Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

This review highlights the new healing frontiers opened by herbal preparations rich in punicic acid, as well as ellagic acid, in the management of Lower Urinary Tract Disorders (LUTD). New data prove that these bioactive compounds possess strong anti-inflammatory, antioxidant, and antibacterial properties, and therefore, can be helpful in treating LUTD symptoms such as urgency, frequency, and dysuria. We conducted a comprehensive pharmacological assessment of punicic and ellagic acids aimed at determining their role in bladder health through modulation of inflammatory processes and both alteration and maintenance of urothelium integrity, in addition to obtaining some background information and chemical properties of these acids. Furthermore, we evaluated the findings of clinical and preclinical studies that demonstrated the ability of these formulations to improve the basic functions of the organs in the urinary system and the quality of life of patients. The review also reflects on the use of herbal extracts in combination with current therapies as a synergistic approach, particularly on the healing effects of such combinations and the need for solid clinical evidence to support such claims. This paper focuses on the concept of how LUTDs can be treated safely and effectively without the help of drugs by integrating modern scientific strategies with traditional approaches, which will thus increase the comprehensiveness of treatment in urological care. Future research should focus on improving how well these compounds are absorbed in the body and gathering long-term safety data, with the goal of incorporating them into treatment guidelines.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240378450250410073416
2025-05-02
2025-12-17
Loading full text...

Full text loading...

References

  1. KheirG.B. VerbakelI. WyndaeleM. Lifelong LUTS: Understanding the bladder’s role and implications across transition phases, a comprehensive review.Neurourol. Urodyn.20244351066107410.1002/nau.25304 38289317
    [Google Scholar]
  2. KeQ.S. LeeC.L. KuoH.C. Recurrent urinary tract infection in women and overactive bladder – Is there a relationship?Tzu-Chi Med. J.2021331132110.4103/tcmj.tcmj_38_20 33505873
    [Google Scholar]
  3. MedinaM. Castillo-PinoE. An introduction to the epidemiology and burden of urinary tract infections.Ther. Adv. Urol.201911175628721983217210.1177/1756287219832172 31105774
    [Google Scholar]
  4. ZhouY. ZhouZ. ZhengL. Urinary tract infections caused by uropathogenic Escherichia coli: Mechanisms of infection and treatment options.Int. J. Mol. Sci.202324131053710.3390/ijms241310537 37445714
    [Google Scholar]
  5. BruxvoortK.J. Bider-CanfieldZ. CaseyJ.A. Outpatient urinary tract infections in an era of virtual healthcare: Trends from 2008 to 2017.Clin. Infect. Dis.202071110010810.1093/cid/ciz764 31437269
    [Google Scholar]
  6. MortadaE.M. Evidence-based complementary and alternative medicine in current medical practice.Cureus2024161e5204110.7759/cureus.52041 38344508
    [Google Scholar]
  7. McCannE. SungA.H. YeG. VankeepuramL. TabakY.P. Contributing factors to the clinical and economic burden of patients with laboratory-confirmed carbapenem-nonsusceptible gram-negative urinary tract infections.Clinicoecon. Outcomes Res.20201219120010.2147/CEOR.S234840 32308447
    [Google Scholar]
  8. PardeshiP. Prevalence of urinary tract infections and current scenario of antibiotic susceptibility pattern of bacteria causing UTI.Indian J. Microbiol. Res.20205333433810.18231/2394‑5478.2018.0070
    [Google Scholar]
