Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Breast cancer has a high prevalence among women, with a high mortality rate. The number of people who suffer from breast cancer disease is increasing, whereas metastatic cancers are mostly incurable, and existing therapies have unfavorable side effects. For an extended duration, scientists have dedicated their efforts to exploring the potential of mesenchymal stem cells (MSCs) for the treatment of metastatic cancers, including breast cancer. MSCs could be genetically engineered to boost their anticancer potency. Furthermore, MSCs can transport oncolytic viruses, suicide genes, and anticancer medicines to tumors. Extracellular vesicles (EVs) are MSC products that have attracted scientist's attention as a cell-free treatment. This study narratively reviews the current state of knowledge on engineered MSCs and their EVs as promising treatments for breast cancer.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240274818231207054037
2024-01-24
2025-10-02
Loading full text...

Full text loading...

References

  1. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review.Cancers20211317428710.3390/cancers13174287 34503097
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. Global cancer observatory: Cancer today.In: international agency for research on cancer. France: Lyon201816
    [Google Scholar]
  4. Asadzadeh VostakolaeiF. Karim-KosH.E. Janssen-HeijnenM.L.G. VisserO. VerbeekA.L.M. KiemeneyL.A.L.M. The validity of the mortality to incidence ratio as a proxy for site-specific cancer survival.Eur. J. Public Health201121557357710.1093/eurpub/ckq120 20813895
    [Google Scholar]
  5. ErcanC. van DiestP.J. VooijsM. Mammary development and breast cancer: The role of stem cells.Curr. Mol. Med.201111427028510.2174/156652411795678007 21506923
    [Google Scholar]
  6. VASSILOPOULOU-SELLIN R Breast cancer and hormonal replacement therapy.Ann. N. Y. Acad. Sci.200399734135010.1196/annals.1290.037 14644841
    [Google Scholar]
  7. KeyT.J. ApplebyP.N. ReevesG.K. Sex hormones and risk of breast cancer in premenopausal women: A collaborative reanalysis of individual participant data from seven prospective studies.Lancet Oncol.201314101009101910.1016/S1470‑2045(13)70301‑2 23890780
    [Google Scholar]
  8. ChenW.Y. Exogenous and endogenous hormones and breast cancer.Best Pract. Res. Clin. Endocrinol. Metab.200822457358510.1016/j.beem.2008.08.001 18971119
    [Google Scholar]
  9. BenzC.C. Impact of aging on the biology of breast cancer.Crit. Rev. Oncol. Hematol.2008661657410.1016/j.critrevonc.2007.09.001 17949989
    [Google Scholar]
  10. WangX. HuiT.L. WangM.Q. LiuH. LiR.Y. SongZ.C. Body mass index at diagnosis as a prognostic factor for early-stage invasive breast cancer after surgical resection.Oncol. Res. Treat.201942419019610.1159/000496548 30852575
    [Google Scholar]
  11. LallooF. EvansD.G. Familial breast cancer.Clin. Genet.201282210511410.1111/j.1399‑0004.2012.01859.x 22356477
    [Google Scholar]
  12. CoronadoG.D. BeasleyJ. LivaudaisJ. Alcohol consumption and the risk of breast cancer.Salud Publica Mex.2011535440447 22218798
    [Google Scholar]
  13. ShiovitzS. KordeL.A. Genetics of breast cancer: A topic in evolution.Ann. Oncol.20152671291129910.1093/annonc/mdv022 25605744
    [Google Scholar]
  14. TerryP.D. RohanT.E. Cigarette smoking and the risk of breast cancer in women: A review of the literature.Cancer Epidemiol. Biomarkers Prev.20021110 Pt 1953971 12376493
    [Google Scholar]
  15. YedjouC.G. SimsJ.N. MieleL. NoubissiF. LoweL. FonsecaD.D. Health and racial disparity in breast cancer.In: Breast cancer metastasis and drug resistance.2019314910.1007/978‑3‑030‑20301‑6_3
    [Google Scholar]
  16. AtoumM. AlzoughoolF. Vitamin D and breast cancer: Latest evidence and future steps.Breast Cancer20171110.1177/1178223417749816 29434472
    [Google Scholar]
