Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Keloid formation is characterized by excessive production of extracellular matrix, leading to dysregulated fibroproliferative collagen response. N6-methyl-adenosine (m6A) modification plays an essential role in this process.

Objective

Our objective in this study was to explore the mechanism of m6A methyltransferase KIAA1429 in keloid formation.

Methods

We examined the impact of m6A methyltransferase KIAA1429 on keloid formation using qRT-PCR, Western blot, immunofluorescence, Transwell migration assay, and MeRIP-qPCR.

Results

KIAA1429 was downregulated in keloid tissue. Overexpression of KIAA1429 suppressed fibroblast migration and reduced COL1A1 and α-SMA levels. Conversely, the knockdown of KIAA1429 promoted fibroblast migration and COL1A1 and α-SMA levels. Additionally, overexpression of KIAA1429 inhibited the TGF-β1/Smad pathway. Mechanistic experiments suggested that KIAA1429 regulated TGF-β1 m6A modification, maintained TGF-β1 mRNA stability, and participated in the regulation of keloid formation. Furthermore, TGF-β1 could reverse the effects of KIAA1429 overexpression on fibroblast migration and collagen deposition.

Conclusion

Taken together, our study suggested that KIAA1429 promoted keloid formation through the TGF-β1/Smad pathway, providing new insights for the treatment of keloid.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240307157241104095116
2024-11-07
2025-12-13
Loading full text...

Full text loading...