  9. ThompsonJ. MarijamA. Mitrani-GoldF.S. WrightJ. JoshiA.V. Activity impairment, health-related quality of life, productivity, and self-reported resource use and associated costs of uncomplicated urinary tract infection among women in the United States.PLoS One2023182e027772810.1371/journal.pone.0277728 36724152
    [Google Scholar]
  10. EidA.M. IssaL. ArarK. Abu-ZantA. MakhloofM. MasarwehY. Phytochemical screening, antioxidant, anti-diabetic, and anti-obesity activities, formulation, and characterization of a self-nanoemulsion system loaded with pomegranate (Punica granatum) seed oil.Sci. Rep.20241411884110.1038/s41598‑024‑68476‑7 39138188
    [Google Scholar]
  11. Punicic acid.Available from: https://www.atamanchemicals.com/punicic-acid_u26479/
    [Google Scholar]
  12. ArunaP. VenkataramanammaD. SinghA.K. SinghR.P. Health benefits of punicic acid: A review.Compr. Rev. Food Sci. Food Saf.2016151162710.1111/1541‑4337.12171 33371578
    [Google Scholar]
  13. Valero-MendozaA.G. Meléndez-RenteríaN.P. Chávez-GonzálezM.L. The whole pomegranate (Punica granatum L), biological properties and important findings: A review.Food Chem. Adv.2023210015310.1016/j.focha.2022.100153
    [Google Scholar]
  14. ShabbirM.A. KhanM.R. SaeedM. PashaI. KhalilA.A. SirajN. Punicic acid: A striking health substance to combat metabolic syndromes in humans.Lipids Health Dis.20171619910.1186/s12944‑017‑0489‑3 28558700
    [Google Scholar]
  15. KangI. BucknerT. ShayN.F. GuL. ChungS. Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms.Adv. Nutr.20167596197210.3945/an.116.012575 27633111
    [Google Scholar]
  16. LiJ. LiS. WangY. ShangA. Functional, morphological and molecular characteristics in a novel rat model of spinal sacral nerve injury-surgical approach, pathological process and clinical relevance.Sci. Rep.20221211002610.1038/s41598‑022‑13254‑6 35705577
    [Google Scholar]
  17. ZuccariG. BaldassariS. AilunoG. TurriniF. AlfeiS. CaviglioliG. Formulation strategies to improve oral bioavailability of ellagic acid.Appl. Sci.20201010335310.3390/app10103353
    [Google Scholar]
  18. VučićV. GrabežM. TrchounianA. ArsićA. Composition and potential health benefits of pomegranate: A review.Curr. Pharm. Des.201925161817182710.2174/1381612825666190708183941 31298147
    [Google Scholar]
  19. OlszewskaM.A. GędasA. SimõesM. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry.Food Res. Int.202013410921410.1016/j.foodres.2020.109214 32517896
    [Google Scholar]
  20. CarrenoJ.J. TamI.M. MeyersJ.L. EsterbergE. CandrilliS.D. LodiseT.P. Longitudinal, nationwide, cohort study to assess incidence, outcomes, and costs associated with complicated urinary tract infection.Open Forum Infect. Dis.202071ofz53610.1093/ofid/ofz536 31951222
    [Google Scholar]
  21. Valentine-KingM.A. TrautnerB.W. ZoorobR.J. Analysis of recurrent urinary tract infection management in women seen in outpatient settings reveals opportunities for antibiotic stewardship interventions.Antimicrob. Steward. Healthc. Epidemiol.202221e810.1017/ash.2021.224 36310787
    [Google Scholar]
  22. DanielE.M. KrupnickA.S. HeurY.H. BlinzlerJ.A. NimsR.W. StonerG.D. Extraction, stability, and quantitation of ellagic acid in various fruits and nuts.J. Food Compos. Anal.19892433834910.1016/0889‑1575(89)90005‑7
    [Google Scholar]
  23. VellaF.M. De MasiL. CalandrelliR. MoranaA. LarattaB. Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds.Eur. Food Res. Technol.2019245122679268610.1007/s00217‑019‑03379‑w
    [Google Scholar]
