Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240307413240531111140
2024-06-24
2025-10-24
Loading full text...

Full text loading...

References

  1. DubyJ.J. CampbellR.K. SetterS.M. WhiteJ.R. RasmussenK.A. Diabetic Neuropathy: An intensive review.Am. J. Health Syst. Pharm.200461216017310.1093/ajhp/61.2.160 14750401
    [Google Scholar]
  2. BodmanM.A. VaracalloM. Diabetic neuropathy.Treasure Island, FLStatPearls Publishing2020
    [Google Scholar]
  3. HamedE. MonemM.A. A review of diabetic peripheral neuropathy management given recent guidelines updates. Arch.J. Gen. Intern. Med.2018241510.31021/agi.2018114
    [Google Scholar]
  4. HeY. DanY. GaoX. HuangL. LvH. ChenJ. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway.Am. J. Physiol. Endocrinol. Metab.20213203E598E60810.1152/ajpendo.00089.2020 33284093
    [Google Scholar]
  5. KingG.L. LoekenM.R. Hyperglycemia-induced oxidative stress in diabetic complications.Histochem. Cell Biol.2004122433333810.1007/s00418‑004‑0678‑9 15257460
    [Google Scholar]
  6. HosseiniA. AbdollahiM. Diabetic neuropathy and oxidative stress: Therapeutic perspectives.Oxid. Med. Cell. Longev.2013201311510.1155/2013/168039 23738033
    [Google Scholar]
  7. ShakeelM. Recent advances in understanding the role of oxidative stress in diabetic neuropathy.Diabetes Metab. Syndr.20159437337810.1016/j.dsx.2014.04.029 25470637
    [Google Scholar]
  8. UprichardS.L. The therapeutic potential of RNA interference.FEBS Lett.2005579265996600710.1016/j.febslet.2005.08.004 16115631
    [Google Scholar]
  9. MaieseK. Driving neural regeneration through the mammalian target of rapamycin.Neural Regen. Res.20161191573157710.4103/1673‑5374.139453 25317149
    [Google Scholar]
  10. WangH.X. YangH. HanQ.Y. NADPH oxidases mediate a cellular “memory” of angiotensin II stress in hypertensive cardiac hypertrophy.Free Radic. Biol. Med.20136589790710.1016/j.freeradbiomed.2013.08.179 23994772
    [Google Scholar]
  11. KokilG.R. VeeduR.N. RammG.A. PrinsJ.B. ParekhH.S. Type 2 diabetes mellitus: Limitations of conventional therapies and intervention with nucleic acid-based therapeutics.Chem. Rev.2015115114719474310.1021/cr5002832 25918949
    [Google Scholar]
  12. SherE.K. Džidić-KrivićA. KarahmetA. Novel therapeutical approaches based on neurobiological and genetic strategies for diabetic polyneuropathy – A review.Diabetes Metab. Syndr.2023171110290110.1016/j.dsx.2023.102901 37951098
    [Google Scholar]
  13. HuangK.P. The mechanism of protein kinase C activation.Trends Neurosci.1989121142543210.1016/0166‑2236(89)90091‑X 2479143
    [Google Scholar]
  14. FernyhoughP. Mitochondrial dysfunction in diabetic neuropathy: A series of unfortunate metabolic events.Curr. Diab. Rep.201515118910.1007/s11892‑015‑0671‑9 26370700
    [Google Scholar]
  15. KingG.L. The role of inflammatory cytokines in diabetes and its complications.J. Periodontol.2008798SSuppl.1527153410.1902/jop.2008.080246 18673007
    [Google Scholar]
  16. Donate-CorreaJ. Martín-NúñezE. Muros-de-FuentesM. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammatory cytokines in diabetic nephropathy.J. Diabetes Res.201520151910.1155/2015/948417 25785280
    [Google Scholar]
  17. BrewsterW.J. FernyhoughP. DiemelL.T. MohiuddinL. TomlinsonD.R. Diabetic neuropathy, nerve growth factor and other neurotrophic factors.Trends Neurosci.199417832132510.1016/0166‑2236(94)90169‑4 7974749
