Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Tobacco smoke is an important inducer of airway epithelial cell aging. Punicalagin(PCG) is a natural anti-aging compound. The effect of PCG on tobacco smoke-induced airway epithelial cell senescence is unknown.

Objective

Our study investigated whether PCG can treat the human bronchial epithelial cell line (BEAS-2B) aging by inhibiting the protease-activated receptor 2 (PAR2)/mTOR pathway.

Methods

Bioinformatics techniques were used to analyze the potential biological functions of PAR2. Molecular dynamics evaluated the binding ability of PCG and PAR2. The CCK8 assay was used to detect the cytotoxicity of CSE and PCG. The activity of the PAR2/mTOR pathway and the expression of the characteristic aging markers p16, p21, and SIRT1 are detected by qRT-PCR and Western blotting. Cell senescence was observed by Senescence-associated β-galactosidase (SA-β-gal) staining. The senescence-associated secretory phenotype (SASP): concentrations of interleukin IL-6, IL-8, and TNF-α were detected by ELISA.

Results

The GSE57148 bioinformatics analysis dataset showed that PAR2 regulates lung senescence through the mTOR signaling pathway. Molecular dynamics results found that PCG and PAR2 had a strong and stable binding force. CSE induces BEAS-2B cell senescence and activates the PAR2/mTOR pathway. Inhibition of PAR2 mitigated the senescence changes. In addition, PCG's pretreatment can significantly alleviate CSE-induced BEAS-2B cell senescence while inhibiting the PAR2/mTOR pathway.

Conclusion

PCG has a therapeutic effect on the senescence of airway epithelial cells.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346794241001110826
2024-10-03
2025-11-01
Loading full text...

Full text loading...

References

  1. ReitsmaM.B. KendrickP.J. AbabnehE. AbbafatiC. Abbasi-KangevariM. AbdoliA. AbediA. AbhilashE.S. AbilaD.B. AboyansV. Abu-RmeilehN.M.E. AdebayoO.M. AdvaniS.M. AghaaliM. AhinkorahB.O. AhmadS. AhmadiK. AhmedH. AjiB. AkunnaC.J. Al-AlyZ. AlanziT.M. AlhabibK.F. AliL. AlifS.M. AlipourV. AljunidS.M. AllaF. AllebeckP. Alvis-GuzmanN. AminT.T. AminiS. AmuH. AmulG.G.H. AncuceanuR. AndersonJ.A. Ansari-MoghaddamA. AntonioC.A.T. AntonyB. AnvariD. ArablooJ. ArianN.D. AroraM. AsaadM. AusloosM. AwanA.T. AyanoG. AynalemG.L. AzariS. BD.B. BadiyeA.D. BaigA.A. BakhshaeiM.H. BanachM. BanikP.C. Barker-ColloS.L. BärnighausenT.W. BarqawiH.J. BasuS. BayatiM. Bazargan-HejaziS. BehzadifarM. BekumaT.T. BennettD.A. BensenorI.M. BerfieldK.S.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhattacharyyaK. BibiS. BijaniA. BintoroB.S. BiondiA. BiraraS. BraithwaiteD. BrennerH. BrunoniA.R. BurkartK. ButtZ.A. Caetano dos SantosF.L. CámeraL.A. CarJ. CárdenasR. CarrerasG. CarreroJ.J. Castaldelli-MaiaJ.M. CattaruzzaM.S.S. ChangJ-C. ChenS. ChuD-T. ChungS-C. CirilloM. CostaV.M. CoutoR.A.S. DadrasO. DaiX. DamascenoA.A.M. DamianiG. DandonaL. DandonaR. DaneshpajouhnejadP. Darega GelaJ. DavletovK. Derbew MollaM. DessieG.A. DestaA.A. DharmaratneS.D. DianatinasabM. DiazD. DoH.T. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. Ebrahimi KalanM. EdvardssonK. ElbaraziI. El TantawiM. EsmaeilnejadS. FadhilI. FaraonE.J.A. FarinhaC.S.S. FarwatiM. FarzadfarF. FazlzadehM. FeiginV.L. FeldmanR. Fernandez PrendesC. FerraraP. FilipI. FilippidisF. FischerF. FlorL.S. FoigtN.A. FolayanM.O. ForoutanM. GadM.M. GaidhaneA.M. GallusS. GeberemariyamB.S. GhafourifardM. GhajarA. GhashghaeeA. GiampaoliS. GillP.S. GlozahF.N. GnedovskayaE.V. GolechhaM. GopalaniS.V. GoriniG. GoudarziH. GoulartA.C. GreavesF. GuhaA. GuoY. GuptaB. GuptaR.D. GuptaR. GuptaT. GuptaV. Hafezi-NejadN. HaiderM.R. HamadehR.R. HankeyG.J. HargonoA. HartonoR.K. HassankhaniH. HayS.I. HeidariG. HerteliuC. HezamK. HirdT.R. HoleM.K. HollaR. HosseinzadehM. HostiucS. HousehM. HsiaoT. HuangJ. IannucciV.C. IbitoyeS.E. IdrisovB. IlesanmiO.S. IlicI.M. IlicM.D. InbarajL.R. IrvaniS.S.N. IslamJ.Y. IslamR.M. IslamS.M.S. IslamiF. IsoH. ItumallaR. IwagamiM. JaafariJ. JainV. JakovljevicM. JangS-I. JanjaniH. JayaramS. JeemonP. JhaR.P. JonasJ.B. JooT. JürissonM. KabirA. KabirZ. KalankeshL.R. KanchanT. KandelH. KapoorN. KarimiS.E. KatikireddiS.V. KebedeH.K. KelkayB. KennedyR.D. KhojaA.T. KhubchandaniJ. KimG.R. KimY-E. KimokotiR.W. KivimäkiM. KosenS. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KugbeyN. KumarG.A. KumarN. KurmiO.P. KusumaD. LaceyB. LamJ.O. LandiresI. LasradoS. LauriolaP. LeeD.W. LeeY.H. LeungJ. LiS. LinH. LinnS. LiuW. LopezA.D. LopukhovP.D. LorkowskiS. LugoA. MajeedA. MalekiA. MalekzadehR. MaltaD.C. MamunA.A. ManjunathaN. MansouriB. MansourniaM.A. Martinez-RagaJ. MartiniS. MathurM.R. Medina-SolísC.E. MehataS. MendozaW. MenezesR.G. MeretojaA. MeretojaT.J. MiazgowskiB. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. Mirzaei-AlavijehM. MisraS. MoghadaszadehM. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MonastaL. MoniM.A. MoradiG. Moradi-LakehM. MoradzadehR. MorrisonS.D. MossieT.B. MubarikS. MullanyE.C. MurrayC.J.L. NaghaviM. NaghshtabriziB. NairS. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NaveedM. NayakS. NayakV.C. NazariJ. NduagubaS.O. Neupane KandelS. NguyenC.T. NguyenH.L.T. NguyenS.H. NguyenT.H. NixonM.R. NnajiC.A. NorrvingB. NoubiapJ.J. NowakC. OgboF.A. OguntadeA.S. OhI-H. OlagunjuA.T. OrenE. OtstavnovN. OtstavnovS.S. OwolabiM.O. P AM. PakhaleS. PakshirK. PalladinoR. PanaA. Panda-JonasS. PandeyA. ParekhU. ParkE-C. ParkE-K. Pashazadeh KanF. PattonG.C. PawarS. PestellR.G. PinheiroM. PiradovM.A. PirouzpanahS. PokhrelK.N. PolibinR.V. PrashantA. PribadiD.R.A. RadfarA. Rahimi-MovagharV. RahmanA. RahmanM.H.U. RahmanM.A. RahmaniA.M. RajaiN. RamP. RanabhatC.L. RathiP. RawalL. RenzahoA.M.N. Reynales-ShigematsuL.M. RezapourA. RiahiS.M. RiazM.A. RoeverL. RonfaniL. RoshandelG. RoyA. RoyB. SaccoS. SaddikB. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SawhneyM. SaylanM. SchaubM.P. SchmidtM.I. SchneiderI.J.C. SchutteA.E. SchwendickeF. SeiduA-A. Senthil KumarN. SepanlouS.G. SeylaniA. ShafaatO. ShahS.M. ShaikhM.A. ShalashA.S. ShannawazM. SharafiK. SheikhA. SheikhbahaeiS. ShigematsuM. ShiriR. ShishaniK. ShivakumarK.M. ShivalliS. ShresthaR. SiabaniS. SidemoN.B. SigfusdottirI.D. SigurvinsdottirR. SilvaD.A.S. SilvaJ.P. SinghA. SinghJ.A. SinghV. SinhaD.N. SitasF. SkryabinV.Y. SkryabinaA.A. SobokaM. SorianoJ.B. SoroushA. SoshnikovS. SoyiriI.N. SpurlockE.E. SreeramareddyC.T. SteinD.J. SteiropoulosP. StorteckyS. StraifK. Suliankatchi