  24. PhanA.D.T. ZhangJ. SeididamyehM. Hydrolysable tannins, physicochemical properties, and antioxidant property of wild-harvested Terminalia ferdinandiana (exell) fruit at different maturity stages.Front. Nutr.2022996167910.3389/fnut.2022.961679 35967775
    [Google Scholar]
  25. FracassettiD. CostaC. MoulayL. Tomás-BarberánF.A. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia).Food Chem.20131391-457858810.1016/j.foodchem.2013.01.121 23561148
    [Google Scholar]
  26. SantosW.N.L. da Silva SauthierM.C. dos SantosA.M.P. de Andrade SantanaD. Almeida AzevedoR.S. da Cruz CaldasJ. Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA).Microchem. J.201713358359210.1016/j.microc.2017.04.029
    [Google Scholar]
  27. García-VillalbaR. EspínJ.C. AabyK. Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts.J. Agric. Food Chem.201563296555656610.1021/acs.jafc.5b02062 26158321
    [Google Scholar]
  28. KoponenJ.M. HapponenA.M. MattilaP.H. TörrönenA.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland.J. Agric. Food Chem.20075541612161910.1021/jf062897a 17261015
    [Google Scholar]
  29. AkbariB. Baghaei-YazdiN. BahmaieM. Mahdavi AbhariF. The role of plant‐derived natural antioxidants in reduction of oxidative stress.Biofactors202248361163310.1002/biof.1831 35229925
    [Google Scholar]
  30. GasmiJ. SandersonJ.T. Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells.J. Agric. Food Chem.20105823121491215610.1021/jf103306k 21067181
    [Google Scholar]
  31. ManninoF. ImbesiC. BittoA. Anti-oxidant and anti-inflammatory effects of ellagic and punicic acid in an in vitro model of cardiac fibrosis.Biomed. Pharmacother.202316211466610.1016/j.biopha.2023.114666 37030134
    [Google Scholar]
  32. OyedepoT.A. MorakinyoA.E. BabarindeS.O. Immune boosting activity of nutraceuticals and functional foods.In: Immunomodulators and Human Health.SingaporeSpringer Nature20227110010.1007/978‑981‑16‑6379‑6_3
    [Google Scholar]
  33. MachadoM. CostaE.M. SilvaS. Rodriguez-AlcaláL.M. GomesA.M. PintadoM. Pomegranate oil’s potential as an anti-obesity ingredient.Molecules20222715495810.3390/molecules27154958 35956908
    [Google Scholar]
  34. MohammadinejadA. MohajeriT. AleyaghoobG. HeidarianF. Kazemi OskueeR. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies.Biotechnol. Appl. Biochem.20226962323235610.1002/bab.2288 34846078
    [Google Scholar]
  35. GanaiS.A. SheikhF.A. BabaZ.A. MirM.A. MantooM.A. YatooM.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated.Phytother. Res.20213573509353210.1002/ptr.7044 33580629
    [Google Scholar]
  36. MansoT. LoresM. de MiguelT. Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates.Antibiotics20211114610.3390/antibiotics11010046 35052923
    [Google Scholar]
  37. TiwariD.S. TalrejaS. Health benefits of cranberries: An in-depth overview.Health Sci. J.202317916
    [Google Scholar]
  38. Rojo-GutiérrezE. Carrasco-MolinarO. Tirado-GallegosJ.M. Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil.J. Food Meas. Charact.20211522098210710.1007/s11694‑020‑00804‑7
    [Google Scholar]
  39. BhandaryB.S. SharmilaK.P. KumariN.S. BhatV.S. Assessment of anti-inflammatory activity of Punica granatum L. ethanol extracts and synthetic ellagic acid in Swiss albino mice.Am J Pharm Health Res20144192198
    [Google Scholar]
  40. FouratiM. SmaouiS. HlimaH.B. Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds - A review.Plant Foods Hum. Nutr.202075447748610.1007/s11130‑020‑00863‑7 33040298
    [Google Scholar]
  41. PaulA. RadhakrishnanM. Pomegranate seed oil in food industry: Extraction, characterization, and applications.Trends Food Sci. Technol.202010527328310.1016/j.tifs.2020.09.014
    [Google Scholar]
