Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Paired box 9 (PAX9) has been linked to several human disorders; however, its relevance in Head And Neck Squamous Cell Carcinoma (HNSCC) remains unknown.

Methods

The difference in PAX9 mRNA expression in pan-cancer was analyzed utilizing The Cancer Genome Atlas (TCGA), and the level of PAX9 protein expression across various types of cancer was assessed utilizing the Human Protein Atlas (HPA) and UALCAN databases, as well as the cellular localization of PAX9. UALCAN studied the methylation levels of PAX9 in pan-cancer. The predictive significance of PAX9 in pan-cancer was assessed utilizing the Kaplan-Meier Plotter website. Functional enrichment analysis was carried out with the “cluster Profiler” program. By employing CCK8 and colony formation methods, the influence of PAX9 on the growth of HNSCC cells was evaluated. By conducting a transwell experiment, we assessed the influence of PAX9 on the migration of HNSCC cells. Western blotting was used to determine the levels of Bax and Bcl-2, two proteins involved in the regulation of apoptosis. A nude mouse model was established to study the impact of PAX9 overexpression on the growth of subcutaneous HNSCC tumors.

Results

In HNSCC, the expression of PAX9 was found to be low, while levels of promoter methylation rose considerably. Low PAX9 expression has been linked to a decrease in overall survival (OS) rates among individuals with HNSCC. Furthermore, overexpressing the PAX9 gene decreased HNSCC cell proliferation, migration, and invasion while boosting apoptosis rates.

Conclusion

The abnormal expression of PAX9 is linked to various cancers. In HNSCC, PAX9 is a potential tumor suppressor, inhibiting tumor invasion and migration. The results reveal a potentially significant new therapeutic target for HNSCC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240328109241205084841
2025-01-15
2025-12-26
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/11/CMM-25-11-08.html?itemId=/content/journals/cmm/10.2174/0115665240328109241205084841&mimeType=html&fmt=ahah