    [Google Scholar]
  18. WadaR. YagihashiS. Role of advanced glycation end products and their receptors in development of diabetic neuropathy.Ann. N. Y. Acad. Sci.20051043159860410.1196/annals.1338.067 16037282
    [Google Scholar]
  19. SherE.K. PrnjavoracB. FarhatE.K. PalićB. AnsarS. SherF. Effect of diabetic neuropathy on reparative ability and immune response system.Mol. Biotechnol.202311410.1007/s12033‑023‑00813‑z 37523019
    [Google Scholar]
  20. Carpi-SantosR. de Melo ReisR.A. GomesF.C.A. CalazaK.C. Contribution of Müller cells in the diabetic retinopathy development: Focus on oxidative stress and inflammation.Antioxidants202211461710.3390/antiox11040617 35453302
    [Google Scholar]
  21. KarahmetE. PrnjavoracB. BegoT. Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy.Med. Glas.2021181121710.17392/1279‑21 33480229
    [Google Scholar]
  22. WuF. PanR. ChenJ. Lentivirus mediated siRNA against GluN2B subunit of NMDA receptor reduces nociception in a rat model of neuropathic pain.BioMed Res. Int.201420141710.1155/2014/871637 25243192
    [Google Scholar]
  23. LuoQ. FengY. XieY. Nanoparticle–microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis.Nanomedicine20191718819710.1016/j.nano.2019.01.007 30721753
    [Google Scholar]
  24. LuD-W. Chia-Yang Shiau, Chiang C-H, Chen, Yeh M-K. Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery.Int. J. Nanomedicine201382613262710.2147/IJN.S39622 23901275
    [Google Scholar]
  25. ChattopadhyayM. MataM. FinklD.J. Vector‐mediated release of GABA attenuates pain‐related behaviors and reduces Na V 1.7 in DRG neurons.Eur. J. Pain201115991392010.1016/j.ejpain.2011.03.007 21486703
    [Google Scholar]
  26. LanB. ZhangL. YangL. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing.J. Nanobiotechnology202119113010.1186/s12951‑021‑00869‑6 33952251
    [Google Scholar]
  27. SoniN.O. Biodegradable nanoparticles for delivering drugs and silencing multiple genes or gene activation in diabetic nephropathy.Int J Life-Sci Sci Res2017351329133810.21276/ijlssr.2017.3.5.11
    [Google Scholar]
  28. AlshaerW. ZureigatH. Al KarakiA. siRNA: Mechanism of action, challenges, and therapeutic approaches.Eur. J. Pharmacol.202190517417810.1016/j.ejphar.2021.174178 34044011
    [Google Scholar]
  29. SupeS. UpadhyaA. SinghK. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review.Exp. Eye Res.202120210832910.1016/j.exer.2020.108329 33198953
    [Google Scholar]
  30. YangF. ZouY.Q. LiM. LuoW.J. ChenG.Z. WuX.Z. Intervertebral foramen injection of plerixafor attenuates neuropathic pain after chronic compression of the dorsal root ganglion: Possible involvement of the down-regulation of Nav1.8 and Nav1.9.Eur. J. Pharmacol.202190817432210.1016/j.ejphar.2021.174322 34256084
    [Google Scholar]
  31. NafissiN. FoldvariM. Neuroprotective therapies in glaucoma: I. Neurotrophic factor delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168224025410.1002/wnan.1361 26306832
    [Google Scholar]
  32. BoninP. Therapeutic inhibition of pro-inflammatory tumor necrosis factor alpha by intracerebroventricular siRNA markedly reduces amyloid plaque burden and behavioral deficits in Alzheimer’s disease mice.Neuromolecular Med.20161814115710.1007/s12017‑016‑8383‑8
    [Google Scholar]