AbdulkaderR. SuloG. SundströmJ. TabuchiT. TadakamadlaS.K. TaddeleB.W. TadesseE.G. TamiruA.T. TarekeM. TarequeM.I. TariganI.U. TemsahM-H. ThankappanK.R. ThaparR. TichopadA. TolaniM.A. TopouzisF. Tovani-PaloneM.R. TranB.X. TripathyJ.P. TsegayeG.W. TsilimparisN. TymesonH.D. UllahA. UllahS. UnimB. UpdikeR.L. VacanteM. ValdezP.R. VardavasC. Varona PérezP. VasankariT.J. VenketasubramanianN. VermaM. VetrovaM.V. VoB. VuG.T. WaheedY. WangY. WeldingK. WerdeckerA. WhisnantJ.L. WickramasingheN.D. YamagishiK. YandrapalliS. YatsuyaH. Yazdi-FeyzabadiV. YeshawY. YimmerM.Z. YonemotoN. YuC. YunusaI. YusefzadehH. Zahirian MoghadamT. ZamanM.S. ZamanianM. ZandianH. ZarH.J. ZastrozhinM.S. ZastrozhinaA. Zavala-ArciniegaL. ZhangJ. ZhangZ-J. ZhongC. ZunigaY.M.H. GakidouE. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: A systematic analysis from the global burden of disease study 2019.Lancet2021397102922337236010.1016/S0140‑6736(21)01169‑734051883
    [Google Scholar]
  2. World health organizationWHO report on the global tobacco epidemic, 2017: Monitoring tobacco use and prevention policies.2017Available From: https://www.who.int/publications/i/item/9789241512824
    [Google Scholar]
  3. St SauverJ.L. WestonS.A. AtkinsonE.J. Mc GreeM.E. MielkeM.M. WhiteT.A. HeerenA.A. OlsonJ.E. RoccaW.A. PalmerA.K. CummingsS.R. FieldingR.A. BielinskiS.J. LeBrasseurN.K. Biomarkers of cellular senescence and risk of death in humans.Aging Cell20232212e1400610.1111/acel.1400637803875
    [Google Scholar]
  4. WuQ. JiangD. MatsudaJ.L. TernyakK. ZhangB. ChuH.W. Cigarette smoke induces human airway epithelial senescence via growth differentiation factor 15 production.Am. J. Respir. Cell Mol. Biol.201655342943810.1165/rcmb.2015‑0143OC27093475
    [Google Scholar]
  5. VijN. Chandramani-ShivalingappaP. Van WestphalC. HoleR. BodasM. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.Am. J. Physiol. Cell Physiol.20183141C73C8710.1152/ajpcell.00110.201627413169
    [Google Scholar]
  6. Mohamad KamalN.S. SafuanS. ShamsuddinS. ForoozandehP. Aging of the cells: Insight into cellular senescence and detection Methods.Eur. J. Cell Biol.202099615110810.1016/j.ejcb.2020.15110832800277
    [Google Scholar]
  7. LehmannM. HuQ. HuY. HafnerK. CostaR. van den BergA. KönigshoffM. Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells.Cell. Signal.20207010958810.1016/j.cellsig.2020.10958832109549
    [Google Scholar]
  8. MiottoD. HollenbergM.D. BunnettN.W. PapiA. BraccioniF. BoschettoP. ReaF. ZuinA. GeppettiP. SaettaM. MaestrelliP. FabbriL.M. MappC.E. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers.Thorax200257214615110.1136/thorax.57.2.14611828045
    [Google Scholar]
  9. ValenciaI. VallejoS. DongilP. RomeroA. San Hipólito-LuengoÁ. ShamoonL. PosadaM. García-OlmoD. CarraroR. ErusalimskyJ.D. RomachoT. PeiróC. Sánchez-FerrerC.F. DPP4 promotes human endothelial cell senescence and dysfunction via the PAR2–COX-2–TP axis and NLRP3 inflammasome activation.Hypertension20227971361137310.1161/HYPERTENSIONAHA.121.1847735477273
    [Google Scholar]
