Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Mitochondrial fission and fusion play important roles in tumorigenesis, progression and therapy. Dysregulation of these processes may lead to tumor progression, and regulation of these processes may provide novel strategies for cancer therapy. The involvement of genes related to mitochondrial fission and fusion (MD) in gastric cancer (GC) remains poorly understood.

Objective

The aim of this study was to establish an MD gene signature for GC patients and to investigate its association with prognosis, tumor microenvironment and treatment response in GC.

Methods

We use the TCGA-GC database as the cohort, focusing specifically on genes associated with MD. We conducted identification and consistency clustering analysis of differentially expressed genes in MD, conducted MD gene mutation and copy number variation analysis, as well as correlation and functional enrichment analysis between MD gene cluster classification and immune infiltration. TCGA-GC and GSE15459 were used to construct training and validation cohorts for the model. We used various statistical methods, including Cox and Lasso regression, to develop the model. We validated the model using bulk transcriptome and single-cell transcriptome datasets (GSE13861, GSE26901, GSE66229, and GSE13450). We used GSEA enrichment, CIBERSORT algorithm, ESTIMATE, and TIDE to gain insight into the annotation of MD signature and the characterization of the tumor microenvironment. OncoPredict was used to analyze the relationship between the PRG signature and the drug sensitivity. We validated the expression of several key genes in MD signature on GC cell lines using quantitative real-time PCR (qRT-PCR).

Results

These MDs-related subtypes exhibited different prognosis and immune filtration patterns. A five-gene signature, comprising AGT, HCFC1, KIFC3, NOX4, and RIN1, was developed. There was a clear distinction in overall survival between low- and high-risk patients. The analyses showed further confirmation of the independent prognostic value of the gene signature. There was a notable correlation between the MD signature, immune infiltration and drug susceptibility. The expression levels of AGT, HCFC1, KIFC3, NOX4 and RIN1 mRNA were all increased in these GC cells.