  33. BrennanF.H. PopovichP.G. Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury.Curr. Opin. Neurol.201831333434410.1097/WCO.0000000000000550 29465433
    [Google Scholar]
  34. YangJ. ZhangQ. LiuY. Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma.Nanomedicine (Lond)202015141391140910.2217/nnm‑2020‑0066 32495692
    [Google Scholar]
  35. VincentA.M. CallaghanB.C. SmithA.L. FeldmanE.L. Diabetic neuropathy: Cellular mechanisms as therapeutic targets.Nat. Rev. Neurol.201171057358310.1038/nrneurol.2011.137 21912405
    [Google Scholar]
  36. Ganesh YerraV. NegiG. SharmaS.S. KumarA. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy.Redox Biol.20131139439710.1016/j.redox.2013.07.005 24024177
    [Google Scholar]
  37. TanY. ZhangZ. ZhengC. WintergerstK.A. KellerB.B. CaiL. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence.Nat. Rev. Cardiol.202017958560710.1038/s41569‑020‑0339‑2 32080423
    [Google Scholar]
  38. ZhengJ. DengY. ZhangJ. LimS. LiT. ZhangR. Reactive oxygen species hydrogen peroxide mediates breast cancer cell metastasis through activation of HIF-1α/HDAC4/SDF-1/CXCR4 pathway.Sci. Rep.201771110.1038/s41598‑017‑08698‑1 28127051
    [Google Scholar]
  39. PavlidesS. VeraI. GandaraR. Warburg meets autophagy: Cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis.Antioxid. Redox Signal.201216111264128410.1089/ars.2011.4243 21883043
    [Google Scholar]
  40. Al-GuboryK.H. FowlerP.A. GarrelC. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes.Int. J. Biochem. Cell Biol.201042101634165010.1016/j.biocel.2010.06.001 20601089
    [Google Scholar]
  41. FenioukB.A. SkulachevV.P. Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants.Curr. Aging Sci.2017101414810.2174/1874609809666160921113706 27659264
    [Google Scholar]
  42. MatsudaM. ShimomuraI. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer.Obes. Res. Clin. Pract.201375e330e34110.1016/j.orcp.2013.05.004 24455761
    [Google Scholar]
  43. KaramoysoyliE. BurnandR.C. TomlinsonD.R. GardinerN.J. Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy.Diabetes200857118118910.2337/db07‑0895 17909094
    [Google Scholar]
  44. WangH. WangR. ThrimawithanaT. The nerve growth factor signaling and its potential as therapeutic target for glaucoma.BioMed Res. Int.2014201411010.1155/2014/759473 25250333
    [Google Scholar]
  45. KimuraA. NamekataK. GuoX. HaradaC. HaradaT. Neuroprotection, growth factors and BDNF-TrkB signaling in retinal degeneration.Int. J. Mol. Sci.2016179158410.3390/ijms17091584 27657046
    [Google Scholar]
  46. ChristieK.J. WebberC.A. MartinezJ.A. SinghB. ZochodneD.W. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons.J. Neurosci.201030279306931510.1523/JNEUROSCI.6271‑09.2010 20610765
    [Google Scholar]
  47. KoyuncuE. BudayevaH.G. MitevaY.V. Sirtuins are evolutionarily conserved viral restriction factors.MBio201456e02249e1410.1128/mBio.02249‑14 25516616
    [Google Scholar]
  48. KaurI.P. SharmaG. siRNA: A new approach to target neuropathic pain.BioDrugs201226640141210.1007/BF03261897 23057947
    [Google Scholar]
  49. FireA. XuS. MontgomeryM.K. KostasS.A. DriverS.E. MelloC.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature1998391666980681110.1038/35888 9486653
    [Google Scholar]
  50. UrnovD. Seguinot-MedinaS. WangX. ThomasP.D. PatelD.J. The promise of RNA interference-based therapy.J. Am. Dent. Assoc.2015146529830610.1016/j.adaj.2015.02.016