  10. MannickJ.B. TeoG. BernardoP. QuinnD. RussellK. KlicksteinL. MarshallW. ShergillS. Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: Phase 2b and phase 3 randomised trials.Lancet Healthy Longev.202125e250e26210.1016/S2666‑7568(21)00062‑333977284
    [Google Scholar]
  11. BangE. KimD.H. ChungH.Y. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging.Redox Biol.20214410202210.1016/j.redox.2021.10202234082382
    [Google Scholar]
  12. JiangX. ZhuS. PanettiT.S. BrombergM.E. Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells.Thromb. Haemost.2008100712713310.1160/TH07‑12‑072218612547
    [Google Scholar]
  13. ChenK-D. WangC-C. TsaiM-C. WuC-H. YangH-J. ChenL-Y. NakanoT. GotoS. HuangK-T. HuT-H. ChenC-L. LinC-C. Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma.Cell Death Dis.201455e1244e124410.1038/cddis.2014.21224853422
    [Google Scholar]
  14. KimB.M. KimD.H. ParkY.J. HaS. ChoiY.J. YuH.S. ChungK.W. ChungH.Y. PAR2 promotes high-fat diet-induced hepatic steatosis by inhibiting AMPK-mediated autophagy.J. Nutr. Biochem.20219510876910.1016/j.jnutbio.2021.10876934000413
    [Google Scholar]
  15. LiuB. YangM.Q. YuT.Y. YinY.Y. LiuY. WangX.D. HeZ.G. YinL. ChenC.Q. LiJ.Y. Mast cell tryptase promotes inflammatory bowel disease–induced intestinal fibrosis.Inflamm. Bowel Dis.202127224225510.1093/ibd/izaa12532507895
    [Google Scholar]
  16. DuC. ZhangT. XiaoX. ShiY. DuanH. RenY. Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway.Biochem. J.2017474162733274710.1042/BCJ2017027228694352
    [Google Scholar]
  17. LeeK.H. LeeJ. JeongJ. WooJ. LeeC.H. YooC.G. Cigarette smoke extract enhances neutrophil elastase-induced IL-8 production via proteinase-activated receptor-2 upregulation in human bronchial epithelial cells.Exp. Mol. Med.20185071910.1038/s12276‑018‑0114‑129980681
    [Google Scholar]
  18. SumereB.R. de SouzaM.C. dos SantosM.P. BezerraR.M.N. da CunhaD.T. MartinezJ. RostagnoM.A. Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.).Ultrason. Sonochem.20184815116210.1016/j.ultsonch.2018.05.02830080537
    [Google Scholar]
  19. SeeramN. AdamsL. HenningS. NiuY. ZhangY. NairM. HeberD. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice.J. Nutr. Biochem.200516636036710.1016/j.jnutbio.2005.01.00615936648
    [Google Scholar]
  20. GanesanT. SinniahA. ChikZ. AlshawshM.A. Punicalagin regulates apoptosis-autophagy switch via modulation of annexin A1 in colorectal cancer.Nutrients2020128243010.3390/nu1208243032823596
    [Google Scholar]
  21. LuoJ. LongY. RenG. ZhangY. ChenJ. HuangR. YangL. Punicalagin reversed the hepatic injury of tetrachloromethane by antioxidation and enhancement of autophagy.J. Med. Food201922121271127910.1089/jmf.2019.441131718395
    [Google Scholar]
  22. SuručićR. TubićB. StojiljkovićM.P. DjuricD.M. TravarM. GrabežM. ŠavikinK. ŠkrbićR. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization.Mol. Cell. Biochem.202147621179119310.1007/s11010‑020‑03981‑733200379
    [Google Scholar]
  23. XuY. ShiC. WuQ. ZhengZ. LiuP. LiG. PengX. XiaX. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation.Foodborne Pathog. Dis.201714528228710.1089/fpd.2016.222628128637
    [Google Scholar]