References

  1. LeeC.C. TsaiC.H. ChenC.H. YehY.C. ChungW.H. ChenC.B. An updated review of the immunological mechanisms of keloid scars.Front. Immunol.202314111763010.3389/fimmu.2023.1117630 37033989
    [Google Scholar]
  2. WalshL.A. WuE. PontesD. Keloid treatments: An evidence-based systematic review of recent advances.Syst. Rev.20231214210.1186/s13643‑023‑02192‑7 36918908
    [Google Scholar]
  3. HawashA.A. IngrasciG. NouriK. YosipovitchG. Pruritus in keloid scars: Mechanisms and treatments.Acta Derm. Venereol.202110110adv0058210.2340/00015555‑3923 34518894
    [Google Scholar]
  4. QiuZ. ZhangM. ZhangW. Role of HIF‐1α in pathogenic mechanisms of keloids.J. Cosmet. Dermatol.20232251436144810.1111/jocd.15601 36718786
    [Google Scholar]
  5. LimandjajaG.C. NiessenF.B. ScheperR.J. GibbsS. The keloid disorder: Heterogeneity, histopathology, mechanisms and models.Front. Cell Dev. Biol.2020836010.3389/fcell.2020.00360 32528951
    [Google Scholar]
  6. KnowlesA. GlassD.A. Keloids and hypertrophic scars.Dermatol. Clin.202341350951710.1016/j.det.2023.02.010 37236718
    [Google Scholar]
  7. SwensonA. PaulusJ.K. JungY. Natural history of keloids: A sociodemographic analysis using structured and unstructured data.Dermatol. Ther. (Heidelb.)202414113114910.1007/s13555‑023‑01070‑3 38066233
    [Google Scholar]
  8. NaikP.P. Novel targets and therapies for keloid.Clin. Exp. Dermatol.202247350751510.1111/ced.14920 34480483
    [Google Scholar]
  9. EksteinS.F. WylesS.P. MoranS.L. MevesA. Keloids: A review of therapeutic management.Int. J. Dermatol.202160666167110.1111/ijd.15159 32905614
    [Google Scholar]
  10. ZhaoS.Y. WuD. ChengC. XieJ.H. Advances and future directions in keloid research: Pathogenesis, diagnosis and personalized treatment strategies.World J. Clin. Cases202311348094809810.12998/wjcc.v11.i34.8094 38130783
    [Google Scholar]
  11. ZhangM. HuT. MaT. HuangW. WangY. Epigenetics and environmental health.Front. Med.202418457159610.1007/s11684‑023‑1038‑2 38806988
    [Google Scholar]
  12. StevensonA.W. DengZ. AllahhamA. PrêleC.M. WoodF.M. FearM.W. The epigenetics of keloids.Exp. Dermatol.20213081099111410.1111/exd.14414 34152651
    [Google Scholar]
  13. ZhangM. ChenH. QianH. WangC. Characterization of the skin keloid microenvironment.Cell Commun. Signal.202321120710.1186/s12964‑023‑01214‑0 37587491
    [Google Scholar]
  14. ZhaoX. LiX. LiL. Alterations of the m6A methylation induced by TGF-β2 in ARPE-19 cells.Frontiers in Bioscience-Landmark202328714810.31083/j.fbl2807148 37525909
    [Google Scholar]
  15. ZhangC. LiuN. N6‐methyladenosine (m6A) modification in gynecological malignancies.J. Cell. Physiol.202223793465347910.1002/jcp.30828 35802474
    [Google Scholar]
  16. HuangY. XueQ. ChangJ. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics.Arthritis Res. Ther.202325118910.1186/s13075‑023‑03149‑w 37784134
    [Google Scholar]
  17. WeiY. LiY. LuC. Exploring the role of m6A modification in cancer.Proteomics20232313-14220020810.1002/pmic.202200208 36349736
    [Google Scholar]
  18. RenS. JiY. WangM. YeM. HuangL. CaiX. The m6A demethylase FTO promotes keloid formation by up-regulating COL1A1.Ann. Transl. Med.20231111510.21037/atm‑22‑6021 36760238
    [Google Scholar]
  19. FuM. ChenY. ShiX. ZC3H13 accelerates keloid formation by mediating N(6)-methyladenosine modification of HIPK2.Biochem. Genet.20236231857187110.1007/s10528‑023‑10514‑6 37752292
    [Google Scholar]
  20. SongY. WeiJ. LiR. Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling.Hepatology20237851433144710.1097/HEP.0000000000000319 36800849
    [Google Scholar]
  21. BaoM. FengQ. ZouL. HuangJ. ZhuC. XiaW. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway.Reproduction2023165217118210.1530/REP‑22‑0294 36342661
    [Google Scholar]
  22. MengX. Nikolic-PatersonD.J. LanH.Y. TGF-β: The master regulator of fibrosis.Nat. Rev. Nephrol.201612632533810.1038/nrneph.2016.48 27108839
    [Google Scholar]
  23. HuH.H. ChenD.Q. WangY.N. New insights into TGF-β/Smad signaling in tissue fibrosis.Chem. Biol. Interact.2018292768310.1016/j.cbi.2018.07.008 30017632
    [Google Scholar]
  24. CohenA.J. NikbakhtN. UittoJ. Keloid disorder: Genetic Basis, gene expression profiles, and immunological modulation of the fibrotic processes in the skin.Cold Spring Harb. Perspect. Biol.2023157a04124510.1101/cshperspect.a041245 36411063
    [Google Scholar]
  25. SongJ ZhangY PanH XuX DengCC YangB Isolation, culture, and characterization of primary dermal fibroblasts from human keloid tissue.J Vis Exp202319710.3791/6515337578255