    [Google Scholar]
  51. LippmanZ. ZamoreP.D. RNAi: Finding the elusive siRNA.Nat. Rev. Genet.20078647248210.1038/nrg2090
    [Google Scholar]
  52. KumarL.D. ClarkeA.R. Gene manipulation through the use of small interfering RNA (siRNA): From in vitro to in vivo applications.Adv. Drug Deliv. Rev.2007592-38710010.1016/j.addr.2007.03.009 17434644
    [Google Scholar]
  53. BurnettJ.C. RossiJ.J. RNA-based therapeutics: current progress and future prospects.Chem. Biol.2012191607110.1016/j.chembiol.2011.12.008
    [Google Scholar]
  54. HammellC.M. Methods and applications for RNA interference pathway analysis.In: Biology of non-coding RNA.Totowa, NJHumana Press201333735510.1007/978‑1‑62703‑547‑7_22
    [Google Scholar]
  55. BehlkeM.A. Progress towards in vivo Use of siRNAs.Mol. Ther.200613464467010.1016/j.ymthe.2006.01.001 16481219
    [Google Scholar]
  56. AurrekoetxeaM. Delivery methods for siRNA-mediated gene silencing.Gene silencing: Theory, techniques, and applications.ChamSpringer2020155169
    [Google Scholar]
  57. WoltersN.M. MacKeiganJ.P. From sequence to function: Using RNAi to elucidate mechanisms of human disease.Cell Death Differ.200815580981910.1038/sj.cdd.4402311 18202701
    [Google Scholar]
  58. JayaramanM. AnsellS.M. MuiB.L. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo.Angew. Chem. Int. Ed.201251348529853310.1002/anie.201203263 22782619
    [Google Scholar]
  59. DongY. LoveK.T. DorkinJ.R. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates.Proc. Natl. Acad. Sci. USA2014111113955396010.1073/pnas.1322937111 24516150
    [Google Scholar]
  60. GrayS.P. Di MarcoE. OkabeJ. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.Circulation2013127181888190210.1161/CIRCULATIONAHA.112.132159 23564668
    [Google Scholar]
  61. ShiX. SunM. LiuH. A critical role for the long non‐coding RNA GAS5 in proliferation and apoptosis in non‐small‐cell lung cancer.Mol. Carcinog.201554S1Suppl. 1E1E1210.1002/mc.22120 24357161
    [Google Scholar]
  62. FlyvbjergA. The role of the complement system in diabetic nephropathy.Nat. Rev. Nephrol.201713531131810.1038/nrneph.2017.31 28262777
    [Google Scholar]
  63. HanY. XuX. TangC. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis.Redox Biol.201816324610.1016/j.redox.2018.02.013 29475133
    [Google Scholar]
  64. KanasakiK. TaduriG. KoyaD. Diabetic nephropathy: The role of inflammation in fibroblast activation and kidney fibrosis.Front. Endocrinol.20134710.3389/fendo.2013.00007 23390421
    [Google Scholar]
  65. FangL. ZhouY. CaoH. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury.PLoS One201384e6054610.1371/journal.pone.0060546 23593240
    [Google Scholar]
  66. RanderiaP.S. SeegerM.A. WangX.Q. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown.Proc. Natl. Acad. Sci. USA2015112185573557810.1073/pnas.1505951112 25902507
    [Google Scholar]
  67. LipovskyA. PopaA. PimientaG. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus.Proc. Natl. Acad. Sci. USA2013110187452745710.1073/pnas.1302164110 23569269
    [Google Scholar]
  68. SagooM.K. GnudiL. Diabetic nephropathy: Is there a role for oxidative stress?Free Radic. Biol. Med.2018116506310.1016/j.freeradbiomed.2017.12.040 29305106
    [Google Scholar]