  42. JangY.S. MosolygóT. Inhibition of bacterial biofilm formation by phytotherapeutics with focus on overcoming antimicrobial resistance.Curr. Pharm. Des.202026242807281610.2174/1381612826666200212121710 32048958
    [Google Scholar]
  43. WangY. The interplay of exercise and polyphenols in cancer treatment: A focus on oxidative stress and antioxidant mechanisms.Phytother. Res.20243873459348810.1002/ptr.8215 38690720
    [Google Scholar]
  44. PromsongA. ChungW.O. SatthakarnS. NittayanantaW. Ellagic acid modulates the expression of oral innate immune mediators: Potential role in mucosal protection.J. Oral Pathol. Med.201544321422110.1111/jop.12223 25047680
    [Google Scholar]
  45. PanichayupakaranantP. Antibacterial activity of ellagic acid-rich pomegranate rind extracts.Planta Med.2010761210.1055/s‑0030‑1264706
    [Google Scholar]
  46. Tirado-GallegosJ.M. Baeza-JiménezR. Ascacio-ValdésJ.A. Bustillos-RodríguezJ.C. Buenrostro-FigueroaJ. Pomegranate seeds as a potential source of punicic acid: Extraction and nutraceutical benefits.In: Practical Applications of Physical Chemistry in Food Science and Technology.Apple Academic Press202112915310.1201/9781003020004‑6
    [Google Scholar]
  47. DuM. JinJ. WuG. JinQ. WangX. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits.Crit. Rev. Food Sci. Nutr.202464238203821710.1080/10408398.2023.2198006 37021469
    [Google Scholar]
  48. MuhsinaA.S. NanduT.G. PraseethaS. ShiburajS. The antibacterial activity of ellagic acid from Punica granatum L. mediated through inhibition of bacterial divisome protein, FtsZ.J Tradit Folk Pract20219()
    [Google Scholar]
  49. Adu-FrimpongM. FirempongC.K. Omari-SiawE. Preparation, optimization, and pharmacokinetic study of nanoliposomes loaded with triacylglycerol‐bound punicic acid for increased antihepatotoxic activity.Drug Dev. Res.201980223024510.1002/ddr.21485 30414214
    [Google Scholar]
  50. CeciC. LacalP.M. TentoriL. De MartinoM.G. MianoR. GrazianiG. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid.Nutrients20181011175610.3390/nu10111756 30441769
    [Google Scholar]
  51. ViladomiuM. HontecillasR. LuP. Bassaganya-RieraJ. Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents.Evid. Based Complement. Alternat. Med.2013201311810.1155/2013/789764 23737845
    [Google Scholar]
  52. DoostkamA. Bassiri-JahromiS. IravaniK. Punica granatum with multiple effects in chronic diseases.Int. J. Fruit Sci.202020347149410.1080/15538362.2019.1653809
    [Google Scholar]
  53. García-NiñoW.R. ZazuetaC. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection.Pharmacol. Res.2015978410310.1016/j.phrs.2015.04.008 25941011
    [Google Scholar]
  54. NarakiK. Ghasemzadeh RahbardarM. AjiboyeB.O. HosseinzadehH. The effect of ellagic acid on the metabolic syndrome: A review article.Heliyon2023911e21844e410.1016/j.heliyon.2023.e21844 38027887
    [Google Scholar]
  55. ČižmárikováM. MichalkováR. MirossayL. Ellagic acid and cancer hallmarks: Insights from experimental evidence.Biomolecules20231311165310.3390/biom13111653 38002335
    [Google Scholar]
  56. MuruganV. MukherjeeK. MaitiK. MukherjeeP.K. Enhanced oral bioavailability and antioxidant profile of ellagic acid by phospholipids.J. Agric. Food Chem.200957114559456510.1021/jf8037105 19449806
    [Google Scholar]
  57. CeciC. TentoriL. AtzoriM. Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth.Nutrients201681174410.3390/nu8110744 27879653
    [Google Scholar]
  58. Mohammed SaleemY. SelimM. MDM2 as a target for ellagic acid mediated suppression of prostate cancer cells in vitro.Oncol. Rep.20204431255126510.3892/or.2020.7664 32705219
    [Google Scholar]