Conclusion

The MD signature has the capacity to significantly contribute to the prediction of personalized outcomes and the advancement of novel therapeutic strategies tailored for GC patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673339515240930053412
2024-10-08
2025-11-08
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  3. KolozsiP. VargaZ. TothD. Indications and technical aspects of proximal gastrectomy.Front. Surg.202310111513910.3389/fsurg.2023.111513936874448
    [Google Scholar]
  4. YoonJ. KimT.Y. OhD.Y. Recent progress in immunotherapy for gastric cancer.J. Gastric Cancer202323120722310.5230/jgc.2023.23.e1036751000
    [Google Scholar]
  5. MusiccoC. SignorileA. PesceV. Loguercio PolosaP. CormioA. Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions.Int. J. Mol. Sci.202324131042010.3390/ijms24131042037445598
    [Google Scholar]
  6. ChengJ. ShaZ. ZhangR. GeJ. ChenP. KuangX. ChangJ. RenK. LuoX. ChenS. GouX. L22 ribosomal protein is involved in dynamin-related protein 1-mediated gastric carcinoma progression.Bioengineered20221336650666410.1080/21655979.2022.204584235230214
    [Google Scholar]
  7. EvansJ.A. CarlottiE. LinM.L. HackettR.J. HaugheyM.J. PassmanA.M. DunnL. EliaG. PorterR.J. McLeanM.H. HughesF. ChinAleongJ. WoodlandP. PrestonS.L. GriffinS.M. LovatL. Rodriguez-JustoM. HuangW. WrightN.A. JansenM. McDonaldS.A.C. Clonal transitions and phenotypic evolution in Barrett’s Esophagus.Gastroenterology2022162411971209.e1310.1053/j.gastro.2021.12.27134973296
    [Google Scholar]
  8. CormioA. MusiccoC. GasparreG. CormioG. PesceV. SardanelliA.M. GadaletaM.N. Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency.Biochem. Biophys. Res. Commun.20174911859010.1016/j.bbrc.2017.07.04728698145
    [Google Scholar]
  9. CourtoisS. de Luxán-DelgadoB. Penin-PeytaL. Royo-GarcíaA. Parejo-AlonsoB. JagustP. AlcaláS. RubioloJ.A. SánchezL. SainzB.Jr HeeschenC. SanchoP. Inhibition of mitochondrial dynamics preferentially targets pancreatic cancer cells with enhanced tumorigenic and invasive potential.Cancers (Basel)202113469810.3390/cancers1304069833572276
    [Google Scholar]
  10. ZhangL. SunL. WangL. WangJ. WangD. JiangJ. ZhangJ. ZhouQ. Mitochondrial division inhibitor (mdivi-1) inhibits proliferation and epithelial-mesenchymal transition via the NF-κB pathway in thyroid cancer cells.Toxicol. In Vitro20238810555210.1016/j.tiv.2023.10555236621616
    [Google Scholar]
  11. FuY. DongW. XuY. LiL. YuX. PangY. ChanL. DengY. QianC. Targeting mitochondrial dynamics by AZD5363 in triple-negative breast cancer MDA-MB-231 cell–derived spheres.Naunyn Schmiedebergs Arch. Pharmacol.2023396102545255310.1007/s00210‑023‑02477‑737093249
    [Google Scholar]
  12. ZhouA. ZhangD. KangX. BrooksJ.D. Identification of age- and immune-related gene signatures for clinical outcome prediction in lung adenocarcinoma.Cancer Med.20231216174751749010.1002/cam4.633037434467
    [Google Scholar]
  13. ZhaiX. ChenB. HuH. DengY. ChenY. HongY. RenX. JiangC. Identification of the molecular subtypes and signatures to predict the prognosis, biological functions, and therapeutic response based on the anoikis-related genes in colorectal cancer.Cancer Med.20241310e731510.1002/cam4.731538785271
    [Google Scholar]
  14. LiZ. JinY. QueT. ZhangX.A. YiG. ZhengH. YuanX. WangX. XuH. NanJ. ChenC. WuY. HuangG. Identification of necroptosis-related molecular subtypes and construction of necroptosis-related gene signature for glioblastoma multiforme.Curr. Med. Chem.202331335417543137539935
    [Google Scholar]
  15. YuY. LiJ. LiJ. ZenX. FuQ. Evidence from machine learning, diagnostic hub genes in sepsis and diagnostic models based on xgboost models, novel molecular models for the diagnosis of sepsis.Curr. Med. Chem.20232023706144837921181
    [Google Scholar]
  16. ZhangX. JinL. ZhouC. LiuJ. JiangQ. Significance of aneuploidy in predicting prognosis and treatment response of uveal melanoma.Curr. Med. Chem.202532357959438504568
    [Google Scholar]
  17. MaY. LiZ. LiD. ZhengB. XueY. G0 arrest gene patterns to predict the prognosis and drug sensitivity of patients with lung adenocarcinoma.PLoS One2024198e030907610.1371/journal.pone.030907639159158
