X. Yu D. Zang J. Zhang X. Ji J. Ji Q. Whole genome gene copy number profiling of gastric cancer identifies PAK1 and KRAS gene amplification as therapy targets. Genes Chromosomes Cancer 2014 53 11 883 894 10.1002/gcc.22196 24935174
    [Google Scholar]
  50. Hu K. Zhang Y. Rong J. Deng W. Xiao B. Overexpression of lncRNA TCLlnc1 in gastric cancer predicts postoperative distant recurrence and poor survival. Anticancer Drugs 2022 33 10 999 1003 10.1097/CAD.0000000000001396 36066396
    [Google Scholar]
  51. Mohamed W.A. Schaalan M.F. Ramadan B. The expression profiling of circulating miR‐204, miR‐182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J. Cell. Biochem. 2019 120 8 13464 13477 10.1002/jcb.28620 30945348
    [Google Scholar]
  52. Liang H. Li H. Xia N. Chen J. Gao L. Liu H. Lyu P. Guo X. Yang Z. Circulating long noncoding RNA, Zfpm2-As1, and XIST based on medical data analysis are potential plasma biomarkers for gastric cancer diagnosis. Technol. Health Care 2024 32 6 4919 4928 10.3233/THC‑232033 38820035
    [Google Scholar]
  53. López-Urrutia E. Bustamante Montes L.P. Ladrón de Guevara Cervantes D. Pérez-Plasencia C. Campos-Parra A.D. Crosstalk Between Long Non-coding RNAs, Micro-RNAs and mRNAs: Deciphering Molecular Mechanisms of Master Regulators in Cancer. Front. Oncol. 2019 9 669 10.3389/fonc.2019.00669 31404273
    [Google Scholar]
  54. Li J. Liu T. Li L. Jiang C. LncRNA PROX1 antisense RNA 1 promotes PD-L1-mediated proliferation, metastasis, and immune escape in colorectal cancer by interacting with miR-520d. Anticancer Drugs 2023 34 5 669 679 10.1097/CAD.0000000000001437 36730426
    [Google Scholar]
  55. Ye G. Huang K. Yu J. Zhao L. Zhu X. Yang Q. Li W. Jiang Y. Zhuang B. Liu H. Shen Z. Wang D. Yan L. Zhang L. Zhou H. Hu Y. Deng H. Liu H. Li G. Qi X. MicroRNA-647 targets SRF-MYH9 axis to suppress invasion and metastasis of gastric cancer. Theranostics 2017 7 13 3338 3353 10.7150/thno.20512 28900514
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240343937250426134726
Loading
/content/journals/cmm/10.2174/0115665240343937250426134726
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test