  59. AnsariL. MahdinezhadM.R. RakhshandehH. Acute and sub-acute toxicity assessment of the standardized extract of Sanguisorba minor in vivo.J. Complement. Integr. Med.202219498799710.1515/jcim‑2021‑0391 34881541
    [Google Scholar]
  60. MosaddadS.A. HussainA. TebyaniyanH. Green alternatives as antimicrobial agents in mitigating periodontal diseases: A narrative review.Microorganisms2023115126910.3390/microorganisms11051269 37317243
    [Google Scholar]
  61. ParisiV. SantoroV. DonadioG. Comparative chemical analysis of eight Punica granatum L. peel cultivars and their antioxidant and anti-inflammatory activities.Antioxidants20221111226210.3390/antiox11112262 36421448
    [Google Scholar]
  62. Olvera-SandovalC. Fabela-IllescasH.E. Fernández-MartínezE. Potential mechanisms of the improvement of glucose homeostasis in type 2 diabetes by pomegranate juice.Antioxidants202211355310.3390/antiox11030553 35326203
    [Google Scholar]
  63. CarusoA. BarbarossaA. TassoneA. Pomegranate: Nutraceutical with promising benefits on human health.Appl. Sci.20201019691510.3390/app10196915
    [Google Scholar]
  64. MohamedS.S. FayedA-H.M. Anti-obesity synergistic effect of pomegranate seed oil (PSO) and arabic gum (AG) in albino rats.Int. J. Vet. Sci.202098489
    [Google Scholar]
  65. Ferrari CerviV. Parcianello SaccolC. Henrique Marcondes SariM. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice.Int. J. Pharm.202160912114410.1016/j.ijpharm.2021.121144 34600055
    [Google Scholar]
  66. KayeK.S. GuptaV. MulgirigamaA. Antimicrobial resistance trends in urine Escherichia coli isolates from adult and adolescent females in the United States from 2011 to 2019: Rising ESBL strains and impact on patient management.Clin. Infect. Dis.202173111992199910.1093/cid/ciab560 34143881
    [Google Scholar]
  67. EvtyuginD.D. MaginaS. EvtuguinD.V. Recent advances in the production and applications of ellagic acid and its derivatives. A review.Molecules20202512274510.3390/molecules25122745 32545813
    [Google Scholar]
  68. MeertsI.A.T.M. Verspeek-RipC.M. BuskensC.A.F. Toxicological evaluation of pomegranate seed oil.Food Chem. Toxicol.20094761085109210.1016/j.fct.2009.01.031 19425183
    [Google Scholar]
  69. Pereira de MeloI.L. de Oliveira e Silva AM, Yoshime LT, Gasparotto Sattler JA, Teixeira de Carvalho EB, Mancini-Filho J. Punicic acid was metabolised and incorporated in the form of conjugated linoleic acid in different rat tissues.Int. J. Food Sci. Nutr.201970442143110.1080/09637486.2018.1519528 30326753
    [Google Scholar]
  70. ZacchèM.M. GiarenisI. Therapies in early development for the treatment of urinary tract inflammation.Expert Opin. Investig. Drugs201625553154010.1517/13543784.2016.1161024 26934616
    [Google Scholar]
  71. SahaS.S. DasguptaP. Sengupta BandyopadhyayS. GhoshM. Synergistic effect of conjugated linolenic acid isomers against induced oxidative stress, inflammation and erythrocyte membrane disintegrity in rat model.Biochim. Biophys. Acta20121820121951197010.1016/j.bbagen.2012.08.021 22967758
    [Google Scholar]
  72. BialonskaD. KasimsettyS.G. SchraderK.K. FerreiraD. The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria.J. Agric. Food Chem.200957188344834910.1021/jf901931b 19705832
    [Google Scholar]
  73. GabizonR. BinyaminO. LarushL. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant.Int. J. Nanomedicine2015107165717410.2147/IJN.S92704 26648720
    [Google Scholar]
  74. LoubetP. RanfaingJ. DinhA. Alternative therapeutic options to antibiotics for the treatment of urinary tract infections.Front. Microbiol.202011150910.3389/fmicb.2020.01509 32719668
    [Google Scholar]