  17. AlbrektsenG. HeuchI. HansenS. KvåleG. Breast cancer risk by age at birth, time since birth and time intervals between births: Exploring interaction effects.Br. J. Cancer200592116717510.1038/sj.bjc.6602302 15597097
    [Google Scholar]
  18. Al-NaggarR.A. AnilS. Artificial light at night and cancer: Global study.Asian Pac. J. Cancer Prev.2016174661
    [Google Scholar]
  19. UrsinG. BernsteinL. LordS.J. Reproductive factors and subtypes of breast cancer defined by hormone receptor and histology.Br. J. Cancer200593336437110.1038/sj.bjc.6602712 16079783
    [Google Scholar]
  20. DandamudiA. TommieJ. Nommsen-RiversL. CouchS. Dietary patterns and breast cancer risk: A systematic review.Anticancer Res.20183863209322210.21873/anticanres.12586 29848668
    [Google Scholar]
  21. KimE.Y. ChangY. AhnJ. Mammographic breast density, its changes, and breast cancer risk in premenopausal and postmenopausal women.Cancer2020126214687469610.1002/cncr.33138 32767699
    [Google Scholar]
  22. Hilakivi-ClarkeL. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters.Breast Cancer Res.2014162339410.1186/bcr3649 25032259
    [Google Scholar]
  23. HartmannL.C. SellersT.A. FrostM.H. Benign breast disease and the risk of breast cancer.N. Engl. J. Med.2005353322923710.1056/NEJMoa044383 16034008
    [Google Scholar]
  24. RodgersK.M. UdeskyJ.O. RudelR.A. BrodyJ.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms.Environ. Res.201816015218210.1016/j.envres.2017.08.045 28987728
    [Google Scholar]
  25. NgJ. ShuryakI. Minimizing second cancer risk following radiotherapy: Current perspectives.Cancer Manag. Res.2014711110.2147/CMAR.S47220 25565886
    [Google Scholar]
  26. WernliK.J. HamptonJ.M. Trentham-DietzA. NewcombP.A. Antidepressant medication use and breast cancer risk.Pharmacoepidemiol. Drug Saf.200918428429010.1002/pds.1719 19226540
    [Google Scholar]
  27. FriedmanG.D. OestreicherN. ChanJ. QuesenberryC.P.Jr UdaltsovaN. HabelL.A. Antibiotics and risk of breast cancer: Up to 9 years of follow-up of 2.1 million women.Cancer Epidemiol. Biomarkers Prev.200615112102210610.1158/1055‑9965.EPI‑06‑0401 17119034
    [Google Scholar]
  28. CooganP.F. RaoS.R. RosenbergL. The relationship of nonsteroidal anti-inflammatory drug use to the risk of breast cancer.Prev. Med.1999292727610.1006/pmed.1999.0518 10446030
    [Google Scholar]
  29. OrgéasC.C. HallP. RosenbergL.U. CzeneK. The influence of menstrual risk factors on tumor characteristics and survival in postmenopausal breast cancer.Breast Cancer Res.2008106R10710.1186/bcr2212 19087323
    [Google Scholar]
  30. PerouCM SørlieT EisenMB Van De RijnM JeffreySS ReesCA Molecular portraits of human breast tumours.nature2000406747752
    [Google Scholar]
  31. SarhadiM. AryanL. ZareiM. The estrogen receptor and breast cancer: A complete review.CRPASE Trans Appl Sci20206309314
    [Google Scholar]
  32. LeeM.T. HoS.M. TaraporeP. ChungI. LeungY.K. Estrogen receptor β isoform 5 confers sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis through interaction with Bcl2L12.Neoplasia201315111262IN1510.1593/neo.131184 24339738
    [Google Scholar]
  33. AllredD.C. Issues and updates: Evaluating estrogen receptor-α, progesterone receptor, and HER2 in breast cancer.Mod. Pathol.201023Suppl. 2S52S5910.1038/modpathol.2010.55 20436503
    [Google Scholar]
  34. MiricescuD. TotanA. Stanescu-SpinuI.I. BadoiuS.C. StefaniC. GreabuM. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects.Int. J. Mol. Sci.202022117310.3390/ijms22010173 33375317
    [Google Scholar]
  35. RugoH.S. ImS.A. CardosoF. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial.JAMA Oncol.20217457358410.1001/jamaoncol.2020.7932 33480963
    [Google Scholar]
  36. FoulkesW.D. SmithI.E. Reis-FilhoJ.S. Triple-negative breast cancer.N. Engl. J. Med.2010363201938194810.1056/NEJMra1001389 21067385
    [Google Scholar]