  24. ChenP. ChenF. LeiJ. ZhouB. Pomegranate polyphenol punicalagin improves learning memory deficits, redox homeostasis, and neuroinflammation in aging mice.Phytother. Res.20233793655367410.1002/ptr.784837092799
    [Google Scholar]
  25. ChengX. YaoX. XuS. PanJ. YuH. BaoJ. GuanH. LuR. ZhangL. Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells via NF-κB signaling pathway.Biomed. Pharmacother.201810349049810.1016/j.biopha.2018.04.07429677534
    [Google Scholar]
  26. SubkornP. NorkaewC. DeesrisakK. TanyongD. Punicalagin, a pomegranate compound, induces apoptosis and autophagy in acute leukemia.Peer. J.20219e1230310.7717/peerj.1230334760363
    [Google Scholar]
  27. ZhangL. ChengX. GaoY. ZhengJ. XuQ. SunY. GuanH. YuH. SunZ. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells.Food Funct.20156113464347210.1039/C5FO00671F26292725
    [Google Scholar]
  28. WangY. ChenB. LongtineM.S. NelsonD.M. Punicalagin promotes autophagy to protect primary human syncytiotrophoblasts from apoptosis.Reproduction201615129710410.1530/REP‑15‑028726659860
    [Google Scholar]
  29. SeoY. MunC.H. ParkS.H. JeonD. KimS.J. YoonT. KoE. JoS. ParkY.B. NamkungW. LeeS.W. Punicalagin ameliorates lupus nephritis via inhibition of PAR2.Int. J. Mol. Sci.20202114497510.3390/ijms2114497532674502
    [Google Scholar]
  30. ZengX. YangX. LiuX. Resveratrol attenuates cigarette smoke extract induced cellular senescence in human airway epithelial cells by regulating the miR-34a/SIRT1/NF-κB pathway.Medicine (Baltimore)202210146e3194410.1097/MD.000000000003194436401446
    [Google Scholar]
  31. AhmadT. SundarI.K. TormosA.M. LernerC.A. GerloffJ. YaoH. RahmanI. Shelterin telomere protection protein 1 reduction causes telomere attrition and cellular senescence via sirtuin 1 deacetylase in chronic obstructive pulmonary disease.Am. J. Respir. Cell Mol. Biol.2017561384910.1165/rcmb.2016‑0198OC27559927
    [Google Scholar]
  32. DavalliP. MarvertiG. LauriolaA. D’ArcaD. Targeting oxidatively induced dna damage response in cancer: Opportunities for novel cancer therapies.Oxid. Med. Cell. Longev.201820181238952310.1155/2018/238952329770165
    [Google Scholar]
  33. VoicH. LiX. JangJ.H. ZouC. SunddP. AlderJ. RojasM. ChandraD. RandellS. MallampalliR.K. TesfaigziY. RybaT. NyunoyaT. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia.BMC Genomics20192012210.1186/s12864‑018‑5409‑z30626320
    [Google Scholar]
  34. HuangW. HicksonL.J. EirinA. KirklandJ.L. LermanL.O. Cellular senescence: The good, the bad and the unknown.Nat. Rev. Nephrol.2022181061162710.1038/s41581‑022‑00601‑z35922662
    [Google Scholar]
  35. NascimentoM. GombaultA. Lacerda-QueirozN. PanekC. SavignyF. SbeityM. BourinetM. Le BertM. RiteauN. RyffelB. QuesniauxV.F.J. CouillinI. Self-DNA release and STING-dependent sensing drives inflammation to cigarette smoke in mice.Sci. Rep.2019911484810.1038/s41598‑019‑51427‑y31619733
    [Google Scholar]
  36. Pando-SandovalA. Ruano-RavinaA. Candal-PedreiraC. Rodríguez-GarcíaC. Represas-RepresasC. GolpeR. Fernández-VillarA. Pérez-RíosM. Risk factors for chronic obstructive pulmonary disease in never-smokers: A systematic review.Clin. Respir. J.202216426127510.1111/crj.1347935142054
    [Google Scholar]