  75. LeddaA. HuS. CesaroneM.R. Pycnogenol® supplementation prevents recurrent urinary tract infections/inflammation and interstitial cystitis.Evid. Based Complement. Alternat. Med.202120211810.1155/2021/9976299 34257695
    [Google Scholar]
  76. NoceA. Di DanieleF. CampoM. Effect of hydrolysable tannins and anthocyanins on recurrent urinary tract infections in nephropathic patients: Preliminary data.Nutrients202113259110.3390/nu13020591 33670236
    [Google Scholar]
  77. WangL. LiW. LinM. Luteolin, ellagic acid and punicic acid are natural products that inhibit prostate cancer metastasis.Carcinogenesis201435102321233010.1093/carcin/bgu145 25023990
    [Google Scholar]
  78. AlbrechtM. JiangW. Kumi-DiakaJ. Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells.J. Med. Food20047327428310.1089/jmf.2004.7.274 15383219
    [Google Scholar]
  79. PitchakarnP. ChewonarinT. OgawaK. Ellagic acid inhibits migration and invasion by prostate cancer cell lines.Asian Pac. J. Cancer Prev.20131452859286310.7314/APJCP.2013.14.5.2859 23803044
    [Google Scholar]
  80. MighaniS. SamimiR. NooshabadiM.R. FarzamS.A. HaghighianH.K. JavadiM. A randomized double-blind clinical trial investigating the effects of ellagic acid on glycemic status, liver enzymes, and oxidative stress in patients with non-alcoholic fatty liver disease.BMC Complement. Med. Ther.20252513310.1186/s12906‑025‑04759‑4 39885430
    [Google Scholar]
  81. WongT.L. StrandbergK.R. CroleyC.R. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention.Semin. Cancer Biol.20217326529310.1016/j.semcancer.2021.01.006 33503488
    [Google Scholar]
  82. KroegerN. 1,2 belldegrun a. s.,1 and pantuck a. j.1. pomegranate extracts in the management of men’s urologic health: Scientific rationale and preclinical and clinical data.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/870454
    [Google Scholar]
  83. Jafari KaregarS. AryaeianN. HajiluianG. Ellagic acid effects on disease severity, levels of cytokines and T-bet, RORγt, and GATA3 genes expression in multiple sclerosis patients: A multicentral-triple blind randomized clinical trial.Front. Nutr.202310123884610.3389/fnut.2023.1238846
    [Google Scholar]
  84. FreedlandS. CarducciM. KroegerN. 174 A phase II randomized controlled trial of POMX vs. placebo prior to radical prostatectomy.J. Urol.20121874S7310.1016/j.juro.2012.02.225
    [Google Scholar]
  85. KazemiM. LaloohaF. NooshabadiM.R. DashtiF. KavianpourM. HaghighianH.K. Randomized double blind clinical trial evaluating the Ellagic acid effects on insulin resistance, oxidative stress and sex hormones levels in women with polycystic ovarian syndrome.J. Ovarian Res.202114110010.1186/s13048‑021‑00849‑2 34330312
    [Google Scholar]
  86. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  87. PantuckA.J. LeppertJ.T. ZomorodianN. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer.Clin. Cancer Res.200612134018402610.1158/1078‑0432.CCR‑05‑2290 16818701
    [Google Scholar]
  88. UwinezaP.A. WaśkiewiczA. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials.Molecules20202517384710.3390/molecules25173847 32847101
    [Google Scholar]
  89. HidadS. van der PuttenB. van HoudtR. SchneebergerC. KuilS.D. Recurrent E. coli urinary tract infections in nursing homes: insight in sequence types and antibiotic resistance patterns.Antibiotics20221111163810.3390/antibiotics11111638 36421283
    [Google Scholar]
  90. FayersP.M. MachinD. Quality of Life: The Assessment.Analysis and Interpretation of Patient-Reported Outcomes England2013
    [Google Scholar]