  37. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.19323 30667505
    [Google Scholar]
  38. HeidariR. Gholamian DehkordiN. MohseniR. SafaeiM. Engineering mesenchymal stem cells: A novel therapeutic approach in breast cancer.J. Drug Target.2020287-873274110.1080/1061186X.2020.1775842 32463709
    [Google Scholar]
  39. BorzoneF.R. GiorelloM.B. SanmartinM.C. YannarelliG. MartinezL.M. ChasseingN.A. Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer.Br. J. Pharmacol.2022n/a10.1111/bph.15861
    [Google Scholar]
  40. AndrzejewskaA. LukomskaB. JanowskiM. Concise review: Mesenchymal stem cells: From roots to boost.Stem Cells201937785586410.1002/stem.3016 30977255
    [Google Scholar]
  41. ChamberlainG. FoxJ. AshtonB. MiddletonJ. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing.Stem Cells200725112739274910.1634/stemcells.2007‑0197 17656645
    [Google Scholar]
  42. MachadoC.V. TellesP.D.S. NascimentoI.L.O. Immunological characteristics of mesenchymal stem cells.Rev. Bras. Hematol. Hemoter.2013351626710.5581/1516‑8484.20130017 23580887
    [Google Scholar]
  43. JiangW. XuJ. Immune modulation by mesenchymal stem cells.Cell Prolif.2020531e1271210.1111/cpr.12712 31730279
    [Google Scholar]
  44. KeatingA. Mesenchymal stromal cells: New directions.Cell Stem Cell201210670971610.1016/j.stem.2012.05.015 22704511
    [Google Scholar]
  45. SteingenC. BrenigF. BaumgartnerL. SchmidtJ. SchmidtA. BlochW. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells.J. Mol. Cell. Cardiol.20084461072108410.1016/j.yjmcc.2008.03.010 18462748
    [Google Scholar]
  46. NagaseH. WoessnerJ.F.Jr Matrix metalloproteinases.J. Biol. Chem.199927431214912149410.1074/jbc.274.31.21491 10419448
    [Google Scholar]
  47. RidgeS.M. SullivanF.J. GlynnS.A. Mesenchymal stem cells: Key players in cancer progression.Mol. Cancer20171613110.1186/s12943‑017‑0597‑8 28148268
    [Google Scholar]
  48. TimanerM. TsaiK.K. ShakedY. The multifaceted role of mesenchymal stem cells in cancer. Seminars in cancer biology.Elsevier2020
    [Google Scholar]
  49. WatermanR.S. HenkleS.L. BetancourtA.M. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.PLoS One201279e4559010.1371/journal.pone.0045590 23029122
    [Google Scholar]
  50. RusanovA.L. BiryukovaY.K. ShoshinaO.O. LuzginaE.D. LuzginaN.G. Activation of TLR4 of mesenchymal stem cells enhances the regenerative properties of their secretomes.Bull. Exp. Biol. Med.2021170454454910.1007/s10517‑021‑05103‑9 33725255
    [Google Scholar]
  51. KaradurmusN. SahinU. Bahadir BasgozB. ArpaciF. DemirerT. A review of allogeneic hematopoietic stem cell transplantation in metastatic breast cancer.Int. J. Hematol. Oncol. Stem Cell Res.2018122111116 30233772
    [Google Scholar]
  52. CopelanE.A. Hematopoietic stem-cell transplantation.N. Engl. J. Med.20063541813182610.1056/NEJMra052638 16641398
    [Google Scholar]
  53. CasperJ. WolffD. KnaufW. Allogeneic hematopoietic stem-cell transplantation in patients with hematologic malignancies after dose-escalated treosulfan/fludarabine conditioning.J. Clin. Oncol.201028203344335110.1200/JCO.2009.23.3429 20498405
    [Google Scholar]
  54. BernardoM.E. PirasE. VaccaA. Allogeneic hematopoietic stem cell transplantation in thalassemia major: Results of a reduced-toxicity conditioning regimen based on the use of treosulfan.Blood2012120247347610.1182/blood‑2012‑04‑423822 22645178
    [Google Scholar]
  55. JuradoM. De La MataC. Ruiz-GarcíaA. Adipose tissue-derived mesenchymal stromal cells as part of therapy for chronic graft-versus-host disease: A phase I/II study.Cytotherapy201719892793610.1016/j.jcyt.2017.05.002 28662983
    [Google Scholar]
  56. MuroiK. MiyamuraK. OkadaM. Bone marrow-derived mesenchymal stem cells (JR-031) for steroid-refractory grade III or IV acute graft-versus-host disease: a phase II/III study.Int. J. Hematol.2016103224325010.1007/s12185‑015‑1915‑9 26608364
    [Google Scholar]
