Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Triple-negative breast cancer (TNBC) presents considerable obstacles because of its highly aggressive characteristics and limited availability of specific therapeutic interventions. The utilization of monoclonal antibody (mAb)-based immunotherapy is a viable approach to tackle these difficulties. This review aims to examine the present state of mAb-based immunotherapy in TNBC, focusing on the underlying mechanisms of action, clinical applications, and existing challenges. The effectiveness of mAbs in reducing tumor development, regulating immune responses, and changing the tumor microenvironment has been demonstrated in many clinical investigations. The challenges encompass several aspects such as the discovery of biomarkers, understanding resistance mechanisms, managing toxicity, considering costs, and ensuring accessibility. The future is poised to bring forth significant advancements in the field of biomedicine, particularly in the areas of new mAbs, personalized medicine, and precision immunotherapy. In conclusion, mAb-based immunotherapy has promise in revolutionizing the treatment of TNBC, hence providing a possible avenue for enhanced patient outcomes and quality of life.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240287767240115062343
2024-01-26
2025-10-02
Loading full text...

Full text loading...

References

  1. DerakhshanF. Reis-FilhoJ.S. Pathogenesis of.Annu. Rev. Pathol.202217118120410.1146/annurev‑pathol‑042420‑093238 35073169
    [Google Scholar]
  2. HowardF.M. OlopadeO.I. Epidemiology of: A review.Cancer J.202127181610.1097/PPO.0000000000000500 33475288
    [Google Scholar]
  3. Wong-BrownM.W. MeldrumC.J. CarpenterJ.E. Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer.Breast Cancer Res. Treat.20151501718010.1007/s10549‑015‑3293‑7 25682074
    [Google Scholar]
  4. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  5. MedirattaK. El-SahliS. D’CostaV. WangL. Current progresses and challenges of immunotherapy in.Cancers20201212352910.3390/cancers12123529 33256070
    [Google Scholar]
  6. MarraA. VialeG. CuriglianoG. Recent advances in triple negative breast cancer: The immunotherapy era.BMC Med.20191719010.1186/s12916‑019‑1326‑5 31068190
    [Google Scholar]
  7. KumarP. AggarwalR. An overview of triple-negative breast cancer.Arch. Gynecol. Obstet.2016293224726910.1007/s00404‑015‑3859‑y 26341644
    [Google Scholar]
  8. SunX. WangM. WangM. Metabolic reprogramming in.Front. Oncol.20201042810.3389/fonc.2020.00428 32296646
    [Google Scholar]
  9. Penault-LlorcaF. VialeG. Pathological and molecular diagnosis of: A clinical perspective.Ann. Oncol.201223vi19vi2210.1093/annonc/mds190 23012297
    [Google Scholar]
  10. Metzger-FilhoO. TuttA. de AzambujaE. Dissecting the heterogeneity of triple-negative breast cancer.J. Clin. Oncol.201230151879188710.1200/JCO.2011.38.2010 22454417
    [Google Scholar]
  11. YangR. LiY. WangH. QinT. YinX. MaX. Therapeutic progress and challenges for triple negative breast cancer: Targeted therapy and immunotherapy.Mol. Biomed.2022318
    [Google Scholar]
  12. FerrariP. ScatenaC. GhilliM. BargagnaI. LorenziniG. NicoliniA. Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC.Int. J. Mol. Sci.2022233166510.3390/ijms23031665 35163586
    [Google Scholar]
  13. LyonsT.G. Targeted therapies for.Curr. Treat. Options Oncol.201920118210.1007/s11864‑019‑0682‑x 31754897
    [Google Scholar]
  14. KeenanT.E. TolaneyS.M. Role of immunotherapy in.J. Natl. Compr. Canc. Netw.202018447948910.6004/jnccn.2020.7554 32259782
    [Google Scholar]
  15. LuoC. WangP. HeS. ZhuJ. ShiY. WangJ. Progress and prospect of immunotherapy for.Front. Oncol.20221291907210.3389/fonc.2022.919072 35795050
    [Google Scholar]
  16. EmensL.A. Immunotherapy in.Cancer J.2021271596610.1097/PPO.0000000000000497 33475294
    [Google Scholar]
  17. BaiX. NiJ. BeretovJ. GrahamP. LiY. Immunotherapy for: A molecular insight into the microenvironment, treatment, and resistance.J. Natl. Cancer Cent.202113758710.1016/j.jncc.2021.06.001
    [Google Scholar]
  18. MirM.A. QayoomH. MehrajU. NisarS. BhatB. WaniN.A. Targeting different pathways using novel combination therapy in triple negative breast cancer.Curr. Cancer Drug Targets202020858660210.2174/1570163817666200518081955 32418525
    [Google Scholar]