    [Google Scholar]
  18. LiN. YuK. HuangD. ZhouH. ZengD. Identifying a novel eight-NK cell-related gene signature for ovarian cancer prognosis prediction.Curr. Med. Chem.202431121578159410.2174/092986733166623083110184737650393
    [Google Scholar]
  19. ChangJ. WuH. WuJ. LiuM. ZhangW. HuY. ZhangX. XuJ. LiL. YuP. ZhuJ. Constructing a novel mitochondrial-related gene signature for evaluating the tumor immune microenvironment and predicting survival in stomach adenocarcinoma.J. Transl. Med.202321119110.1186/s12967‑023‑04033‑636915111
    [Google Scholar]
  20. YangJ. JinF. LiH. ShenY. ShiW. WangL. ZhongL. WuG. WuQ. LiY. Identification of mitochondrial respiratory chain signature for predicting prognosis and immunotherapy response in stomach adenocarcinoma.Cancer Cell Int.20232316910.1186/s12935‑023‑02913‑x37062830
    [Google Scholar]
  21. XiangP. LiF. MaZ. YueJ. LuC. YouY. HouL. YinB. QiangB. ShuP. PengX. HCF-1 promotes cell cycle progression by regulating the expression of CDC42.Cell Death Dis.2020111090710.1038/s41419‑020‑03094‑533097698
    [Google Scholar]
  22. AntonovaA. HummelB. KhavaranA. RedhaberD.M. Aprile-GarciaF. RawatP. GundelK. SchneckM. HansenE.C. MitschkeJ. MittlerG. MiethingC. SawarkarR. Heat-shock protein 90 controls the expression of cell-cycle genes by stabilizing metazoan-specific host-cell factor HCFC1.Cell Reports201911616451659.e9
    [Google Scholar]
  23. DuS. ZengF. SunH. LiuY. HanP. ZhangB. XueW. DengG. YinM. CuiB. Prognostic and therapeutic significance of a novel ferroptosis related signature in colorectal cancer patients.Bioengineered20221322498251210.1080/21655979.2021.201762735067161
    [Google Scholar]
  24. HancockM.L. MeyerR.C. MistryM. KhetaniR.S. WagschalA. ShinT. Ho SuiS.J. NäärA.M. FlanaganJ.G. Insulin receptor associates with promoters genome-wide and regulates gene expression.Cell20191773722736.e2210.1016/j.cell.2019.02.03030955890
    [Google Scholar]
  25. ZhuX. YuanZ. ChengS. WangH. LiaoY. ZhouD. WuZ. TIMM8A is associated with dysfunction of immune cell in BRCA and UCEC for predicting anti-PD-L1 therapy efficacy.World J. Surg. Oncol.202220133610.1186/s12957‑022‑02736‑636207751
    [Google Scholar]
  26. TengF. ZhangJ.X. ChenY. ShenX.D. SuC. GuoY.J. WangP.H. ShiC. LeiM. CaoY.O. LiuS.Q. LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer.Mol. Oncol.20211541234125510.1002/1878‑0261.1291133512745
    [Google Scholar]
  27. LiL. ZhuZ. ZhaoY. ZhangQ. WuX. MiaoB. CaoJ. FeiS. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics.Sci. Rep.201991782710.1038/s41598‑019‑43924‑x31127138
    [Google Scholar]
  28. LiaoJ. PengB. HuangG. DiaoC. QinY. HongY. LinJ. LinY. JiangL. TangN. TangF. LiangJ. ZhangJ. YanY. ChenQ. ZhouZ. ShenC. HuangW. HuangK. LanQ. CuiL. ZhongH. XuF. LiM. WeiY. LuP. ZhangM. Inhibition of NOX4 with GLX351322 alleviates acute ocular hypertension-induced retinal inflammation and injury by suppressing ROS mediated redox-sensitive factors activation.Biomed Pharmacother.2023165115052
    [Google Scholar]
  29. Espinosa-SoteloR. FustéN.P. Peñuelas-HaroI. AlayA. PonsG. AlmodóvarX. AlbaladejoJ. Sánchez-VeraI. Bonilla-AmadeoR. DituriF. SerinoG. RamosE. SerranoT. CalvoM. Martínez-ChantarM.L. GiannelliG. BertranE. FabregatI. Dissecting the role of the NADPH oxidase NOX4 in TGF-beta signaling in hepatocellular carcinoma.Redox Biol.20236510281810.1016/j.redox.2023.10281837463530
    [Google Scholar]
  30. LiuW.J. WangL. ZhouF.M. LiuS.W. WangW. ZhaoE.J. YaoQ.J. LiW. ZhaoY.Q. ShiZ. QiuJ.G. JiangB.H. Elevated NOX4 promotes tumorigenesis and acquired EGFR-TKIs resistance via enhancing IL-8/PD-L1 signaling in NSCLC.Drug Resist. Updat.202370100987
    [Google Scholar]
  31. GarbarinoO. LambroiaL. BassoG. MarrellaV. FranceschiniB. SoldaniC. PasqualiniF. GiulianoD. CostaG. PeanoC. BarbarossaD. AnnaritaD. SalvatiA. TerraccianoL. TorzilliG. DonadonM. FaggioliF. Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis.Aging Cell2023227e1385310.1111/acel.1385337157887
    [Google Scholar]
