Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
221 - 227 of 227 results
-
-
From Proteomics to Diagnosis: Biomarker Discovery in Tuberculosis Research
Authors: Jiarong Yang and Jianhua ZhengAvailable online: 11 October 2024More LessTuberculosis (TB) is a leading cause of death from a single infectious disease worldwide. Early and accurate diagnosis is advantageous for timely detection and prompt treatment, thereby reducing the risk of disease transmission, which is essential for effective TB control. Biomarkers provide a valuable resource for TB diagnosis. Proteomic technologies have emerged as a powerful tool in biomarker discovery. In this perspective, we explore how proteomic technologies contribute to the discovery of TB diagnostic biomarkers. We also address the challenges and discuss prospective methods to augment the performance of biomarkers in diagnosing TB.
-
-
-
Discovery of 5-(Substituted Phenyl)-2-aryl Benzimidazole Derivatives as SIRT1 Activators: Their Design, in silico Studies, Synthesis, and in vitro Evaluation
Authors: Shilpi Chauhan, Ashwani Kumar, Rajnish Kumar and Deepika SainiAvailable online: 10 October 2024More LessAimSilent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.
MethodsThe compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their in vitro SIRT1 activation properties using a fluorescent screening kit. Based on the results of in vitro assay, a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.
ResultsThe molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound 5m and protein SIRT1 remained stable, i.e., below 3mm. Compound 5m, 4-(2-(3,4-dihydroxy-5-nitrophenyl)-1H-benzo[d]imidazol-5-yl)benzaldehyde, was the most potent compound with an EC50 value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski’s rule.
ConclusionAccording to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical in vivo research utilizing animal models.
-
-
-
Unveiling the Power of Mitochondrial Fission and Fusion: A Five-Gene Signature for Personalized Prognosis in Gastric Cancer
Authors: Bin Zhou, Ping Tie, Dongbing Li, You Lu and Yuanhua LiuAvailable online: 08 October 2024More LessBackgroundMitochondrial fission and fusion play important roles in tumorigenesis, progression and therapy. Dysregulation of these processes may lead to tumor progression, and regulation of these processes may provide novel strategies for cancer therapy. The involvement of genes related to mitochondrial fission and fusion (MD) in gastric cancer (GC) remains poorly understood.
ObjectiveThe aim of this study was to establish an MD gene signature for GC patients and to investigate its association with prognosis, tumor microenvironment and treatment response in GC.
MethodsWe use the TCGA-GC database as the cohort, focusing specifically on genes associated with MD. We conducted identification and consistency clustering analysis of differentially expressed genes in MD, conducted MD gene mutation and copy number variation analysis, as well as correlation and functional enrichment analysis between MD gene cluster classification and immune infiltration. TCGA-GC and GSE15459 were used to construct training and validation cohorts for the model. We used various statistical methods, including Cox and Lasso regression, to develop the model. We validated the model using bulk transcriptome and single-cell transcriptome datasets (GSE13861, GSE26901, GSE66229, and GSE13450). We used GSEA enrichment, CIBERSORT algorithm, ESTIMATE, and TIDE to gain insight into the annotation of MD signature and the characterization of the tumor microenvironment. OncoPredict was used to analyze the relationship between the PRG signature and the drug sensitivity. We validated the expression of several key genes in MD signature on GC cell lines using quantitative real-time PCR (qRT-PCR).
ResultsThese MDs-related subtypes exhibited different prognosis and immune filtration patterns. A five-gene signature, comprising AGT, HCFC1, KIFC3, NOX4, and RIN1, was developed. There was a clear distinction in overall survival between low- and high-risk patients. The analyses showed further confirmation of the independent prognostic value of the gene signature. There was a notable correlation between the MD signature, immune infiltration and drug susceptibility. The expression levels of AGT, HCFC1, KIFC3, NOX4 and RIN1 mRNA were all increased in these GC cells.
ConclusionThe MD signature has the capacity to significantly contribute to the prediction of personalized outcomes and the advancement of novel therapeutic strategies tailored for GC patients.
-
-
-
Integrated Single-cell RNA-seq and Bulk RNA-seq Identify Diagnostic Biomarkers for Postmenopausal Osteoporosis
Authors: Hanyu Wang, Chong Peng, Guangbing Hu, Wenhao Chen, Yong Hu and Honglin PiAvailable online: 03 October 2024More LessAimWe aimed to explore diagnostic biomarkers of postmenopausal osteoporosis (PMOP).
BackgroundPMOP brings enormous physical and economic burden to elderly women.
ObjectivesThis study aims to screen new biomarkers for osteoporosis, providing insights for early diagnosis and therapeutic targets of osteoporosis.
MethodsWeighted gene co-expression network analysis (WGCNA) was applied to identify osteoporosis-related hub genes. Single-cell transcriptomic atlas of osteoporosis was depicted and the heterogeneity of monocytes was analyzed, based on which the biomarkers for osteoporosis were screened. Gene set enrichment analysis (GSEA) was conducted on the biomarkers. The diagnostic model (nomogram) was established and evaluated based on the expression levels of biomarkers. Additionally, the transcription factor (TF) regulatory network was constructed to predict the potential TF and targeted miRNA of biomarkers. The drugs with significant correlation with biomarkers were identified by Spearman correlation analysis.