    [Google Scholar]
  26. HeY. ZhangS. BaoW. An improved explants culture method: Sustainable isolation of keloid fibroblasts with primary characteristics.J. Cosmet. Dermatol.202221127131713910.1111/jocd.15416 36170348
    [Google Scholar]
  27. WangJ. LiB. YangS. Upregulation of INHBA mediated by the transcription factor BHLHE40 promotes colon cancer cell proliferation and migration.J. Clin. Lab. Anal.2022367e2453910.1002/jcla.24539 35689549
    [Google Scholar]
  28. YangJ. DengP. QiY. FengX. WenH. ChenF. NEAT1 knockdown inhibits keloid fibroblast progression by miR-196b-5p/FGF2 axis.J. Surg. Res.202125926127010.1016/j.jss.2020.09.038 33162101
    [Google Scholar]
  29. WangY WangX YuanZ LiuF LuoX YangJ Identifying potential drug targets for keloid: A mendelian randomization study.J Invest Dermatol2024S0022202X(24)00388-910.1016/j.jid.2024.04.02338797322
    [Google Scholar]
  30. ChaoH. ZhengL. HsuP. IL-13RA2 downregulation in fibroblasts promotes keloid fibrosis via JAK/STAT6 activation.JCI Insight202386e15709110.1172/jci.insight.157091 36757802
    [Google Scholar]
  31. LombardiF. AugelloF.R. ArtoneS. Efficacy of probiotic Streptococcus thermophilus in counteracting TGF-β1-induced fibrotic response in normal human dermal fibroblasts.J. Inflamm. (Lond.)20221912710.1186/s12950‑022‑00324‑9 36536411
    [Google Scholar]
  32. LiL. HeZ. ZhuY. ShenQ. YangS. CaoS. Hydrogen sulfide suppresses skin fibroblast proliferation via oxidative stress alleviation and necroptosis inhibition.Oxid. Med. Cell. Longev.2022202211610.1155/2022/7434733 35774378
    [Google Scholar]
  33. WangL. ZouY. HuangZ. KIAA1429 promotes infantile hemangioma regression by facilitating the stemness of hemangioma endothelial cells.Cancer Sci.202311441569158110.1111/cas.15708 36572002
    [Google Scholar]
  34. Łasut-SzyszkaB. Gdowicz-KłosokA. KrześniakM. Głowala-KosińskaM. BędzińskaA. RusinM. Strong activation of p53 by actinomycin D and nutlin-3a overcomes the resistance of cancer cells to the pro-apoptotic activity of the FAS ligand.Apoptosis2024299-101515152810.1007/s10495‑024‑02000‑0 39068622
    [Google Scholar]
  35. WuS.B. HouT.Y. KauH.C. TsaiC.C. Effect of pirfenidone on TGF-β1-induced myofibroblast differentiation and extracellular matrix homeostasis of human orbital fibroblasts in graves’ ophthalmopathy.Biomolecules20211110142410.3390/biom11101424 34680057
    [Google Scholar]
  36. XieF. TengL. XuJ. Adipose derived mesenchymal stem cells inhibit cell proliferation and migration and suppress extracellular matrix synthesis in hypertrophic scar and keloid fibroblasts.Exp. Ther. Med.202021213910.3892/etm.2020.9571 33456506
    [Google Scholar]
  37. LiQ. ChengF. ZhouK. Increased sensitivity to TNF α promotes keloid fibroblast hyperproliferation by activating the NF κB, JNK and p38 MAPK pathways.Exp. Ther. Med.202121550210.3892/etm.2021.9933 33791011
    [Google Scholar]
  38. DelaleuJ. CharvetE. PetitA. Keloid disease: Review with clinical atlas. Part I: Definitions, history, epidemiology, clinics and diagnosis.Ann. Dermatol. Venereol.2023150131510.1016/j.annder.2022.08.010 36494213
    [Google Scholar]
  39. LvW. RenY. HouK. Epigenetic modification mechanisms involved in keloid: Current status and prospect.Clin. Epigenetics202012118310.1186/s13148‑020‑00981‑8 33243301
    [Google Scholar]
  40. LiuS. YangH. SongJ. ZhangY. AbualhssainA.T.H. YangB. Keloid: Genetic susceptibility and contributions of genetics and epigenetics to its pathogenesis.Exp. Dermatol.202231111665167510.1111/exd.14671 36052657
    [Google Scholar]
  41. FengF. LiuM. PanL. Biomechanical regulatory factors and therapeutic targets in keloid fibrosis.Front. Pharmacol.20221390621210.3389/fphar.2022.906212 35614943
    [Google Scholar]
  42. WeiF. ZhangJ.N. ZhaoY.Q. LyuH. ChenF. Expression of m6A RNA methylation regulators and their clinical predictive value in intrahepatic cholangiocarcinoma.Frontiers in Bioscience-Landmark202328612010.31083/j.fbl2806120 37395024
    [Google Scholar]
  43. PetriB.J. KlingeC.M. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer.J. Mol. Endocrinol.2023702e22011010.1530/JME‑22‑0110 36367225
    [Google Scholar]
  44. FanY. LvX. ChenZ. PengY. ZhangM. m6A methylation: Critical roles in aging and neurological diseases.Front. Mol. Neurosci.202316110214710.3389/fnmol.2023.1102147 36896007
    [Google Scholar]
