Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Diabetes is a complex disease, despite the availability of numerous treatments, its progression and complications can only be mitigated and managed to a certain extent. After the onset, diabetes cannot be reversed. Its global expansion makes it challenging for governments to control the considerable costs of treating people with diabetes. Many studies have been carried out by widely recognized pharmaceutical companies that are considering the development of new drugs for diabetic treatments. Diets, sedentary habits, and lifestyles that are currently prevalent have an enormous influence on the global spread of diabetes. The tools available to clinicians for therapy do not solve the problem. It is known that a patient, when diagnosed, would already have had diabetes for more than three years. Studies on diabetes signaling consider the effects of hyperglycemia but also highlight the roles of insulin receptor activation and resistance.

Understanding the intricate signaling network and its interactions with hyperglycemia-induced pathways is crucial. In this context, the cyclic AMP/AMPK axis emerges as a promising therapeutic target for diabetes. However, there is a noticeable lack of literature exploring the metabolic network induced by hyperglycemia and its interconnected pathways. Therefore, investigating the cyclic cAMP/AMPK axis could provide valuable insights, given its complex connections with various metabolic pathways. This mini-review aims to delve into the metabolic signaling of the AMPK/cAMP axis in the context of diabetes, highlighting its metabolic interactions and potential implications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240298668240528110159
2024-09-09
2025-12-25
Loading full text...

Full text loading...

References

  1. KennyH.C. AbelE.D. Heart failure in type 2 diabetes mellitus.Circ. Res.2019124112114110.1161/CIRCRESAHA.118.311371 30605420
    [Google Scholar]
  2. SinghR. Epigenetic modification and therapeutic targets of diabetes mellitus.Biosci. Rep.2020409BSR20202160
    [Google Scholar]
  3. BeckmanJ.A. CreagerM.A. LibbyP.J.J. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management.JAMA20022871925702581
    [Google Scholar]
  4. ZiyadehF.N. SharmaK. Overview: Combating diabetic nephropathy.J. Am. Soc. Nephrol.200314513551357
    [Google Scholar]
  5. FongD.S. Diabetic retinopathy.Diabetes Care2003261S99S102
    [Google Scholar]
  6. NatarajanR. NadlerJ. biology, Lipid inflammatory mediators in diabetic vascular disease.Arterioscler. Thromb. Vasc. Biol.200424915421548
    [Google Scholar]
  7. VincentA.M. Biology of diabetic neuropathy.Handb. Clin. Neurol.2013115591601
    [Google Scholar]
  8. ForbesJ.M. CooperM. Mechanisms of diabetic complications.Physiol. Rev.2013931137188
    [Google Scholar]
  9. ShatiA.A. AlfaifiM.Y. Salidroside protects against diabetes mellitus‐induced kidney injury and renal fibrosis by attenuating TGF‐β1 and Wnt1/3a/β‐catenin signalling.Clin. Exp. Pharmacol. Physiol.202047101692170410.1111/1440‑1681.13355 32472701
    [Google Scholar]
  10. RezaeepoorM. Hoseini-AghdamM. SheikhV. EftekharianM.M. BehzadM. evaluation of interleukin-23 and JAKs/STATs/SOCSs/ROR- γt expression in type 2 diabetes mellitus patients treated with or without sitagliptin.J. Interferon Cytokine Res.2020401151552310.1089/jir.2020.0113 33136467
    [Google Scholar]
  11. AlfaifiM. VermaA.K. AlshahraniM.Y. Assessment of cell-free long non-coding RNA-H19 and miRNA- 29a, miRNA-29b expression and severity of diabetes.Diabetes Metab. Syndr. Obes.2020133727373710.2147/DMSO.S273586 33116722
    [Google Scholar]
  12. TuC. WangL. TaoH. GuL. ZhuS. ChenX. Expression of miR 409 5p in gestational diabetes mellitus and its relationship with insulin resistance.Exp. Ther. Med.20202043324332910.3892/etm.2020.9049 32855704
    [Google Scholar]
  13. WealeC.J. MatshaziD.M. DavidsS.F.G. Circulating miR-30a-5p and miR-182-5p in Prediabetes and Screen-Detected Diabetes Mellitus.Diabetes Metab. Syndr. Obes.2020135037504710.2147/DMSO.S286081 33376373
    [Google Scholar]
  14. Nogueira-MachadoJ.A. ChavesM.M. From hyperglycemia to AGE-RAGE interaction on the cell surface: A dangerous metabolic route for diabetic patients.Expert Opin. Ther. Targets200812787188210.1517/14728222.12.7.871 18554155