  19. ZahaviD. WeinerL. in cancer therapy.Antibodies2020933410.3390/antib9030034 32698317
    [Google Scholar]
  20. BayerV. An overview of Seminars in oncology nursing.Elsevier2019
    [Google Scholar]
  21. AdamsG.P. WeinerL.M. Monoclonal antibody therapy of cancer.Nat. Biotechnol.20052391147115710.1038/nbt1137 16151408
    [Google Scholar]
  22. LiuJ.K.H. The history of monoclonal antibody development - Progress, remaining challenges and future innovations.Ann. Med. Surg.20143411311610.1016/j.amsu.2014.09.001 25568796
    [Google Scholar]
  23. BardiaA. HurvitzS.A. TolaneyS.M. Sacituzumab govitecan in metastatic.N. Engl. J. Med.2021384161529154110.1056/NEJMoa2028485 33882206
    [Google Scholar]
  24. LatifF. Bint Abdul JabbarH. MalikH. Atezolizumab and pembrolizumab in: A meta-analysis.Expert Rev. Anticancer Ther.202222222923510.1080/14737140.2022.2023011 34949142
    [Google Scholar]
  25. LiaoW-S. HoY. LinY-W. Targeting EGFR of enhances the therapeutic efficacy of paclitaxel-and cetuximab-conjugated nanodiamond nanocomposite.Acta Biomater.20198639540510.1016/j.actbio.2019.01.025 30660004
    [Google Scholar]
  26. BrufskyA. ValeroV. TiangcoB. Second-line bevacizumab-containing therapy in patients with: Subgroup analysis of the RIBBON-2 trial.Breast Cancer Res. Treat.20121331067107510.1007/s10549‑012‑2008‑6 22415477
    [Google Scholar]
  27. TaneiT. ChoiD.S. RodriguezA.A. Antitumor activity of cetuximab in combination with ixabepilone on triple negative breast cancer stem cells.Breast Cancer Res.2016181610.1186/s13058‑015‑0662‑4 26757880
    [Google Scholar]
  28. GurdalH. TugluM.M. BostanabadS.Y. DalkiliçB. Partial agonistic effect of cetuximab on epidermal growth factor receptor and Src kinase activation in cell lines.Int. J. Oncol.20195441345135610.3892/ijo.2019.4697 30720056
    [Google Scholar]
  29. DominguezC. McCampbellK.K. DavidJ.M. PalenaC. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer.JCI Insight2017221e9429610.1172/jci.insight.94296 29093275
    [Google Scholar]
  30. ColomboM. RizzutoM.A. PaciniC. Half-chain cetuximab nanoconjugates allow multitarget therapy of triple negative breast cancer.Bioconjug. Chem.201829113817383210.1021/acs.bioconjchem.8b00667 30350574
    [Google Scholar]
  31. SutheS.R. YaoH.P. WengT.H. RON receptor tyrosine kinase as a therapeutic target for eradication of: Efficacy of anti-RON ADC ZT/G4-MMAE.Mol. Cancer Ther.201817122654266410.1158/1535‑7163.MCT‑18‑0252 30275241
    [Google Scholar]
  32. QiaoZ. LiX. KangN. A novel specific anti-cd73 antibody inhibits cell motility by regulating autophagy.Int. J. Mol. Sci.201920510.3390/ijms20051057 30823477
    [Google Scholar]
  33. CaiazzaF. McGowanP.M. MulloolyM. Targeting ADAM-17 with an inhibitory monoclonal antibody has antitumour effects in cells.Br. J. Cancer2015112121895190310.1038/bjc.2015.163 26010411
    [Google Scholar]
  34. GuerrabA.E. BamdadM. KwiatkowskiF. BignonY.J. Penault-LlorcaF. AubelC. Anti-EGFR and EGFR tyrosine kinase inhibitors as combination therapy for.Oncotarget2016745736187363710.18632/oncotarget.12037 27655662
    [Google Scholar]
  35. Haji GhaffariM. SimonianM. SalimiA. A novel ADC targeting cell surface fibromodulin in a mouse model of triple-negative breast cancer.Breast Cancer20222961121113210.1007/s12282‑022‑01393‑7 35982394
    [Google Scholar]
  36. LinX. ChenH. XieY. Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer.Transl. Oncol.202215110129810.1016/j.tranon.2021.101298 34875483
    [Google Scholar]
  37. MalinD. ChenF. SchillerC. KoblinskiJ. CrynsV.L. Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer.Clin. Cancer Res.201117155005501510.1158/1078‑0432.CCR‑11‑0099 21653692
    [Google Scholar]
  38. PuspitasariD. WanandiS. SadikinM. Conjugation of cetuximab – puromycin and its target-specific effect on triple negative breast cancer cell lines.Asian Pac. J. Cancer Prev.20222351803181210.31557/APJCP.2022.23.5.1803 35633567
    [Google Scholar]
  39. AdamsS. DiamondJ.R. HamiltonE. Atezolizumab plus nab-paclitaxel in the treatment of metastatic with 2-year survival follow-up: A phase 1b clinical trial.JAMA Oncol.20195333434210.1001/jamaoncol.2018.5152 30347025
    [Google Scholar]
  40. BardiaA. MayerI.A. VahdatL.T. Sacituzumab govitecan-hziy in refractory metastatic.N. Engl. J. Med.2019380874175110.1056/NEJMoa1814213 30786188
    [Google Scholar]