  32. TingP.Y. JohnsonC.W. FangC. CaoX. GraeberT.G. MattosC. ColicelliJ. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding.FASEB J.20152993750376110.1096/fj.15‑27151025999467
    [Google Scholar]
  33. QiuY. WangY. ChaiZ. NiD. LiX. PuJ. ChenJ. ZhangJ. LuS. LvC. JiM. Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators.Acta Pharm. Sin. B202111113433344610.1016/j.apsb.2021.02.01434900528
    [Google Scholar]
  34. WangY. ZhangJ. ZhengC.C. HuangZ.J. ZhangW.X. LongY.L. GaoG.B. SunY. XuW.W. LiB. HeQ.Y. C20orf24 promotes colorectal cancer progression by recruiting Rin1 to activate Rab5-mediated mitogen-activated protein kinase/extracellular signal-regulated kinase signalling.Clin. Transl. Med.2022124e79610.1002/ctm2.79635389560
    [Google Scholar]
  35. ShimasakiN. JainA. CampanaD. NK cells for cancer immunotherapy.Nat. Rev. Drug Discov.202019320021810.1038/s41573‑019‑0052‑131907401
    [Google Scholar]
  36. GuoF. ZhangY. BaiL. CuiJ. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle.Cancer Lett.202357021632810.1016/j.canlet.2023.21632837499742
    [Google Scholar]
  37. XieG. DongH. LiangY. HamJ.D. RizwanR. ChenJ. CAR-NK cells: A promising cellular immunotherapy for cancer.EBioMedicine20205910297510.1016/j.ebiom.2020.10297532853984
    [Google Scholar]
  38. WenM. LiY. QinX. QinB. WangQ. Insight into cancer immunity: MHCs, immune cells and commensal microbiota.Cells20231214188210.3390/cells1214188237508545
    [Google Scholar]
  39. Gutiérrez-MeloN. BaumjohannD. T follicular helper cells in cancer.Trends Cancer20239430932510.1016/j.trecan.2022.12.00736642575
    [Google Scholar]
  40. MintzM.A. CysterJ.G. T follicular helper cells in germinal center B cell selection and lymphomagenesis.Immunol. Rev.20202961486110.1111/imr.1286032412663
    [Google Scholar]
  41. KomiD.E.A. RedegeldF.A. Role of mast cells in shaping the tumor microenvironment.Clin. Rev. Allergy Immunol.202058331332510.1007/s12016‑019‑08753‑w31256327
    [Google Scholar]
  42. DerakhshaniA. VahidianF. AlihasanzadehM. MokhtarzadehA. Lotfi NezhadP. BaradaranB. Mast cells: A double-edged sword in cancer.Immunol. Lett.2019209283510.1016/j.imlet.2019.03.01130905824
    [Google Scholar]
  43. LichtermanJ.N. ReddyS.M. Mast cells: A new frontier for cancer immunotherapy.Cells2021106127010.3390/cells1006127034063789
    [Google Scholar]
  44. FranceschiS. CorsinoviD. LessiF. TantilloE. AretiniP. MenicagliM. ScopellitiC. CivitaP. PasqualettiF. NaccaratoA.G. OriM. MazzantiC.M. Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression.EBioMedicine201837566710.1016/j.ebiom.2018.10.00830314897
    [Google Scholar]
  45. GaoS.C. WuM.D. ZhangX.X. LiuY.F. WangC.L. Identification of prognostic melatonin-related lncRNA signature in tumor immune microenvironment and drug resistance for breast cancer.Asian J. Surg.20234693529354110.1016/j.asjsur.2023.05.17437330302
    [Google Scholar]
  46. WenzelU. HerzogA. KuntzS. DanielH. Protein expression profiling identifies molecular targets of quercetin as a major dietary flavonoid in human colon cancer cells.Proteomics2004472160217410.1002/pmic.20030072615221776
    [Google Scholar]
  47. TangS.M. DengX.T. ZhouJ. LiQ.P. GeX.X. MiaoL. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed Pharmacother.2020121109604
    [Google Scholar]
  48. Deepika MauryaP.K. Health benefits of quercetin in age-related diseases.Molecules2022278249810.3390/molecules2708249835458696
    [Google Scholar]
  49. RöckenC. Predictive biomarkers in gastric cancer.J. Cancer Res. Clin. Oncol.2023149146748110.1007/s00432‑022‑04408‑036260159
    [Google Scholar]
  50. JiJ. WangZ. SunW. LiZ. CaiH. ZhaoE. CuiH. Effects of cynaroside on cell proliferation, apoptosis, migration and invasion though the MET/AKT/mTOR axis in gastric cancer.Int. J. Mol. Sci.202122221212510.3390/ijms22221212534830011
    [Google Scholar]
  51. JørgensenJ.T. MollerupJ. Companion diagnostics and predictive biomarkers for MET-targeted therapy in NSCLC.Cancers (Basel)2022149215010.3390/cancers1409215035565287
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673339515240930053412
Loading
/content/journals/cmc/10.2174/0109298673339515240930053412
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test