    [Google Scholar]
  15. VolpeC.M.O. Villar-DelfinoP.H. dos AnjosP.M.F. Nogueira-MachadoJ.A. Cellular death, reactive oxygen species (ROS) and diabetic complications.Cell Death Dis.20189211910.1038/s41419‑017‑0135‑z 29371661
    [Google Scholar]
  16. CoolB. ZinkerB. ChiouW. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome.Cell Metab.20063640341610.1016/j.cmet.2006.05.005 16753576
    [Google Scholar]
  17. DeStefanoM.A. JacintoE. Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2).Biochem. Soc. Trans.201341489690110.1042/BST20130018 23863152
    [Google Scholar]
  18. PengM. FuY. WuC. ZhangY. RenH. ZhouS. Signaling pathways related to oxidative stress in diabetic cardiomyopathy.Front. Endocrinol.20221390775710.3389/fendo.2022.907757 35784531
    [Google Scholar]
  19. GiordanettoF. KarisD. Direct AMP-activated protein kinase activators: A review of evidence from the patent literature.Expert Opin. Ther. Pat.20122214671477
    [Google Scholar]
  20. XiaoB. SandersM.J. CarmenaD. Structural basis of AMPK regulation by small molecule activators.Nat. Commun.201341301710.1038/ncomms4017 24352254
    [Google Scholar]
  21. ShamshoumH. VlavcheskiF. MacPhersonR.E.K. TsianiE. Rosemary extract activates AMPK, inhibits mTOR and attenuates the high glucose and high insulin-induced muscle cell insulin resistance.Appl. Physiol. Nutr. Metab.202146781982710.1139/apnm‑2020‑0592 33471600
    [Google Scholar]
  22. ZhangY. ZhuZ. ZhaiW. BiY. YinY. ZhangW. Expression and purification of asprosin in Pichia pastoris and investigation of its increase glucose uptake activity in skeletal muscle through activation of AMPK.Enzyme Microb. Technol.202114410973710.1016/j.enzmictec.2020.109737 33541572
    [Google Scholar]
  23. PrabhaB. SiniS. SherinD.R. Promalabaricone B from Myristica fatua Houtt. seeds demonstrate antidiabetic potential by modulating glucose uptake via the upregulation of AMPK in L6 myotubes.Nat. Prod. Res.202135586787210.1080/14786419.2019.1607852 31104493
    [Google Scholar]
  24. ZhaoM. QinJ. ShenW. WuA. Bilobalide enhances AMPK activity to improve liver injury and metabolic disorders in STZ-induced diabetes in immature rats via regulating HMGB1/TLR4/NF-κB signaling pathway.BioMed Res. Int.2021202111110.1155/2021/8835408 33959665
    [Google Scholar]
  25. SuW.Y. LiY. ChenX. Ginsenoside Rh1 improves type 2 diabetic nephropathy through AMPK/PI3K/Akt-mediated inflammation and apoptosis signaling pathway.Am. J. Chin. Med.20214951215123310.1142/S0192415X21500580 34049473
    [Google Scholar]
  26. EntezariM. HashemiD. TaheriazamA. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.Biomed. Pharmacother.202214611256310.1016/j.biopha.2021.112563 35062059
    [Google Scholar]
  27. ZaccoloM. ZerioA. LoboM.J. Subcellular organization of the camp signaling pathway.Pharmacol. Rev.202173127830910.1124/pharmrev.120.000086 33334857
    [Google Scholar]
  28. FeehanK.T. GilroyD.W. Is resolution the end of inflammation?Trends Mol. Med.201925319821410.1016/j.molmed.2019.01.006 30795972
    [Google Scholar]
  29. TavaresL.P. Negreiros-LimaG.L. LimaK.M. Blame the signaling: Role of cAMP for the resolution of inflammation.Pharmacol. Res.202015910503010.1016/j.phrs.2020.105030 32562817
    [Google Scholar]
  30. SalminenA. HyttinenJ.M.T. KaarnirantaK. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: Impact on healthspan and lifespan.J. Mol. Med.201189766767610.1007/s00109‑011‑0748‑0 21431325
    [Google Scholar]
  31. NeumannM. GrieshammerT. ChuvpiloS. RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A.EMBO J.19951491991200410.1002/j.1460‑2075.1995.tb07191.x 7744006
    [Google Scholar]
  32. KamthongP.J. WuM. Inhibitor of nuclear factor-κB induction by cAMP antagonizes interleukin-1-induced human macrophage-colony-stimulating-factor expression.Biochem. J.2001356252553010.1042/bj3560525 11368781
    [Google Scholar]
  33. WallE.A. ZavzavadjianJ.R. ChangM.S. Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105.Sci. Signal.2009275ra2810.1126/scisignal.2000202 19531803
    [Google Scholar]