  69. ZuckermanJ.E. DavisM.E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer.Nat. Rev. Drug Discov.2015141284385610.1038/nrd4685 26567702
    [Google Scholar]
  70. OzcanG. OzpolatB. ColemanR.L. SoodA.K. Lopez-BeresteinG. Preclinical and clinical development of siRNA-based therapeutics.Adv. Drug Deliv. Rev.20158710811910.1016/j.addr.2015.01.007 25666164
    [Google Scholar]
  71. WangJ. LuZ. WientjesM.G. AuJ.L.S. Delivery of siRNA therapeutics: Barriers and carriers.AAPS J.201012449250310.1208/s12248‑010‑9210‑4 20544328
    [Google Scholar]
  72. Al-MahmoodS. SapiezynskiJ. GarbuzenkoO.B. MinkoT. Metastatic and triple-negative breast cancer: Challenges and treatment options.Drug Deliv. Transl. Res.2018851483150710.1007/s13346‑018‑0551‑3 29978332
    [Google Scholar]
  73. ShajariN. MansooriB. DavudianS. MohammadiA. BaradaranB. Overcoming the challenges of siRNA delivery: Nanoparticle strategies.Curr. Drug Deliv.2017141364610.2174/1567201813666160816105408 27538460
    [Google Scholar]
  74. TomarR.S. MattaH. ChaudharyP.M. Use of adeno-associated viral vector for delivery of small interfering RNA.Oncogene200322365712571510.1038/sj.onc.1206733 12944921
    [Google Scholar]
  75. HiguchiY. KawakamiS. HashidaM. Strategies for in vivo delivery of siRNAs: Recent progress.BioDrugs201024319520510.2165/11534450‑000000000‑00000 20462284
    [Google Scholar]
  76. NormanB.H. McDermottJ.S. Targeting the nerve growth factor (NGF) pathway in drug discovery. Potential applications to new therapies for chronic pain.J. Med. Chem.2017601668810.1021/acs.jmedchem.6b00964 27779399
    [Google Scholar]
  77. SoutoE.B. SoutoS.B. CamposJ.R. Nanoparticle delivery systems in the treatment of diabetes complications.Molecules20192423420910.3390/molecules24234209 31756981
    [Google Scholar]
  78. Yavarpour-BaliH. Ghasemi-KasmanM. PirzadehM. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders.Int. J. Nanomedicine2019144449446010.2147/IJN.S208332 31417253
    [Google Scholar]
  79. KesharwaniP. GorainB. LowS.Y. Nanotechnology based approaches for anti-diabetic drugs delivery.Diabetes Res. Clin. Pract.2018136527710.1016/j.diabres.2017.11.018 29196152
    [Google Scholar]
  80. BulchaJ.T. WangY. MaH. TaiP.W.L. GaoG. Viral vector platforms within the gene therapy landscape.Signal Transduct. Target. Ther.2021615310.1038/s41392‑021‑00487‑6 33558455
    [Google Scholar]
  81. HuangT.J. SayersN.M. VerkhratskyA. FernyhoughP. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats.Exp. Neurol.2005194127928310.1016/j.expneurol.2005.03.001 15899264
    [Google Scholar]
  82. KimD. KimK.R. KwonY. AAV-mediated combination gene therapy for neuropathic pain: GAD65, GDNF, and IL-10.Mol. Ther. Methods Clin. Dev.20201847348310.1016/j.omtm.2020.06.018 32728596
    [Google Scholar]
  83. SharmaK. ZhangY. PaudelK.R. KachelmeierA. HansbroP.M. ShiX. The emerging role of pericyte-derived extracellular vesicles in vascular and neurological health.Cells20221119310810.3390/cells11193108 36231071
    [Google Scholar]
  84. WuZ. MataM. FinkD.J. Prevention of diabetic neuropathy by regulatable expression of HSV-mediated erythropoietin.Mol. Ther.201119231031710.1038/mt.2010.215 20924361
    [Google Scholar]
  85. WeiE.L. Use of iPS cell-derived neural stem cell as a cellular vehicle for glioma and breast cancer therapy. Doctoral dissertation, National University of Singapore.
