Current Medicinal Chemistry - Volume 30, Issue 36, 2023
Volume 30, Issue 36, 2023
-
-
Interactions of Copper(II) and Zinc(II) Ions with the Peptide Fragments of Proteins Related to Neurodegenerative Disorders: Similarities and Differences
Authors: Imre Sóvágó, Katalin Várnagy, Csilla Kállay and Ágnes GrenácsMetal binding ability and coordination modes of the copper(II) and zinc(II) complexes of various peptide fragments of prion, amyloid-β, and tau proteins, are summarized in this review. Imidazole-N donors are the primary metal binding sites of all three proteins, but the difference in the location of these residues and the presence or absence of other coordinating side chains result in significant differences in the complex formation processes. The presence of macrochelates and the possibility of forming multicopper complexes are the most important characteristic of prion fragments. Amyloid-β can form highly stable complexes with both copper(II) and zinc(II) ions, but the preferred binding sites are different for the two metal ions. Similar observations are obtained for the tau fragments, but the metal ion selectivity of the various fragments is even more pronounced. In addition to the complex formation, copper(II) ions can play an important role in the various oxidative reactions of peptides. Results of the metal ion-catalyzed oxidation of peptide fragments of prion, amyloid-β, and tau proteins are also summarized. Amino acid side chain oxidation (mostly methionine, histidine and aspartic acid) and protein fragmentations are the most common consequences of this process.
-
-
-
The Use of Surface Plasmon Resonance to Study the Interactions of Proteins Involved in Conformational Diseases: Experimental Approaches for New Therapeutical Perspectives
Authors: Gabriele A. Zingale, Alessia Distefano and Giuseppe GrassoIn recent years, the scientific community has been trying to tackle different diseases by using unifying and holistic approaches based on the concept that it is possible to target apparently very different diseases under a comprehensive general scheme. In other words, various different diseases have been grouped together under the label of “conformational diseases”, because the triggering cause for each malady is the misfolding of a specific protein, whose dyshomeostasis and accumulation cause all the other downhill biomolecular events characteristic of each different disease. In a parallel manner, analytical techniques have developed to investigate protein misfolding and accumulation, so as to give a valid technical support to the investigation of conformational diseases. In this scenario, surface plasmon resonance (SPR) has widely contributed to study many different aspects correlated to conformational diseases, offering the advantages of real time investigations, use of small amounts of biological materials and possibility to mimic the cellular environments without recurring to the use of fluorescent tags. In this review, after a brief introduction about conformational diseases and the SPR technique, a thorough description of the various uses of SPR to investigate the biomolecular mechanisms involved in these diseases is given in order to provide the reader with an exhaustive list as well as a critical perspective of the use of SPR for such topic. The case of Alzheimer’s disease is discussed at a deeper level. We hope that this work will make the reader aware of all the possible SPR experimental approaches, which can be used to develop new possible therapeutic strategies to tackle conformational diseases.
-
-
-
Clinical Application and Synthesis Methods of Deuterated Drugs
Authors: Xiao-Liang Xu, Wen Zhang and Guo-Wu RaoMany drugs have adverse absorption, distribution, metabolism, and excretory (ADME) properties that prevent their widespread use or limit their use in some indications. In addition to preparation techniques and prodrug strategies, deuterium modification is a viable method for improving ADME properties. Deuterated drugs have attracted increasing attention from the pharmaceutical industry in recent years. To date, two deuterated drugs have been approved by the FDA. In 2017, austedo was approved by the FDA as a new drug for Huntington's disease in the United States, the first deuterium drug to be marketed worldwide. Recently (June 9, 2021), donafinil has been listed in China; this result has caused major pharmaceutical companies and the pharmaceutical industry to pay attention to deuterium technology again. In addition, BMS-986165, RT001, ALK-001, HC-1119, AVP-786 and other drugs are in phase III clinical studies, and some solid deuterium compounds have entered phase I and II clinical trials. The deuterium strategy has been widely used in pharmaceutical research and has become a hot spot in pharmaceutical research in recent years. In this paper, the research and development of deuterated drugs are reviewed, and the influence of deuterium modification on drugs, the advantages of deuterium strategies and the synthesis strategies of deuterated drugs are mainly introduced. Hoping to provide references for clinical application, the discovery of new deuterium chemical entities and research and development of new deuterated drugs.
-
-
-
Role of Non-coding RNA in the Pathogenesis of Intestinal Ischemia- Reperfusion Injury
Authors: Jianmin Zhang, Zhenzhen Liu, Yongqiang Liu, Yajing Shi, Feng Chen and Yufang LengIntestinal ischemia-reperfusion injury is a relatively common clinical condition that seriously threatens the prognosis of patients; however, the exact mechanism of intestinal ischemia-reperfusion injury has not been clarified. Recent studies have found that noncoding RNAs, including but not limited to lncRNA, circRNA, and miRNA, play an important role in the pathogenesis of intestinal ischemia-reperfusion. The findings cited in this paper reveal the expression, function, and mechanism of noncoding RNAs during intestinal ischemia-reperfusion. The mechanistic roles of noncoding RNAs in the occurrence and development of intestinal ischemia-reperfusion are discussed, including cell proliferation, autophagy, oxidative stress, apoptosis, oxidative stress, iron death, and many other aspects. However, many unknown mechanisms of association between noncoding RNAs and intestinal ischemia-reperfusion remain to be investigated.
-
-
-
Assessing the Therapeutic and Toxicological Profile of Novel Acetylcholinesterase Reactivators: Value of In Silico And In Vitro Data
Organophosphorus compounds (OP) make up an important class of inhibitors, mostly employed as pesticides, even as chemical weapons. These toxic substances act through the inhibition of the acetylcholinesterase (AChE) enzyme, which results in elevated synaptic acetylcholine (ACh) levels, leading to serious adverse effects under the cholinergic syndrome. Many reactivators have been developed to combat the toxic effects of these AChE inhibitors. In this line, the oximes highlight because of their good reactivating power of cholinesterase enzymes. To date, no universal antidotes can reactivate AChE inhibited by any OP agent. This review summarizes the intoxication process by neurotoxic OP agents, along with the development of reactivators capable of reversing their effects, approaching aspects like the therapeutic and toxicological profile of these antidotes. Computational methods and conscious in vitro studies, capable of significantly predicting the toxicological profile of these drug candidates, might support the process of development of these reactivators before entering in vivo studies in animals, and then clinical trials. These approaches can assist in the design of safer and more effective molecules, reducing related cost and time for the process.
-
-
-
Corrigendum to: Update of the Preclinical Situation of Anticancer Platinum Complexes: Novel Design Strategies and Innovative Analytical Approaches
Authors: Mathea S. Galanski, Michael A. Jakupec and Bernhard K. KepplerAn article was published in the journal "Current Medicinal Chemistry," Volume 12, No. 18, 2005, pp: 2075-2094 [1]. The first author is requesting an alteration in the name. Details of a correction are provided here. The original name published was Markus Galanski. The request is to change the name to Mathea Sophia Galanski. The original article can be found online at: http://www.benthamscience.com/article/5874
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