References

  1. JohnsonD.E. BurtnessB. LeemansC.R. LuiV.W.Y. BaumanJ.E. GrandisJ.R. Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers2020619210.1038/s41572‑020‑00224‑3 33243986
    [Google Scholar]
  2. JayawickramaS.M. RanaweeraP.M. PradeepR. Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments.Cancer Reports202473e2045
    [Google Scholar]
  3. Saada-BouzidE. PeyradeF. GuigayJ. Molecular genetics of head and neck squamous cell carcinoma.Curr. Opin. Oncol.201931313113710.1097/CCO.0000000000000536 30893149
    [Google Scholar]
  4. SolomonB. YoungR.J. RischinD. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments.Semin. Cancer Biol.201852Pt 222824010.1016/j.semcancer.2018.01.008 29355614
    [Google Scholar]
  5. MorseD.E. PsoterW.J. ClevelandD. Smoking and drinking in relation to oral cancer and oral epithelial dysplasia.Cancer Causes Control200718991992910.1007/s10552‑007‑9026‑4 17647085
    [Google Scholar]
  6. Tanadini-LangS. BalermpasP. GuckenbergerM. Radiomic biomarkers for head and neck squamous cell carcinoma.Strahlenther. Onkol.202019610868878
    [Google Scholar]
  7. LeemansC.R. SnijdersP.J.F. BrakenhoffR.H. The molecular landscape of head and neck cancer.Nat. Rev. Cancer201818526928210.1038/nrc.2018.11 29497144
    [Google Scholar]
  8. LiangF. WangR. DuQ. ZhuS. An epithelial–mesenchymal transition hallmark gene-based risk score system in head and neck squamous-cell carcinoma.Int. J. Gen. Med.2021144219422710.2147/IJGM.S327632 34393501
    [Google Scholar]
  9. AffolterA. LammertA. KernJ. ScherlC. RotterN. Precision medicine gains momentum: Novel 3D models and stem cell-based approaches in head and neck cancer.Front. Cell Dev. Biol.2021966651510.3389/fcell.2021.666515 34307351
    [Google Scholar]
  10. GongS.Q. XuM. XiangM.L. ShanY.M. ZhangH. The expression and effection of MicroRNA-499a in high-tobacco exposed head and neck squamous cell carcinoma: A bioinformatic analysis.Front. Oncol.2019967810.3389/fonc.2019.00678 31417866
    [Google Scholar]
  11. ChenX. LiY. PaiboonrungruangC. PAX9 in cancer development.Int. J. Mol. Sci.20222310558910.3390/ijms23105589 35628401
    [Google Scholar]
  12. LiuJ. YangM. SuM. FOXG1 sequentially orchestrates subtype specification of postmitotic cortical projection neurons.Sci. Adv.2022821eabh356810.1126/sciadv.abh3568 35613274
    [Google Scholar]
  13. LiR. ChenZ. YuQ. WengM. ChenZ. The function and regulatory network of Pax9 gene in palate development.J. Dent. Res.201998327728710.1177/0022034518811861 30583699
    [Google Scholar]
  14. BholC.S. PatilS. SahuB.B. PatraS.K. BhutiaS.K. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis.Biochim. Biophys. Acta Rev. Cancer20211876118856110.1016/j.bbcan.2021.188561 33965511
    [Google Scholar]
  15. BonczekO. BalcarV.J. ŠerýO. >PAX9 gene mutations and tooth agenesis: A review.Clin. Genet.201792546747610.1111/cge.12986 28155232
    [Google Scholar]
  16. ŠerýO. BonczekO. HlouškováA. A screen of a large Czech cohort of oligodontia patients implicates a novel mutation in the PAX9 gene.Eur. J. Oral Sci.20151232657110.1111/eos.12170 25683653
    [Google Scholar]
  17. ZhaoZ. SzczepanskiA.P. TsuboyamaN. PAX9 determines epigenetic state transition and cell fate in cancer.Cancer Res.202181184696470810.1158/0008‑5472.CAN‑21‑1114 34341073
    [Google Scholar]
  18. ShiM. RenS. ChenH. Alcohol drinking inhibits NOTCH – PAX9 signaling in esophageal squamous epithelial cells.J. Pathol.2021253438439510.1002/path.5602 33314197
    [Google Scholar]
  19. SotoJ.A. Rodríguez-AntolínC. VeraO. Transcriptional epigenetic regulation of Fkbp1/Pax9 genes is associated with impaired sensitivity to platinum treatment in ovarian cancer.Clin. Epigenetics202113116710.1186/s13148‑021‑01149‑8 34454589
    [Google Scholar]
  20. LiuJ. WangY.Q. NiuH.B. ZhangC.X. PAX9 functions as a tumor suppressor gene for cervical cancer via modulating cell proliferation and apoptosis.Kaohsiung J. Med. Sci.202238435736610.1002/kjm2.12489 34931758
    [Google Scholar]
  21. TanL. LiW. SuQ. The comprehensive analysis of the prognostic and functional role of N-terminal methyltransferases 1 in pan-cancer.PeerJ202311e1626310.7717/peerj.16263 37901469
    [Google Scholar]
  22. ColwillK. GräslundS. GraslundS. A roadmap to generate renewable protein binders to the human proteome.Nat. Methods20118755155810.1038/nmeth.1607 21572409
    [Google Scholar]
  23. ChandrashekarD.S. KarthikeyanS.K. KorlaP.K. UALCAN: An update to the integrated cancer data analysis platform.Neoplasia202225182710.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  24. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556-6010.1093/nar/gkz430 31114875
    [Google Scholar]
  25. NagyÁ. MunkácsyG. GyőrffyB. Pancancer survival analysis of cancer hallmark genes.Sci. Rep.2021111604710.1038/s41598‑021‑84787‑5 33723286