    [Google Scholar]
  86. AkhileshA. UniyalA. GadepalliA. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain.Life Sci.202228812018710.1016/j.lfs.2021.120187 34856209
    [Google Scholar]
  87. NYEIN NYEIN THAW DAR (2011-08-04). Studies on diabetic peripheral neuropathy in the DB/DB, type 2 diabetes mouse.ScholarBank@NUS Repository.2011Available from: https://scholarbank.nus.edu.sg/handle/10635/30063
    [Google Scholar]
  88. MalikR.A. KallinikosP. AbbottC.A. Corneal confocal microscopy: A non-invasive surrogate of nerve fibre damage and repair in diabetic patients.Diabetologia200346568368810.1007/s00125‑003‑1086‑8 12739016
    [Google Scholar]
  89. JainK.K. Current challenges and future prospects in management of neuropathic pain.Expert Rev. Neurother.20088111743175610.1586/14737175.8.11.1743 18986244
    [Google Scholar]
  90. von SchackD. AgostinoM.J. MurrayB.S. Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain.PLoS One201163e1767010.1371/journal.pone.0017670 21423802
    [Google Scholar]
  91. AguK.C. Diabetes mellitus: A review of some of the prognostic markers of response to treatment and management.Journal of Metabolic Health20183111010.4102/jir.v3i1.36
    [Google Scholar]
  92. NayakP.K. YangL. BrehmW. AdelhelmP. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises.Angew. Chem. Int. Ed.201857110212010.1002/anie.201703772 28627780
    [Google Scholar]
  93. WaghodeP. QuadirS.S. ChoudharyD. SharmaS. JoshiG. Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: Challenges and future perspectives.J. Diabetes Metab. Disord.202411910.1007/s40200‑024‑01405‑7
    [Google Scholar]
  94. SubhanM.A. TorchilinV.P. siRNA based drug design, quality, delivery and clinical translation.Nanomedicine20202910223910.1016/j.nano.2020.102239 32544449
    [Google Scholar]
  95. ChiX. GattiP. PapoianT. Safety of antisense oligonucleotide and siRNA-based therapeutics.Drug Discov. Today201722582383310.1016/j.drudis.2017.01.013 28159625
    [Google Scholar]
  96. DengY. WangC.C. ChoyK.W. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies.Gene2014538221722710.1016/j.gene.2013.12.019 24406620
    [Google Scholar]
  97. BhandariR. SharmaA. KuhadA. Novel nanotechnological approaches for targeting dorsal root ganglion (DRG) in mitigating diabetic neuropathic pain (DNP).Front. Endocrinol.20221279074710.3389/fendo.2021.790747 35211091
    [Google Scholar]
  98. AlvarezM.L. DiStefanoJ.K. Towards microRNA-based therapeutics for diabetic nephropathy.Diabetologia201356344445610.1007/s00125‑012‑2768‑x 23135222
    [Google Scholar]
  99. ShinuP. MorsyM.A. NairA.B. Novel therapies for the treatment of neuropathic pain: Potential and pitfalls.J. Clin. Med.20221111300210.3390/jcm11113002 35683390
    [Google Scholar]
  100. BoutaryS. Development of a targeted therapy for charcot marie Tooth 1A (CMT1A) neuropathy based on siRNA PMP22 squalene nanoparticles. Doctoral dissertation, Université Paris Saclay2019
    [Google Scholar]
  101. ThakurS. SinhariA. JainP. JadhavH.R. A perspective on oligonucleotide therapy: Approaches to patient customization.Front. Pharmacol.202213100630410.3389/fphar.2022.1006304 36339619
    [Google Scholar]
  102. AlghamdiM.A. FallicaA.N. VirzìN. KesharwaniP. PittalàV. GreishK. The promise of nanotechnology in personalized medicine.J. Pers. Med.202212567310.3390/jpm12050673 35629095
    [Google Scholar]
  103. GuoS. HuangL. Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy.J. Nanomater.2011201111210.1155/2011/742895
    [Google Scholar]
  104. GavrilovK. SaltzmanW.M. Therapeutic siRNA: Principles, challenges, and strategies.Yale J. Biol. Med.2012852187200 22737048
    [Google Scholar]
  105. HuangE.S. BrownS.E.S. EwigmanB.G. FoleyE.C. MeltzerD.O. Patient perceptions of quality of life with diabetes-related complications and treatments.Diabetes Care200730102478248310.2337/dc07‑0499 17623824
    [Google Scholar]
  106. ThomasP.K. Diabetic peripheral neuropathies: Their cost to patient and society and the value of knowledge of risk factors for development of interventions.Eur. Neurol.199941Suppl. 1354310.1159/000052078 10023127
    [Google Scholar]