  57. KoçO.N. GersonS.L. CooperB.W. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy.J. Clin. Oncol.200018230731610.1200/JCO.2000.18.2.307 10637244
    [Google Scholar]
  58. DwyerR.M. Potter-BeirneS.M. HarringtonK.A. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells.Clin. Cancer Res.200713175020502710.1158/1078‑0432.CCR‑07‑0731 17785552
    [Google Scholar]
  59. SuzukiK. SunR. OriguchiM. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization.Mol. Med.2011177-857958710.2119/molmed.2010.00157 21424106
    [Google Scholar]
  60. UllahM. AkbarA. NgN.N. ConcepcionW. ThakorA.S. Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism.Oncotarget201910373435345010.18632/oncotarget.26952 31191817
    [Google Scholar]
  61. KarnoubA.E. DashA.B. VoA.P. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis.Nature2007449716255756310.1038/nature06188 17914389
    [Google Scholar]
  62. MartinF.T. DwyerR.M. KellyJ. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: Stimulation of epithelial to mesenchymal transition (EMT).Breast Cancer Res. Treat.2010124231732610.1007/s10549‑010‑0734‑1 20087650
    [Google Scholar]
  63. McAndrewsK.M. McGrailD.J. RavikumarN. DawsonM.R. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β.Sci. Rep.2015511694110.1038/srep16941 26585689
    [Google Scholar]
  64. ChaoK.C. YangH.T. ChenM.W. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell–cell contact and internalization.J. Cell. Mol. Med.20121681803181510.1111/j.1582‑4934.2011.01459.x 21973190
    [Google Scholar]
  65. ChaturvediP. GilkesD.M. TakanoN. SemenzaG.L. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment.Proc. Natl. Acad. Sci. USA201411120E2120E212910.1073/pnas.1406655111 24799675
    [Google Scholar]
  66. LiuX. HuJ. SunS. Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro.Exp. Ther. Med.2015941192120010.3892/etm.2015.2286 25780408
    [Google Scholar]
  67. ZhouY. ZuoD. WangM. Effect of truncated neurokinin‐1 receptor expression changes on the interaction between human breast cancer and bone marrow‐derived mesenchymal stem cells.Genes Cells201419967669110.1111/gtc.12168 25130457
    [Google Scholar]
  68. ClarkeM.R. ImhoffF.M. BairdS.K. Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase‐1 and ‐2.Mol. Carcinog.201554101214121910.1002/mc.22178 24819588
    [Google Scholar]
  69. LengL. WangY. HeN. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy.Biomaterials201435195162517010.1016/j.biomaterials.2014.03.014 24685267
    [Google Scholar]
  70. MaY. HaoX. ZhangS. ZhangJ. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells.Breast Cancer Res. Treat.2012133247348510.1007/s10549‑011‑1774‑x 21947651
    [Google Scholar]
  71. EgeaV. KessenbrockK. LawsonD. BarteltA. WeberC. RiesC. Let-7f miRNA regulates SDF-1α- and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release.Cell Death Dis.202112651610.1038/s41419‑021‑03789‑3 34016957
    [Google Scholar]
  72. RhodesL.V. MuirS.E. ElliottS. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence.Breast Cancer Res. Treat.2010121229330010.1007/s10549‑009‑0458‑2 19597705
    [Google Scholar]
  73. DittmerA. HohlfeldK. LützkendorfJ. MüllerL.P. DittmerJ. Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10.Cell. Mol. Life Sci.200966183053306510.1007/s00018‑009‑0089‑0 19603142
    [Google Scholar]
  74. PatelS.A. MeyerJ.R. GrecoS.J. CorcoranK.E. BryanM. RameshwarP. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-β.J. Immunol.2010184105885589410.4049/jimmunol.0903143 20382885
    [Google Scholar]
  75. YanX. FuC. ChenL. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway.Breast Cancer Res. Treat.2012132115316410.1007/s10549‑011‑1577‑0 21584665
    [Google Scholar]
  76. GauthamanK. YeeF.C. CheyyatraivendranS. BiswasA. ChoolaniM. BongsoA. Human umbilical cord wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro.J. Cell. Biochem.201211362027203910.1002/jcb.24073 22275115