    [Google Scholar]
  26. Razavi VakhshourpourS. NateghpourM. ShahrokhiN. Motevalli HaghiA. MohebaliM. HanifianH. Potential of RH5 antisense on Plasmodium falciparum proliferation abatement.Iran. J. Parasitol.202217452553410.18502/ijpa.v17i4.11280 36694567
    [Google Scholar]
  27. BadriM. GhaffarifarF. HassanZ.M. DalimiA. CortesH. Immunoregulatory effects of somatic extract of Toxocara canis on airway inflammations in murine model.Iran. J. Parasitol.202015450051010.18502/ijpa.v15i4.4855 33884007
    [Google Scholar]
  28. CuiZ. GuoY. ZhouY. Transcriptomic analysis of the developmental similarities and differences between the native retina and retinal organoids.Invest. Ophthalmol. Vis. Sci.2020613610.1167/iovs.61.3.6 32150248
    [Google Scholar]
  29. DoescherJ. VeitJ.A. HoffmannT.K. The 8th edition of the AJCC Cancer Staging Manual : Updates in otorhinolaryngology, head and neck surgeryHNO 201765(12)95696110.1007/s00106‑017‑0391‑3 28717958
    [Google Scholar]
  30. LydiattW.M. PatelS.G. O’SullivanB. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manualCA Cancer J Clin201767212237
    [Google Scholar]
  31. GlastonburyC.M. Critical changes in the staging of head and neck cancer.Radiol. Imaging Cancer202021e19002210.1148/rycan.2019190022 33778691
    [Google Scholar]
  32. BurtnessB. HarringtonK.J. GreilR. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study.Lancet2019394102121915192810.1016/S0140‑6736(19)32591‑7 31679945
    [Google Scholar]
  33. SeiwertT.Y. BurtnessB. MehraR. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial.Lancet Oncol.201617795696510.1016/S1470‑2045(16)30066‑3 27247226
    [Google Scholar]
  34. FerrisR.L. BlumenscheinG.Jr FayetteJ. Nivolumab for recurrent squamous-cell carcinoma of the head and neck.N. Engl. J. Med.2016375191856186710.1056/NEJMoa1602252 27718784
    [Google Scholar]
  35. MehannaH. RobinsonM. HartleyA. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial.Lancet201939310166516010.1016/S0140‑6736(18)32752‑1 30449623
    [Google Scholar]
  36. GillisonM.L. TrottiA.M. HarrisJ. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial.Lancet201939310166405010.1016/S0140‑6736(18)32779‑X 30449625
    [Google Scholar]
  37. WangC.W. BiswasP.K. IslamA. ChenM.K. ChuehP.J. The use of immune regulation in treating Head and Neck Squamous Cell Carcinoma (HNSCC).Cells202413541310.3390/cells13050413 38474377
    [Google Scholar]
  38. HashimD. GendenE. PosnerM. HashibeM. BoffettaP. Head and neck cancer prevention: from primary prevention to impact of clinicians on reducing burden.Ann. Oncol.201930574475610.1093/annonc/mdz084 30840052
    [Google Scholar]
  39. NewmanJ.G. HallM.A. KurleyS.J. Adjuvant therapy for high-risk cutaneous squamous cell carcinoma: 10-year review.Head Neck20214392822284310.1002/hed.26767 34096664
    [Google Scholar]
  40. ChiN. EpsteinJ.A. Getting your Pax straight: Pax proteins in development and disease.Trends Genet.2002181414710.1016/S0168‑9525(01)02594‑X 11750700
    [Google Scholar]
  41. KendallJ. LiuQ. BaklehA. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer.Proc. Natl. Acad. Sci. USA200710442166631666810.1073/pnas.0708286104 17925434
    [Google Scholar]
  42. SánchezR.S. SánchezS.S. Characterization of pax1, pax9, and uncx sclerotomal genes during Xenopus laevis embryogenesis.Dev. Dyn.2013242557257910.1002/dvdy.23945 23401059
    [Google Scholar]
  43. ShortS. HollandL.Z. The evolution of alternative splicing in the Pax family: the view from the Basal chordate amphioxus.J. Mol. Evol.200866660562010.1007/s00239‑008‑9113‑5 18473110
    [Google Scholar]
  44. XiongZ. RenS. ChenH. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro‐oesophageal epithelium.J. Pathol.2018244216417510.1002/path.4998 29055049
    [Google Scholar]
  45. ManierS. LiuC.J. Avet-LoiseauH. Prognostic role of circulating exosomal miRNAs in multiple myeloma.Blood2017129172429243610.1182/blood‑2016‑09‑742296 28213378
    [Google Scholar]
  46. JinM.Z. JinW.L. The updated landscape of tumor microenvironment and drug repurposing.Signal Transduct. Target. Ther.20205116610.1038/s41392‑020‑00280‑x 32843638
    [Google Scholar]
  47. ZafariN. KhosraviF. RezaeeZ. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches.J. Clin. Lab. Anal.2022368e2458510.1002/jcla.24585 35808903
    [Google Scholar]
  48. ZhongZ. VongC.T. ChenF. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets.Med. Res. Rev.20224231246127910.1002/med.21876 35028953
    [Google Scholar]
  49. FerrerG. Álvarez-ErricoD. EstellerM. Biological and molecular factors predicting response to adoptive cell therapies in cancer.J. Natl. Cancer Inst.2022114793093910.1093/jnci/djac088 35438170
    [Google Scholar]
  50. BrunoA. FerlazzoG. AlbiniA. NoonanD.M. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis.J. Natl. Cancer Inst.2014106811310.1093/jnci/dju200 25178695