ResultsWe obtained 30 osteoporosis-associated hub genes. 9 cell types were identified, and the monocytes were subdivided to 4 subtypes. Three biomarkers, DHX29, LSM5, and UBE2V2, were screened. DHX29 and UBE2V2 were highly expressed in non-classical monocytes, while LSM5 exhibited the highest expression in other monocytes, followed by non-classical monocytes. GSEA indicated that osteoporosis may be correlated with vascular calcification and the biomarkers may be involved in the formation of immune cells. Then, nomogram was constructed and exhibited good robustness. In addition, MYC and SETDB1 were the shared IF in three biomarkers, which may play critical regulatory roles in the progression of osteoporosis. Moreover, 41, 49, and 68 drugs appeared significant correlations with DHX29, LSM5, and UBE2V2, respectively.
ConclusionThis study provided a basis for early diagnosis and targeted treatment of osteoporosis.
-
-
-
The Punicalagin Compound Mitigates Bronchial Epithelial Cell Senescence Induced by Cigarette Smoke Extractthrough the PAR2/mTOR Pathway
Authors: Jianguo Xu, Xin Li, Xiaoli Zeng, Hairong Bao and Xiaoju LiuAvailable online: 03 October 2024More LessBackgroundTobacco smoke is an important inducer of airway epithelial cell aging. Punicalagin(PCG) is a natural anti-aging compound. The effect of PCG on tobacco smoke-induced airway epithelial cell senescence is unknown.
ObjectiveOur study investigated whether PCG can treat the human bronchial epithelial cell line (BEAS-2B) aging by inhibiting the protease-activated receptor 2 (PAR2)/mTOR pathway.
MethodsBioinformatics techniques were used to analyze the potential biological functions of PAR2. Molecular dynamics evaluated the binding ability of PCG and PAR2. The CCK8 assay was used to detect the cytotoxicity of CSE and PCG. The activity of the PAR2/mTOR pathway and the expression of the characteristic aging markers p16, p21, and SIRT1 are detected by qRT-PCR and Western blotting. Cell senescence was observed by Senescence-associated β-galactosidase (SA-β-gal) staining. The senescence-associated secretory phenotype (SASP): concentrations of interleukin IL-6, IL-8, and TNF-α were detected by ELISA.
ResultsThe GSE57148 bioinformatics analysis dataset showed that PAR2 regulates lung senescence through the mTOR signaling pathway. Molecular dynamics results found that PCG and PAR2 had a strong and stable binding force. CSE induces BEAS-2B cell senescence and activates the PAR2/mTOR pathway. Inhibition of PAR2 mitigated the senescence changes. In addition, PCG's pretreatment can significantly alleviate CSE-induced BEAS-2B cell senescence while inhibiting the PAR2/mTOR pathway.
ConclusionPCG has a therapeutic effect on the senescence of airway epithelial cells.
-
-
-
Targeting Fructosamine Oxidase (Amadoriase II) in Aspergillus fumigatus: Comprehensive Virtual Screening, ADMET Analysis, and Molecular Dynamics Simulation of Triazole Derivatives
Available online: 12 September 2024More LessIntroductionAspergillus fumigatus, a significant fungal pathogen, poses a threat to human health, especially in immunocompromised individuals. Addressing the need for novel antifungal strategies, this study employs virtual screening to identify potential inhibitors of Fructosamine oxidase, also known as Amadoriase II, a crucial enzyme in A. fumigatus (PDB ID: 3DJE).
MethodVirtual screening of 81,197 triazole derivatives was subjected to computational analysis, aiming to pinpoint molecules with high binding affinity to the active site of Fructosamine oxidase. Subsequently, an in-depth ADMET analysis assessed the pharmacokinetic properties of lead compounds, ensuring their viability for further development. Molecular dynamics simulations were performed to evaluate the stability of top-ranked compounds over time.
ResultsThe results unveil a subset of triazole derivatives displaying promising interactions, suggesting their potential as inhibitors for further investigation.
ConclusionThis approach contributes to the development of targeted antifungal agents, offering a rational starting point for experimental validation and drug development against Aspergillus fumigatus infections.
-
-
-
Mitochondrial DNA Mutations in Colorectal Cancer Stem Cells: Implications for Tumor Dynamics and Therapeutic Strategies
Available online: 11 September 2024More LessThis review offers an in-depth analysis of mitochondrial DNA (mtDNA) mutations in colorectal cancer stem cells (CSCs), emphasizing their significant impact on tumor dynamics and potential therapeutic strategies. CSCs are a special subpopulation due to their unique capabilities for self-renewal, differentiation, and resistance to conventional therapies. Given that CSCs significantly differ from other tumor cell subpopulations, particularly in their metabolic properties, and considering that colorectal cancer is a malignancy characterized by mitochondrial dysfunction, this review aims to put together existing data on the differences in the mitochondrial genome of CSCs compared to other colorectal tumor cell subpopulations. Additionally, the review seeks to explore the potential roles of these differences and to identify new ideas for therapeutic strategies. Key topics include the identification and properties of CSCs in colorectal cancer, the distinctive features of the mitochondrial genome, and the functional consequences of mtDNA mutations. The review hypothesizes that CSCs rely on well-functioning mitochondria for crucial aspects like energy production; yet, mtDNA mutations can lead to mitochondrial dysfunction, altering CSC characteristics and influencing cancer progression. The article discusses emerging therapeutic approaches targeting mitochondrial function in colorectal CSCs and highlights the need for advanced research, including the development of preclinical models and exploration of targeted therapies, to improve the understanding and treatment of colorectal cancer.
-