    [Google Scholar]
  77. GentileP. Breast cancer therapy: The potential role of mesenchymal stem cells in translational biomedical research.Biomedicines2022105117910.3390/biomedicines10051179 35625915
    [Google Scholar]
  78. MarofiF. VahediG. BiglariA. EsmaeilzadehA. AthariS.S. Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer.Front. Immunol.20178177010.3389/fimmu.2017.01770 29326689
    [Google Scholar]
  79. LundstromK. BoulikasT. Viral and non-viral vectors in gene therapy: Technology development and clinical trials.Technol. Cancer Res. Treat.20032547148510.1177/153303460300200513 14529313
    [Google Scholar]
  80. AmaraI. PramilE. Senamaud-BeaufortC. Engineered mesenchymal stem cells as vectors in a suicide gene therapy against preclinical murine models for solid tumors.J. Control. Release2016239829110.1016/j.jconrel.2016.08.019 27565211
    [Google Scholar]
  81. CaiY. XiY. CaoZ. Dual targeting and enhanced cytotoxicity to HER2-overexpressing tumors by immunoapoptotin-armored mesenchymal stem cells.Cancer Lett.2016381110411210.1016/j.canlet.2016.07.027 27473824
    [Google Scholar]
  82. LingX. MariniF. KonoplevaM. Mesenchymal stem cells overexpressing IFN-β inhibit breast cancer growth and metastases through stat3 signaling in a syngeneic tumor model.Cancer Microenviron.201031839510.1007/s12307‑010‑0041‑8 21209776
    [Google Scholar]
  83. EliopoulosN. FrancoisM. BoivinM.N. MartineauD. GalipeauJ. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy.Cancer Res.200868124810481810.1158/0008‑5472.CAN‑08‑0160 18559528
    [Google Scholar]
  84. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  85. ThuK.L. Soria-BretonesI. MakT.W. CesconD.W. Targeting the cell cycle in breast cancer: Towards the next phase.Cell Cycle201817151871188510.1080/15384101.2018.1502567 30078354
    [Google Scholar]
  86. XuC. FengQ. YangH. A light‐triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo‐photothermal therapy of triple negative breast cancer.Adv. Sci.2018510180038210.1002/advs.201800382 30356957
    [Google Scholar]
  87. SauliteL. PleikoK. PopenaI. DapkuteD. RotomskisR. RiekstinaU. Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells.Beilstein J. Nanotechnol.2018932133210.3762/bjnano.9.32 29515946
    [Google Scholar]
  88. YaoS. LiX. LiuJ. SunY. WangZ. JiangY. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer.Drug Deliv.20172411372138310.1080/10717544.2017.1375580 28920712
    [Google Scholar]
  89. OuyangA. NgR. YangS.T. Long-term culturing of undifferentiated embryonic stem cells in conditioned media and three-dimensional fibrous matrices without extracellular matrix coating.Stem Cells200725244745410.1634/stemcells.2006‑0322 17023515
    [Google Scholar]
  90. GelainF. HoriiA. ZhangS. Designer self-assembling peptide scaffolds for 3-d tissue cell cultures and regenerative medicine.Macromol. Biosci.20077554455110.1002/mabi.200700033 17477441
    [Google Scholar]
  91. SalehiS.S. ShamlooA. HannaniS.K. Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits.Biophys. Rev.202012112313310.1007/s12551‑020‑00613‑8 31953794
    [Google Scholar]
  92. HadryśA. SochanikA. McFaddenG. Jazowiecka-RakusJ. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses.Eur. J. Pharmacol.202087417299110.1016/j.ejphar.2020.172991 32044323
    [Google Scholar]
  93. MartiniV. D’AvanzoF. MaggioraP.M. VarugheseF.M. SicaA. GennariA. Oncolytic virotherapy: New weapon for breast cancer treatment.Ecancermedicalscience2020141149910.3332/ecancer.2020.1149 33574894
    [Google Scholar]
  94. Abd-AzizN. PohC.L. Development of oncolytic viruses for cancer therapy.Transl. Res.20212379812310.1016/j.trsl.2021.04.008 33905949
    [Google Scholar]
  95. RehmanH. SilkA.W. KaneM.P. KaufmanH.L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy.J. Immunother. Cancer2016415310.1186/s40425‑016‑0158‑5 27660707
    [Google Scholar]
