Skip to content
2000
Volume 30, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Metal binding ability and coordination modes of the copper(II) and zinc(II) complexes of various peptide fragments of prion, amyloid-β, and tau proteins, are summarized in this review. Imidazole-N donors are the primary metal binding sites of all three proteins, but the difference in the location of these residues and the presence or absence of other coordinating side chains result in significant differences in the complex formation processes. The presence of macrochelates and the possibility of forming multicopper complexes are the most important characteristic of prion fragments. Amyloid-β can form highly stable complexes with both copper(II) and zinc(II) ions, but the preferred binding sites are different for the two metal ions. Similar observations are obtained for the tau fragments, but the metal ion selectivity of the various fragments is even more pronounced. In addition to the complex formation, copper(II) ions can play an important role in the various oxidative reactions of peptides. Results of the metal ion-catalyzed oxidation of peptide fragments of prion, amyloid-β, and tau proteins are also summarized. Amino acid side chain oxidation (mostly methionine, histidine and aspartic acid) and protein fragmentations are the most common consequences of this process.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867329666220915140852
2023-11-01
2025-09-05
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867329666220915140852
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test