  91. YuanG.F. YuanJ.Q. LiD. Punicic acid from Trichosanthes kirilowii seed oil is rapidly metabolized to conjugated linoleic acid in rats.J. Med. Food200912241642210.1089/jmf.2007.0541 19459746
    [Google Scholar]
  92. GolmeiP. KasnaS. RoyK.P. KumarS. A review on pharmacological advancement of ellagic acid.J. Pharmacol. Pharmacother.20241529310410.1177/0976500X241240634
    [Google Scholar]
  93. CotaD. PatilD. Antibacterial potential of ellagic acid and gallic acid against IBD bacterial isolates and cytotoxicity against colorectal cancer.Nat. Prod. Res.202337121998200210.1080/14786419.2022.2111560 35968644
    [Google Scholar]
  94. DuanD. XieH. JiangJ. Permeability-Enhancing and protective effect on small intestine of punicic acid in different forms and their nanoemulsions with low toxicity.Int. J. Nanomedicine2025201579159610.2147/IJN.S486709 39931527
    [Google Scholar]
  95. LinC.C. HuangY.C. LeeW.C. ChuangY.C. New frontiers or the treatment of interstitial cystitis/bladder pain syndrome - Focused on stem cells, platelet-rich plasma, and low-energy shock wave.Int. Neurourol. J.202024321122110.5213/inj.2040104.052 33017892
    [Google Scholar]
  96. CoxS. VleemingM. GiorgiW. DinantG.J. CalsJ. de BontE. Patients’ experiences, expectations, motivations, and perspectives around urinary tract infection care in general practice: A qualitative interview study.Antibiotics202312224110.3390/antibiotics12020241 36830152
    [Google Scholar]
  97. MilanoA. SulejmaniA. IntraJ. SalaM.R. LeoniV. CarcioneD. Antimicrobial resistance trends of Escherichia coli isolates from outpatient and inpatient urinary infections over a 20-year period.Microb. Drug Resist.2022281637210.1089/mdr.2021.0010 34520265
    [Google Scholar]
  98. RamjaneH. BahorunT. RamasawmyB. Exploration of the potential of terrestrial and marine biodiversity for the development of local nutraceutical products: A case for Mauritius.Am J Biopharma Pharma Sci20211310.25259/AJBPS_3_2021
    [Google Scholar]
  99. AnsariM.T. SrivastavaD. AliO.A. HauT.W. SamiF. HasnainM.S. Chapter 17 Advances in semisolid dosage form.In: Dosage Forms, Formulation Developments and Regulations.Academic Press202451954210.1016/B978‑0‑323‑91817‑6.00018‑8
    [Google Scholar]
  100. BenedettiG. ZabiniF. TagliaventoL. MeneguzzoF. CalderoneV. TestaiL. An overview of the health benefits, extraction methods and improving the properties of pomegranate.Antioxidants2023127135110.3390/antiox12071351 37507891
    [Google Scholar]
  101. HerzykF. Piłakowska-PietrasD. KorzeniowskaM. Supercritical extraction techniques for obtaining biologically active substances from a variety of plant byproducts.Foods20241311171310.3390/foods13111713 38890941
    [Google Scholar]
  102. KhoddamiA. ManY.B.C. RobertsT.H. Physico‐chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing.Eur. J. Lipid Sci. Technol.2014116555356210.1002/ejlt.201300416
    [Google Scholar]
  103. Ellagic acid - Uses, side effects, and more.Available from: https://www.webmd.com/vitamins/ai/ingredientmono-1074/ellagic-acid
    [Google Scholar]
  104. MendesP.M. Gomes FontouraG.M. RodriguesL.S. Therapeutic potential of Punica granatum and isolated compounds: Evidence-based advances to treat bacterial infections.Int. J. Microbiol.2023202311510.1155/2023/4026440 38144901
    [Google Scholar]
  105. Baradaran RahimiV. GhadiriM. RamezaniM. AskariV.R. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies.Phytother. Res.202034468572010.1002/ptr.6565 31908068
    [Google Scholar]
  106. Cortez-TrejoM.C. Wall-MedranoA. Gaytán-MartínezM. MendozaS. Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study.Food Biosci.20214110092910.1016/j.fbio.2021.100929
    [Google Scholar]