  37. BarnesP.J. Oxidative stress in chronic obstructive pulmonary disease.Antioxidants202211596510.3390/antiox1105096535624831
    [Google Scholar]
  38. BakerR.R. Pereira da SilvaJ.R. SmithG. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives.Food Chem. Toxicol.200442Suppl.33710.1016/S0278‑6915(03)00189‑315072836
    [Google Scholar]
  39. LiJ. TangL.Y. FuW.W. YuanJ. ShengY.Y. YangQ.P. Low-concentration hydrogen peroxide can upregulate keratinocyte intracellular calcium and PAR-2 expression in a human keratinocyte–melanocyte co-culture system.Arch. Dermatol. Res.20163081072373110.1007/s00403‑016‑1692‑127722782
    [Google Scholar]
  40. TianT. LiX. ZhangJ. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy.Int. J. Mol. Sci.201920375510.3390/ijms2003075530754640
    [Google Scholar]
  41. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  42. HoussainiA. BreauM. KebeK. AbidS. MarcosE. LipskaiaL. RideauD. ParpaleixA. HuangJ. AmsellemV. VienneyN. ValidireP. MaitreB. AttweA. LukasC. VindrieuxD. BoczkowskiJ. DerumeauxG. PendeM. BernardD. MeinersS. AdnotS. mTOR pathway activation drives lung cell senescence and emphysema.JCI Insight201833e9320310.1172/jci.insight.9320329415880
    [Google Scholar]
  43. TangK.L. TangH.Y. DuY. TianT. XiongS.J. PAR-2 promotes cell proliferation, migration, and invasion through activating PI3K/AKT signaling pathway in oral squamous cell carcinoma.Biosci. Rep.2019397BSR2018247610.1042/BSR2018247631213575
    [Google Scholar]
  44. ShahH. HillT.A. LimJ. FairlieD.P. Protease-activated receptor 2 attenuates doxorubicin-induced apoptosis in colon cancer cells.J. Cell Commun. Signal.20231741293130710.1007/s12079‑023‑00791‑637991681
    [Google Scholar]
  45. JiangY. ZhuoX. FuX. WuY. MaoC. Targeting PAR2 overcomes gefitinib resistance in non-small-cell lung cancer cells through inhibition of EGFR transactivation.Front. Pharmacol.20211262528910.3389/fphar.2021.62528933967759
    [Google Scholar]
  46. JiangY. ZhuoX. WuY. FuX. MaoC. PAR2 blockade reverses osimertinib resistance in non-small-cell lung cancer cells via attenuating ERK-mediated EMT and PD-L1 expression.Biochim. Biophys. Acta Mol. Cell Res.20221869111914410.1016/j.bbamcr.2021.11914434599981
    [Google Scholar]
  47. HuangX. NiB. XiY. ChuX. ZhangR. YouH. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis.Aging (Albany NY)20191124125321254510.18632/aging.10258631841119
    [Google Scholar]
  48. GeS. DuoL. WangJ. GegenZhula YangJ. LiZ. TuY. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status.J. Ethnopharmacol.202127111387710.1016/j.jep.2021.11387733515685
    [Google Scholar]
  49. SinghB. SinghJ.P. KaurA. SinghN. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review.Food Chem.2018261758610.1016/j.foodchem.2018.04.03929739608
    [Google Scholar]
  50. BabbarN. Biotransformation of waste biomass into high value biochemicals.ChamSpringer2013261295
    [Google Scholar]
  51. AkhtarS. IsmailT. FraternaleD. SestiliP. Pomegranate peel and peel extracts: Chemistry and food features.Food Chem.201517441742510.1016/j.foodchem.2014.11.03525529700
    [Google Scholar]