  41. CaoJ. WangB. ZhangJ. TaoZ. WangL. HuX. Phase 1b clinical trial of pucotenlimab (HX008), a novel anti-PD-1 monoclonal antibody, combined with gemcitabine and cisplatin in the first-line treatment of metastatic triple-negative breast cancer.Front. Oncol.20221283796310.3389/fonc.2022.837963 35982961
    [Google Scholar]
  42. KuemmelS. CamponeM. LoiratD. A randomized phase ii study of anti-csf1 monoclonal antibody lacnotuzumab (MCS110) combined with gemcitabine and carboplatin in advanced triple-negative breast cancer.Clin. Cancer Res.202228110611510.1158/1078‑0432.CCR‑20‑3955 34615719
    [Google Scholar]
  43. SpiraA. AwadaA. IsambertN. Identification of HMGA2 as a predictive biomarker of response to bintrafusp alfa in a phase 1 trial in patients with advanced triple-negative breast cancer.Front. Oncol.20221298194010.3389/fonc.2022.981940 36568239
    [Google Scholar]
  44. WangX. LiuY. PD-L1 expression in tumor infiltrated lymphocytes predicts survival in triple-negative breast cancer.Pathol. Res. Pract.2020216315280210.1016/j.prp.2019.152802 32005408
    [Google Scholar]
  45. MansooriB. TerpM.G. MohammadiA. HMGA2 supports cancer hallmarks in.Cancers20211320519710.3390/cancers13205197 34680349
    [Google Scholar]
  46. DwivediM. TiwariS. KempE.H. BegumR. Implications of regulatory T cells in anti-cancer immunity: From pathogenesis to therapeutics.Heliyon202288e1045010.1016/j.heliyon.2022.e10450 36082331
    [Google Scholar]
  47. LiK. ShiH. ZhangB. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer.Signal Transduct. Target. Ther.20216136210.1038/s41392‑021‑00670‑9 34620838
    [Google Scholar]
  48. TorkaP. BarthM. FerdmanR. Hernandez-IlizaliturriF.J. Mechanisms of resistance to mAbs in lymphoid malignancies.Curr. Hematol. Malig. Rep.20191442643810.1007/s11899‑019‑00542‑8 31559580
    [Google Scholar]
  49. HenricksL.M. SchellensJ.H. HuitemaA.D. BeijnenJ.H. The use of combinations of in clinical oncology.Cancer Treat. Rev.2015411085986710.1016/j.ctrv.2015.10.008 26547132
    [Google Scholar]
  50. LiebmanH.A. Immunomodulatory drugs and antibody therapy.Substitution–Immunomodulation–Monoclonal Immunotherapy201885100
    [Google Scholar]
  51. JacquelineC. BiroP.A. BeckmannC. Cancer: A disease at the crossroads of trade‐offs.Evol. Appl.201710321522510.1111/eva.12444 28250806
    [Google Scholar]
  52. ChoiJ. LeeS.Y. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors.Immune Netw.2020201e910.4110/in.2020.20.e9 32158597
    [Google Scholar]
  53. KounisN.G. SoufrasG.D. TsigkasG. HahalisG. Adverse cardiac events to used for cancer therapy: The risk of Kounis syndrome.OncoImmunology2014310.4161/onci.27987 25340003
    [Google Scholar]
  54. ManisJ.P. FeldwegA.M. Overview of therapeutic.UpToDate Waltham, MA: UpToDate2020
    [Google Scholar]
  55. BugelskiP.J. AchuthanandamR. CapocasaleR.J. TreacyG. Bouman-ThioE. Monoclonal antibody-induced cytokine-release syndrome.Expert Rev. Clin. Immunol.20095549952110.1586/eci.09.31 20477639
    [Google Scholar]
  56. ShanshalM. CaimiP.F. AdjeiA.A. MaW.W. T-cell engagers in solid cancers-current landscape and future directions.Cancers20231510282410.3390/cancers15102824 37345160
    [Google Scholar]
  57. FarhangniaP. DelbandiA-A. SadriM. AkbarpourM. Bispecific Antibodies in Targeted Cancer Immunotherapy Handbook of Cancer and Immunology.Springer2023146
    [Google Scholar]
  58. ShastryM. JacobS. RugoH.S. HamiltonE. Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer.Breast20226616917710.1016/j.breast.2022.10.007 36302269
    [Google Scholar]
  59. LiuJ. LingY. SuN. A novel immune checkpoint-related gene signature for predicting overall survival and immune status in triple-negative breast cancer.Transl. Cancer Res.202211118119210.21037/tcr‑21‑1455 35261895
    [Google Scholar]
  60. ChanI.S. GinsburgG.S. Personalized medicine: Progress and promise.Annu. Rev. Genomics Hum. Genet.201112121724410.1146/annurev‑genom‑082410‑101446 21721939
    [Google Scholar]
  61. McKeanW.B. MoserJ.C. RimmD. Hu-LieskovanS. Biomarkers in precision cancer immunotherapy: Promise and challenges.Am. Soc. Clin. Oncol. Educ. Book20204040e275e29110.1200/EDBK_280571 32453632
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240287767240115062343
Loading
/content/journals/cmm/10.2174/0115665240287767240115062343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test