  107. PreetiSambhakar S MalikR Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs.Scientifica (Cairo)2023202312510.1155/2023/6640103 37928749
    [Google Scholar]
  108. BinyaminO. NitzanK. FridK. UngarY. RosenmannH. GabizonR. Brain targeting of 9c,11t-Conjugated Linoleic Acid, a natural calpain inhibitor, preserves memory and reduces Aβ and P25 accumulation in 5XFAD mice.Sci. Rep.2019911843710.1038/s41598‑019‑54971‑9 31804596
    [Google Scholar]
  109. YuZ.J. YanH.L. XuF.H. Efficacy and side effects of drugs commonly used for the treatment of lower urinary tract symptoms associated with benign prostatic hyperplasia.Front. Pharmacol.20201165810.3389/fphar.2020.00658 32457631
    [Google Scholar]
  110. WangS. ChengY. WangJ. DingM. FanZ. Antioxidant activity, formulation, optimization and characterization of an oil-in-water nanoemulsion loaded with lingonberry (Vaccinium vitis-idaea L.) leaves polyphenol extract.Foods20231223425610.3390/foods12234256 38231701
    [Google Scholar]
  111. TyersM. WrightG.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century.Nat. Rev. Microbiol.201917314115510.1038/s41579‑018‑0141‑x 30683887
    [Google Scholar]
  112. SullivanG.J. DelgadoN.N. MaharjanR. CainA.K. How antibiotics work together: Molecular mechanisms behind combination therapy.Curr. Opin. Microbiol.202057314010.1016/j.mib.2020.05.012 32619833
    [Google Scholar]
  113. Von VietinghoffS. ShevchukO. DobrindtU. The global burden of antimicrobial resistance – Urinary tract infections.Nephrol. Dial. Transplant.202439458158810.1093/ndt/gfad233 37891013
    [Google Scholar]
  114. SantosF.H. PandaS.K. FerreiraD.C.M. DeyG. MolinaG. PelissariF.M. Targeting infections and inflammation through micro and nano-nutraceuticals.Food Biosci.20224910189110.1016/j.fbio.2022.101891
    [Google Scholar]
  115. WuX. Study of the extraction process and nutritional benefits of bioactive compounds in pomegranate peel. Doctor of Philosophy.University of California2021
    [Google Scholar]
  116. Guerra-VázquezC.M. Martínez-ÁvilaM. Guajardo-FloresD. Antunes-RicardoM. Punicic acid and its role in the prevention of neurological disorders: A review.Foods202211325210.3390/foods11030252 35159404
    [Google Scholar]
  117. KuJ.H. BruxvoortK.J. SalasS.B. Multidrug resistance of Escherichia coli from outpatient uncomplicated urinary tract infections in a large United States integrated healthcare organization.Open Forum Infect. Dis.2023107ofad28710.1093/ofid/ofad287 37426945
    [Google Scholar]
  118. WangL. Martins-GreenM. Pomegranate and its components as alternative treatment for prostate cancer.Int. J. Mol. Sci.2014159149491496610.3390/ijms150914949 25158234
    [Google Scholar]
  119. AgrawalO.D. KulkarniY.A. Mini-review of analytical methods used in quantification of ellagic acid.Rev. Anal. Chem.2020391314410.1515/revac‑2020‑0113
    [Google Scholar]
  120. JainV. ShaikhS. Development and validation of novel RP-HPLC method for the simultaneous estimation of ellagic acid and quercetin in an ayurvedic formulation.Int J Appl Pharm201810411110.22159/ijap.2018v10i4.27011
    [Google Scholar]
  121. MurrayC.J.L. IkutaK.S. ShararaF. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  122. HeidarianE. EskandariE. AminiS. Saffari-ChaleshtoriJ. Evaluating the effects of ellagic acid on pSTAT3, pAKT, and pERK1/2 signaling pathways in prostate cancer PC3 cells.J. Cancer Res. Ther.20161241266127110.4103/0973‑1482.165873 28169238
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240378450250410073416
Loading
/content/journals/cmm/10.2174/0115665240378450250410073416
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test