  52. IsmailT. SestiliP. AkhtarS. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects.J. Ethnopharmacol.2012143239740510.1016/j.jep.2012.07.00422820239
    [Google Scholar]
  53. Rice-EvansC. MillerN. PagangaG. Antioxidant properties of phenolic compounds.Trends Plant Sci.19972415215910.1016/S1360‑1385(97)01018‑2
    [Google Scholar]
  54. BalasundramN. SundramK. SammanS. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses.Food Chem.200699119120310.1016/j.foodchem.2005.07.042
    [Google Scholar]
  55. ElfallehW. TliliN. NasriN. YahiaY. HannachiH. ChairaN. YingM. FerchichiA. Antioxidant capacities of phenolic compounds and tocopherols from Tunisian pomegranate (Punica granatum) fruits.J. Food Sci.2011765C707C71310.1111/j.1750‑3841.2011.02179.x22417416
    [Google Scholar]
  56. Sanchez-MaldonadoA.F. Mode of action, interaction and recovery of plant secondary metabolites for potential applications as food preservatives.2014Available From: https://era.library.ualberta.ca/items/5bf7180c-2581-492d-925e-ad1a07f65fab
  57. López-MarcosM.C. BailinaC. Viuda-MartosM. Pérez-AlvarezJ.A. Fernández-LópezJ. Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods.Food Bioprocess Technol.20158122400240810.1007/s11947‑015‑1591‑z
    [Google Scholar]
  58. ChoiM.E. JungC.J. WonC.H. ChangS.E. LeeM.W. ChoiJ.H. LeeW.J. Case report of cutaneous nodule caused by Gordonia bronchialis in an immunocompetent patient after receiving acupuncture.J. Dermatol.201946434334610.1111/1346‑8138.1478530710379
    [Google Scholar]
  59. MoilanenJ. KaronenM. TähtinenP. JacquetR. QuideauS. SalminenJ.P. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators.Phytochemistry2016125657210.1016/j.phytochem.2016.02.00826899362
    [Google Scholar]
  60. KulkarniA.P. MahalH.S. KapoorS. AradhyaS.M. In vitro studies on the binding, antioxidant, and cytotoxic actions of punicalagin.J. Agric. Food Chem.20075541491150010.1021/jf062672017243704
    [Google Scholar]
  61. González-SarríasA. García-VillalbaR. Núñez-SánchezM.Á. Tomé-CarneiroJ. ZafrillaP. MuleroJ. Tomás-BarberánF.A. EspínJ.C. Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts.J. Funct. Foods20151922523510.1016/j.jff.2015.09.019
    [Google Scholar]
  62. XuX. YinP. WanC. ChongX. LiuM. ChengP. ChenJ. LiuF. XuJ. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.Inflammation201437395696510.1007/s10753‑014‑9816‑224473904
    [Google Scholar]
  63. CaoY. ChenJ. RenG. ZhangY. TanX. YangL. Punicalagin prevents inflammation in LPS- induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway.Nutrients20191111279410.3390/nu1111279431731808
    [Google Scholar]
  64. ZhangL. ChinnathambiA. AlharbiS.A. VeeraraghavanV.P. MohanS.K. ZhangG. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway.Saudi J. Biol. Sci.20202741100110610.1016/j.sjbs.2020.02.01532256171
    [Google Scholar]
  65. CarneiroC.C. da Costa SantosS. de Souza LinoR.Jr BaraM.T.F. ChaibubB.A. de Melo ReisP.R. ChavesD.A. da SilvaA.J.R. SilvaL.S. de Melo e SilvaD. Chen-ChenL. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil.Toxicol. Appl. Pharmacol.20163101810.1016/j.taap.2016.08.01527546523
    [Google Scholar]