  96. RamírezM. García-CastroJ. MelenG. González-MurilloA. FrancoL. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: Novel state-of-the-art technology.Oncolytic Virother.2015414915510.2147/OV.S66010 27512678
    [Google Scholar]
  97. NowakowskiA. DrelaK. RozyckaJ. JanowskiM. LukomskaB. Engineered mesenchymal stem cells as an anti-cancer trojan horse.Stem Cells Dev.201625201513153110.1089/scd.2016.0120 27460260
    [Google Scholar]
  98. RussellL. PengK.W. RussellS.J. DiazR.M. Oncolytic viruses: Priming time for cancer immunotherapy.BioDrugs201933548550110.1007/s40259‑019‑00367‑0 31321623
    [Google Scholar]
  99. Stoff-KhaliliM.A. RiveraA.A. MathisJ.M. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma.Breast Cancer Res. Treat.2007105215716710.1007/s10549‑006‑9449‑8 17221158
    [Google Scholar]
  100. HakkarainenT. SärkiojaM. LehenkariP. Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors.Hum. Gene Ther.200718762764110.1089/hum.2007.034 17604566
    [Google Scholar]
  101. ChastkofskyM.I. PituchK.C. KatagiH. Mesenchymal stem cells successfully deliver oncolytic virotherapy to diffuse intrinsic pontine glioma.Clin. Cancer Res.20212761766177710.1158/1078‑0432.CCR‑20‑1499 33272983
    [Google Scholar]
  102. Franco-LuzónL. González-MurilloÁ. Alcántara-SánchezC. Systemic oncolytic adenovirus delivered in mesenchymal carrier cells modulate tumor infiltrating immune cells and tumor microenvironment in mice with neuroblastoma.Oncotarget202011434736110.18632/oncotarget.27401 32064039
    [Google Scholar]
  103. MaderE.K. MaeyamaY. LinY. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model.Clin. Cancer Res.200915237246725510.1158/1078‑0432.CCR‑09‑1292 19934299
    [Google Scholar]
  104. BabaeiA. SoleimanjahiH. SoleimaniM. ArefianE. Mesenchymal stem cells loaded with oncolytic reovirus enhances antitumor activity in mice models of colorectal cancer.Biochem. Pharmacol.202119011464410.1016/j.bcp.2021.114644 34090878
    [Google Scholar]
  105. EleuteriS. FierabracciA. Insights into the secretome of mesenchymal stem cells and its potential applications.Int. J. Mol. Sci.20192018459710.3390/ijms20184597 31533317
    [Google Scholar]
  106. HerrmannI.K. WoodM.J.A. FuhrmannG. Extracellular vesicles as a next-generation drug delivery platform.Nat. Nanotechnol.202116774875910.1038/s41565‑021‑00931‑2 34211166
    [Google Scholar]
  107. ZhangY. LiuY. LiuH. TangW.H. Exosomes: Biogenesis, biologic function and clinical potential.Cell Biosci.2019911910.1186/s13578‑019‑0282‑2 30815248
    [Google Scholar]
  108. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.In: Science . (New York, N.Y.)2020367p. eaau697710.1126/science.aau6977
    [Google Scholar]
  109. MinciacchiV.R. FreemanM.R. Di VizioD. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes.Semin. Cell Dev. Biol.201540415110.1016/j.semcdb.2015.02.010 25721812
    [Google Scholar]
  110. RecordM. Intercellular communication by exosomes in placenta: A possible role in cell fusion?Placenta201435529730210.1016/j.placenta.2014.02.009 24661568
    [Google Scholar]
  111. YellonD.M. DavidsonS.M. Exosomes.Circ. Res.2014114232533210.1161/CIRCRESAHA.113.300636 24436428
    [Google Scholar]
  112. PatilSM SawantSS Kunda NKJEJoP.Biopharmaceutics exosomes as drug delivery systems: A brief overview and progress update2020154259269
    [Google Scholar]
  113. HarrellC.R. JovicicN. DjonovV. ArsenijevicN. VolarevicV. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases.Cells2019812160510.3390/cells8121605 31835680
    [Google Scholar]
  114. XunianZ. KalluriR. Biology and therapeutic potential of mesenchymal stem cell‐derived exosomes.Cancer Sci.202011193100311010.1111/cas.14563 32639675
    [Google Scholar]
  115. BlissS.A. SinhaG. SandifordO.A. Mesenchymal stem cell–derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow.Cancer Res.201676195832584410.1158/0008‑5472.CAN‑16‑1092 27569215