    [Google Scholar]
  51. O’MeliaM.J. RohnerN.A. ManspeakerM.P. FrancisD.M. KissickH.T. ThomasS.N. Quality of CD8 + T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context.Sci. Adv.2020650eabd713410.1126/sciadv.abd7134 33310857
    [Google Scholar]
  52. SatoK. YamashitaN. YamashitaN. BabaM. MatsuyamaT. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse.Immunity200318336737910.1016/S1074‑7613(03)00055‑4 12648454
    [Google Scholar]
  53. SongJ.K. YinS.Y. LiW. An update on the role of long non-coding RNAs in psoriasis.Chin. Med. J. (Engl.)2021134437938910.1097/CM9.0000000000001243 33323820
    [Google Scholar]
  54. NeufeldM.J. LutzkeA. PratxG. SunC. High- Z metal-organic frameworks for x-ray radiation-based cancer theranostics.Chemistry202127103229323710.1002/chem.202003523 32902003
    [Google Scholar]
  55. CarpenterR. BradyM.F. GeneB.A.X. BAX Gene.In: StatPearls.StatPearls Publishing: Treasure Island (FL)2023
    [Google Scholar]
  56. NigamS.K. BushK.T. BhatnagarV. PoloyacS.M. MomperJ.D. The systems biology of drug metabolizing enzymes and transporters: Relevance to quantitative systems pharmacology.Clin. Pharmacol. Ther.20201081405310.1002/cpt.1818 32119114
    [Google Scholar]
  57. Colin GarnerR. The role of DNA adducts in chemical carcinogenesis.Mutat. Res.19984021-2677510.1016/S0027‑5107(97)00283‑2 9675247
    [Google Scholar]
  58. AllmannS. MayerL. OlmaJ. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence.Nucleic Acids Res.20204821120851210110.1093/nar/gkaa965 33166399
    [Google Scholar]
  59. LuoJ. ChenJ.W. ZhouJ. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ-mediated DNA repair.Cancer Sci.202211362008202110.1111/cas.15348 35348274
    [Google Scholar]
  60. BasuA. DamageD.N.A. Mutagenesis and Cancer.Int. J. Mol. Sci.201819497010.3390/ijms19040970 29570697
    [Google Scholar]
  61. KhodadadianA. DarziS. Haghi-DaredehS. Genomics and transcriptomics: The powerful technologies in precision medicine.Int. J. Gen. Med.20201362764010.2147/IJGM.S249970 32982380
    [Google Scholar]
  62. Al-GabriN.A. SaghirS.A.M. Al-HashediS.A. Therapeutic potential of thymoquinone and its nanoformulations in pulmonary injury: A comprehensive review.Int. J. Nanomedicine2021165117513110.2147/IJN.S314321 34349511
    [Google Scholar]
  63. LiuX. ChuW. ShangS. Preliminary study on the anti-apoptotic mechanism of Astragaloside IV on radiation-induced brain cells.Int. J. Immunopathol. Pharmacol.202034205873842095459410.1177/2058738420954594 32902354
    [Google Scholar]
  64. DoganS. MasonM.C. GovindarajuA. Interrelationships between apoptosis and fertility in bull sperm.J. Reprod. Dev.2013591182610.1262/jrd.2012‑068 22986927
    [Google Scholar]
  65. TangD. ZhangS. ShiX. Combination of astragali polysaccharide and curcumin improves the morphological structure of tumor vessels and induces tumor vascular normalization to inhibit the growth of hepatocellular carcinoma.Integr. Cancer Ther.201918153473541882440810.1177/1534735418824408 30762443
    [Google Scholar]
  66. KleinC.A. Cancer progression and the invisible phase of metastatic colonization.Nat. Rev. Cancer2020201168169410.1038/s41568‑020‑00300‑6 33024261
    [Google Scholar]
  67. ZhangT. PrasadP. CaiP. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice.Acta Pharmacol. Sin.201738683584710.1038/aps.2016.166 28216624
    [Google Scholar]
  68. van AttekumM.H.A. ElderingE. KaterA.P. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk.Haematologica201710291469147610.3324/haematol.2016.142679 28775118
    [Google Scholar]
  69. DasS. SarrouE. PodgrabinskaS. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses.J. Exp. Med.201321081509152810.1084/jem.20111627 23878309
    [Google Scholar]
  70. BaiG. SongJ. YuanY. Systematic analysis of differentially methylated expressed genes and site-specific methylation as potential prognostic markers in head and neck cancer.J. Cell. Physiol.201923412226872270210.1002/jcp.28835 31131446
    [Google Scholar]
  71. SmetannikovaNA EvdokimovAA NetesovaNA Application of GLAD-PCR assay for study on DNA methylation in regulatory regions of some tumor-suppressor genes in lung cancer.Zhongguo Fei Ai Za Zhi201922(9)551561 31526458
    [Google Scholar]
  72. RaniL. MathurN. GuptaR. Genome-wide DNA methylation profiling integrated with gene expression profiling identifies PAX9 as a novel prognostic marker in chronic lymphocytic leukemia.Clin. Epigenetics2017915710.1186/s13148‑017‑0356‑0 28572861
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240328109241205084841
Loading
/content/journals/cmm/10.2174/0115665240328109241205084841
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; HNSCC; overall survival (OS); pan-cancer analysis; PAX9; tumor suppressor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test