  107. BenbowS. WallymahmedM.E. MacFarlaneI.A. Diabetic peripheral neuropathy and quality of life.QJM1998911173373710.1093/qjmed/91.11.733 10024935
    [Google Scholar]
  108. ZhuL. KateP. TorchilinV.P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting.ACS Nano2012643491349810.1021/nn300524f 22409425
    [Google Scholar]
  109. BurnettJ.C. RossiJ.J. TiemannK. Current progress of siRNA/shRNA therapeutics in clinical trials.Biotechnol. J.2011691130114610.1002/biot.201100054 21744502
    [Google Scholar]
  110. TatipartiK. SauS. KashawS. IyerA. siRNA delivery strategies: A comprehensive review of recent developments.Nanomaterials2017747710.3390/nano7040077
    [Google Scholar]
  111. BidveP. PrajapatiN. KaliaK. TekadeR. TiwariV. Emerging role of nanomedicine in the treatment of neuropathic pain.J. Drug Target.2020281112210.1080/1061186X.2019.1587444 30798636
    [Google Scholar]
  112. RaphaelJ.H. RaheemT.A. SouthallJ.L. BennettA. AshfordR.L. WilliamsS. Randomized double-blind sham-controlled crossover study of short-term effect of percutaneous electrical nerve stimulation in neuropathic pain.Pain Med.201112101515152210.1111/j.1526‑4637.2011.01215.x 21883874
    [Google Scholar]
  113. WheelerH.E. GamazonE.R. WingC. Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy.Clin. Cancer Res.201319249149910.1158/1078‑0432.CCR‑12‑2618 23204130
    [Google Scholar]
  114. LuoJ.T. WaltersE.M. CarltonS. HuH. Targeting pain-evoking transient receptor potential channels for the treatment of pain.Curr. Neuropharmacol.201311665266310.2174/1570159X113119990040 24396340
    [Google Scholar]
  115. LiuC. TaoJ. WuH. Effects of LncRNA BC168687 siRNA on diabetic neuropathic pain mediated by P2X7 receptor on SGCs in DRG of rats.BioMed Res. Int.2017201711010.1155/2017/7831251 29204447
    [Google Scholar]
  116. YaoW. YangX. ZhuJ. GaoB. ShiH. XuL. IRE1α siRNA relieves endoplasmic reticulum stress-induced apoptosis and alleviates diabetic peripheral neuropathy in vivo and in vitro.Sci. Rep.201881257910.1038/s41598‑018‑20950‑9 29416111
    [Google Scholar]
  117. Cano SanchezM. LancelS. BoulangerE. NeviereR. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review.Antioxidants2018789810.3390/antiox7080098 30042332
    [Google Scholar]
  118. ZhaoJ.Y. YangL. BaiH.H. Inhibition of protein tyrosine phosphatase 1B in spinal cord dorsal horn of rats attenuated diabetic neuropathic pain.Eur. J. Pharmacol.201882718919710.1016/j.ejphar.2018.03.012 29526716
    [Google Scholar]
  119. WenW. WeiY. GaoS. Functional nucleic acids for the treatment of diabetic complications.Nanoscale Adv.202352054265434
    [Google Scholar]
  120. BoutaryS. CaillaudM. El MadaniM. VallatJ.M. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A.Commun. Biol.202141317
    [Google Scholar]
  121. GangadharM. MishraR. SriramD. YogeeswariP. Future directions in the treatment of neuropathic pain: A review on various therapeutic targets.CNS Neurol. Disord. Drug Targets2014131638110.2174/18715273113126660192 24152326
    [Google Scholar]
  122. DropulicB. CarterB.J. Concepts in Genetic Medicine.Wiley200710.1002/9780470184585
    [Google Scholar]
  123. DesaiN. KoppisettiH. PandeS. Nanomedicine in the treatment of diabetic nephropathy.Future Med. Chem.202113766368610.4155/fmc‑2020‑0335 33677997
    [Google Scholar]
  124. ManservigiR. ArgnaniR. MarconiP. HSV recombinant vectors for gene therapy.Open Virol. J.20104312315610.2174/1874357901004030123 20835362
    [Google Scholar]
  125. HuB. ZhongL. WengY. Therapeutic siRNA: State of the art.Signal Transduct. Target. Ther.20205110110.1038/s41392‑020‑0207‑x 32561705
    [Google Scholar]
  126. National Research Council Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease. Washington (DC). National Academies Press (US)2011
    [Google Scholar]
  127. BrownD.G. WobstH.J. A decade of FDA-approved drugs (2010–2019): Trends and future directions.J. Med. Chem.20216452312233810.1021/acs.jmedchem.0c01516 33617254
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240307413240531111140
Loading
/content/journals/cmm/10.2174/0115665240307413240531111140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test