  34. ScheibnerK.A. BoodooS. CollinsS. The adenosine a2a receptor inhibits matrix-induced inflammation in a novel fashion.Am. J. Respir. Cell Mol. Biol.200940325125910.1165/rcmb.2008‑0168OC 18703794
    [Google Scholar]
  35. ChenY. ZhengY. LiuL. Adiponectin inhibits TNF-α-activated PAI-1 expression via the cAMP-PKA-AMPK-NF-κB axis in human umbilical vein endothelial cells.Cell. Physiol. Biochem.20174262342235210.1159/000480006 28848135
    [Google Scholar]
  36. WeiR. MaS. WangC. Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner.Am. J. Physiol. Endocrinol. Metab.201631011E947E95710.1152/ajpendo.00400.2015 27072494
    [Google Scholar]
  37. HolzG.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal trans-duction in the pancreatic beta-cell.Diabetes200453151310.2337/diabetes.53.1.5 14693691
    [Google Scholar]
  38. HeL. ChangE. PengJ. Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production.J. Biol. Chem.201629120105621057010.1074/jbc.M116.719666 27002150
    [Google Scholar]
  39. ZhangT. WangS. LinY. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1.Cell Metab.2012151758710.1016/j.cmet.2011.12.005 22225877
    [Google Scholar]
  40. JonesB. The therapeutic potential of GLP-1 receptor biased agonism.Br. J. Pharmacol.20221794492510 33880754
    [Google Scholar]
  41. MaZ.G. YuanY.P. XuS.C. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats.Diabetologia20176061126113710.1007/s00125‑017‑4232‑4 28258411
    [Google Scholar]
  42. HeL. SabetA. DjedjosS. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein.Cell2009137463564610.1016/j.cell.2009.03.016 19450513
    [Google Scholar]
  43. ZhaoA.Z. ShinoharaM.M. HuangD. Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes.J. Biol. Chem.200027515113481135410.1074/jbc.275.15.11348 10753948
    [Google Scholar]
  44. PickupJ.C. MattockM.B. ChusneyG.D. BurtD. NIDDM as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome X.Diabetologia199740111286129210.1007/s001250050822 9389420
    [Google Scholar]
  45. PickupJ.C. CrookM.A. Is Type II diabetes mellitus a disease of the innate immune system?Diabetologia199841101241124810.1007/s001250051058 9794114
    [Google Scholar]
  46. TomásE. LinY.S. DagherZ. Hyperglycemia and insulin resistance: Possible mechanisms.Ann. N. Y. Acad. Sci.20029671435110.1111/j.1749‑6632.2002.tb04262.x 12079834
    [Google Scholar]
  47. SrivastavaA. High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes. (Review)Int. J. Mol. Med.200291858910.3892/ijmm.9.1.85 11745003
    [Google Scholar]
  48. SaitohM. NishitohH. FujiiM. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.EMBO J.19981792596260610.1093/emboj/17.9.2596 9564042
    [Google Scholar]
  49. Nogueira-MachadoJ.A. Lima e SilvaF.C. CunhaE.P. Modulation of the production of Reactive Oxygen Species (ROS) by cAMP-elevating agents in granulocytes from diabetic patients: An Akt/PKB-dependent phenomenon.Diabetes Metab.200632433133510.1016/S1262‑3636(07)70287‑2 16977260
    [Google Scholar]
  50. JiangY. SteinleJ.J. Epac1 requires AMPK phosphorylation to regulate HMGB1 in the retinal vasculature.Invest. Ophthalmol. Vis. Sci.202061113310.1167/iovs.61.11.33 32940662
    [Google Scholar]
  51. Nogueira-MachadoJ.A. LimaE. SilvaF.C. MedinaL.O. CostaD.C. ChavesM.M. Modulation of the reactive oxygen species (ROS) generation mediated by cyclic AMP-elevating agents or interleukin 10 in granulocytes from type 2 diabetic patients (NIDDM): A PKA-independent phenomenon.Diabetes Metab.200329553353710.1016/S1262‑3636(07)70068‑X 14631331
    [Google Scholar]
  52. IsoniC.A. BorgesÉ.A. VelosoC.A. MattosR.T. ChavesM.M. Nogueira-MachadoJ.A. cAMP activates the generation of reactive oxygen species and inhibits the secretion of IL-6 in peripheral blood mononuclear cells from type 2 diabetic patients.Oxid. Med. Cell. Longev.20092531732110.4161/oxim.2.5.9657 20716919
    [Google Scholar]
  53. YarwoodS.J. Special issue on “new advances in cyclic amp signalling”—an editorial overview.Cells2020910227410.3390/cells9102274 33053803
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240298668240528110159
Loading
/content/journals/cmm/10.2174/0115665240298668240528110159
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AD; AMPK; cAMP; Diabetes mellitus; hyperglycemia; metabolic signaling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test