    [Google Scholar]
  116. PengH. JiW. ZhaoR. Exosome: A significant nano-scale drug delivery carrier.J. Mater. Chem. B Mater. Biol. Med.20208347591760810.1039/D0TB01499K 32697267
    [Google Scholar]
  117. CassonJ. DaviesO.G. SmithC.A. DalbyM.J. BerryC.C. Mesenchymal stem cell-derived extracellular vesicles may promote breast cancer cell dormancy.J. Tissue Eng.2018910.1177/2041731418810093 30627418
    [Google Scholar]
  118. SandifordO.A. DonnellyR.J. El-FarM.H. Mesenchymal stem cell–secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region.Cancer Res.20218161567158210.1158/0008‑5472.CAN‑20‑2434 33500249
    [Google Scholar]
  119. LiT. ZhouX. WangJ. Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer.Pharmacol. Res.202015710484310.1016/j.phrs.2020.104843 32360582
    [Google Scholar]
  120. ZhouX. LiT. ChenY. Mesenchymal stem cell derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway.Int. J. Oncol.20195451843185210.3892/ijo.2019.4747 30864702
    [Google Scholar]
  121. KhanhV.C. FukushigeM. MoriguchiK. Type 2 diabetes mellitus induced paracrine effects on breast cancer metastasis through extracellular vesicles derived from human mesenchymal stem cells.Stem Cells Dev.202029211382139410.1089/scd.2020.0126 32900278
    [Google Scholar]
  122. Del FattoreA. LucianoR. SaracinoR. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells.Expert Opin. Biol. Ther.201515449550410.1517/14712598.2015.997706 25539575
    [Google Scholar]
  123. WengZ. ZhangB. WuC. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer.J. Hematol. Oncol.202114113610.1186/s13045‑021‑01141‑y 34479611
    [Google Scholar]
  124. AltanerovaU. JakubechovaJ. BenejovaK. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes.Int. J. Cancer2019144489790810.1002/ijc.31792 30098225
    [Google Scholar]
  125. O’BrienK.P. KhanS. GilliganK.E. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379.Oncogene201837162137214910.1038/s41388‑017‑0116‑9 29367765
    [Google Scholar]
  126. Ghafouri-FardS. ShaterabadiD. AbakA. An update on the role of miR-379 in human disorders.Biomed. Pharmacother.202113911155310.1016/j.biopha.2021.111553 33845370
    [Google Scholar]
  127. ChuD.T. PhuongT.N.T. TienN.L.B. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells.Int. J. Mol. Sci.202021370810.3390/ijms21030708 31973182
    [Google Scholar]
  128. JangY. KohY.G. ChoiY.J. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration.In Vitro Cell. Dev. Biol. Anim.201551214215010.1007/s11626‑014‑9814‑6 25361717
    [Google Scholar]
  129. MabuchiY. HoulihanD.D. AkazawaC. OkanoH. MatsuzakiY. Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers.Stem Cells Int.201320131710.1155/2013/507301 23766770
    [Google Scholar]
  130. MiuraY. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology.Int. J. Hematol.2016103212212810.1007/s12185‑015‑1920‑z 26692196
    [Google Scholar]
  131. BiebackK. SchallmoserK. KlüterH. StrunkD. Clinical protocols for the isolation and expansion of mesenchymal stromal cells.Transfus. Med. Hemother.200835286294
    [Google Scholar]
  132. PetrenkoY. ChudickovaM. VackovaI. Clinically relevant solution for the hypothermic storage and transportation of human multipotent mesenchymal stromal cells.Stem Cells Int.2019201911110.1155/2019/5909524 30805009
    [Google Scholar]
  133. LiQ. LiB. YeT. XuW. YinH. DengZ. Requirements for human mesenchymal stem cell-derived small extracellular vesicles.Interdiscip Med20231e2022001510.1002/INMD.20220015
    [Google Scholar]
  134. RamdasiS. SarangS. ViswanathanC. Potential of mesenchymal stem cell based application in cancer.Int. J. Hematol. Oncol. Stem Cell Res.20159295103 25922650
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240274818231207054037
Loading
/content/journals/cmm/10.2174/0115665240274818231207054037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test