  45. JiangX. LiuB. NieZ. The role of m6A modification in the biological functions and diseases.Signal Transduct. Target. Ther.2021617410.1038/s41392‑020‑00450‑x 33611339
    [Google Scholar]
  46. ZhangX. LiM. XiaL. ZhangH. The biological function of m6A methyltransferase KIAA1429 and its role in human disease.PeerJ202210e1433410.7717/peerj.14334 36389416
    [Google Scholar]
  47. ShanM. LiuD. SunL. KIAA1429 facilitates metastasis via m6A-YTHDC1-dependent RND3 down-regulation in hepatocellular carcinoma cells.Cancer Lett.202458421659810.1016/j.canlet.2023.216598 38224863
    [Google Scholar]
  48. LinX. YeR. LiZ. KIAA1429 promotes tumorigenesis and gefitinib resistance in lung adenocarcinoma by activating the JNK/MAPK pathway in an m6A-dependent manner.Drug Resist. Updat.20236610090810.1016/j.drup.2022.100908 36493511
    [Google Scholar]
  49. LanT. LiH. ZhangD. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3.Mol. Cancer201918118610.1186/s12943‑019‑1106‑z 31856849
    [Google Scholar]
  50. DevosH. ZoidakisJ. RoubelakisM.G. LatosinskaA. VlahouA. Reviewing the regulators of COL1A1.Int. J. Mol. Sci.202324121000410.3390/ijms241210004 37373151
    [Google Scholar]
  51. WangZ. FengC. SongK. QiZ. HuangW. WangY. lncRNA‐H19/miR‐29a axis affected the viability and apoptosis of keloid fibroblasts through acting upon COL1A1 signaling.J. Cell. Biochem.2020121114364437610.1002/jcb.29649 31930556
    [Google Scholar]
  52. EulerT. ValeskyE.M. MeissnerM. Normal and keloid fibroblasts are differentially influenced by IFN‐γ and triamcinolone as well as by their combination.Wound Repair Regen.201927545046110.1111/wrr.12722 30994217
    [Google Scholar]
  53. MartyP ChatelainB LihoreauT TissotM DirandZ HumbertP Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction.Biomed Pharmacother 135:111182.2021;10.1016/j.biopha.2020.11118233433355
    [Google Scholar]
  54. SuE. HanX. JiangG. The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia.Tumori201096565966610.1177/030089161009600503 21302608
    [Google Scholar]
  55. ChiC. LiangX. CuiT. GaoX. LiuR. YinC. SKIL/SnoN attenuates TGF-β1/SMAD signaling-dependent collagen synthesis in hepatic fibrosis.Biomol. Biomed.20232361014102510.17305/bb.2023.9000 37389959
    [Google Scholar]
  56. ChalkiaA. GakiopoulouH. TheochariI. FoukasP.G. VassilopoulosD. PetrasD. TGF-β1/Smad signalling in proliferative glomerulonephritis associated with autoimmune diseases.Mediterr. J. Rheumatol.202233217618410.31138/mjr.33.2.176 36128207
    [Google Scholar]
  57. RenL.L. LiX.J. DuanT.T. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities.Chem. Biol. Interact.202336911028910.1016/j.cbi.2022.110289 36455676
    [Google Scholar]
  58. WuC-S. WuP-H. FangA-H. LanC-C.E. FK506 inhibits the enhancing effects of transforming growth factor (TGF)-β1 on collagen expression and TGF-β/Smad signalling in keloid fibroblasts: Implication for new therapeutic approach.Br. J. Dermatol.2012167353254110.1111/j.1365‑2133.2012.11023.x 22540338
    [Google Scholar]
  59. LiX.Y. WengX.J. LiX.J. TianX.Y. TSG-6 inhibits the growth of keloid fibroblasts via mediating the TGF-β1/Smad signaling pathway.J. Invest. Surg.202134994795610.1080/08941939.2020.1716894 31986937
    [Google Scholar]
  60. MaciasM.J. Martin-MalpartidaP. MassaguéJ. Structural determinants of Smad function in TGF-β signaling.Trends Biochem. Sci.201540629630810.1016/j.tibs.2015.03.012 25935112
    [Google Scholar]
  61. YuZ.L. LiuJ. NingZ.K. The TGF‐β/Smad 2/3 signaling pathway is involved in Musashi2‐induced invasion and metastasis of colorectal cancer.Mol. Carcinog.202362226127610.1002/mc.23484 36345938
    [Google Scholar]
  62. YeZ. HuY. TGF β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review).Int. J. Mol. Med.202148113210.3892/ijmm.2021.4965 34013369
    [Google Scholar]
  63. GuoH. JianZ. LiuH. TGF-β1-induced EMT activation via both Smad-dependent and MAPK signaling pathways in Cu-induced pulmonary fibrosis.Toxicol. Appl. Pharmacol.202141811550010.1016/j.taap.2021.115500 33744278
    [Google Scholar]
  64. HeL. ZhuC. DouH. YuX. JiaJ. ShuM. Keloid core factor CTRP3 overexpression significantly controlled TGF-β1-induced propagation and migration in keloid fibroblasts.Dis. Markers2023202311210.1155/2023/9638322 37091895
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240307157241104095116
Loading
/content/journals/cmm/10.2174/0115665240307157241104095116
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): keloid; KIAA1429; m6A; pathway; Smad; TGF-β1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test