  66. TangJ. LiB. HongS. LiuC. MinJ. HuM. LiY. LiuY. HongL. Punicalagin suppresses the proliferation and invasion of cervical cancer cells through inhibition of the β-catenin pathway.Mol. Med. Rep.20171621439144410.3892/mmr.2017.668728586031
    [Google Scholar]
  67. WangS. HuangM. LiJ. LaiF. LeeH. HsuY. Punicalagin induces apoptotic and autophagic cell death in human U87MG glioma cells.Acta Pharmacol. Sin.201334111411141910.1038/aps.2013.9824077634
    [Google Scholar]
  68. AmmarO. Urolithins and their antimicrobial activity: A short review.EMU J. Pharmaceut. Sci.201932117124
    [Google Scholar]
  69. LinL.T. ChenT.Y. LinS.C. ChungC.Y. LinT.C. WangG.H. AndersonR. LinC.C. RichardsonC.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry.BMC Microbiol.201313118710.1186/1471‑2180‑13‑18723924316
    [Google Scholar]
  70. LiuF. SmithA.D. WangT.T.Y. PhamQ. YangH. LiR.W. Ellagitannin punicalagin disrupts the pathways related to bacterial growth and affects multiple pattern recognition receptor signaling by acting as a selective histone deacetylase inhibitor.J. Agric. Food Chem.202371125016502610.1021/acs.jafc.2c0873836917202
    [Google Scholar]
  71. LuL. PengY. YaoH. WangY. LiJ. YangY. LinZ. Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro.Antiviral Res.202220610538910.1016/j.antiviral.2022.10538935985407
    [Google Scholar]
  72. WangY. ZhangH. LiangH. YuanQ. Purification, antioxidant activity and protein-precipitating capacity of punicalin from pomegranate husk.Food Chem.2013138143744310.1016/j.foodchem.2012.10.09223265509
    [Google Scholar]
  73. YuL. LiJ. Punicalagin attenuated allergic airway inflammation via regulating IL4/IL-4Rα/STAT6 and Notch- GATA3 pathways.Acta Pharm.202272456157310.2478/acph‑2022‑003836651367
    [Google Scholar]
  74. OhanyanN. AbelyanN. ManukyanA. HayrapetyanV. ChailyanS. TiratsuyanS. DanielyanK. Tannin-albumin particles as stable carriers of medicines.Nanomedicine (Lond.)202419868970810.2217/nnm‑2023‑027538348681
    [Google Scholar]
  75. ChengR.K.Y. Fiez-VandalC. SchlenkerO. EdmanK. AggelerB. BrownD.G. BrownG.A. CookeR.M. DumelinC.E. DoréA.S. GeschwindnerS. GrebnerC. HermanssonN.O. JazayeriA. JohanssonP. LeongL. PrihandokoR. RappasM. SoutterH. SnijderA. SundströmL. TehanB. ThorntonP. TroastD. WigginG. ZhukovA. MarshallF.H. DekkerN. Structural insight into allosteric modulation of protease-activated receptor 2.Nature2017545765211211510.1038/nature2230928445455
    [Google Scholar]
  76. SeoY. MunC.H. ParkY.B. LeeS.W. NamkungW. Novel PAR2 antagonist ameliorates progression of lupus nephritis in NZB/Z F1 mice.FASEB J.202034S11110.1096/fasebj.2020.34.s1.03867
    [Google Scholar]
  77. ZhangW. ZhuQ. Punicalagin suppresses inflammation in ventilator-induced lung injury through protease-activated receptor-2 inhibition-induced inhibition of NLR family pyrin domain containing-3 inflammasome activation.Chem. Biol. Drug Des.2022100221822910.1111/cbdd.1405935434894
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346794241001110826
Loading
/content/journals/cmc/10.2174/0109298673346794241001110826
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): airway; cellular senescence; Cigarette smoke; mTOR; PAR2; punicalagin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test