Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Biosurfactants, derived from microorganisms and waste-biomass, are eco-friendly biomolecules with surfactant properties. Their biodegradability, low toxicity, and diverse applications across industries make them valuable for multifaceted applications including environmental, food, pharmaceutical, and cosmetic sectors. Biosurfactants offer a sustainable alternative to synthetic surfactants, with potential applications in environmental remediation, food processing, pharmaceuticals, and cosmetics. By integrating circular bioeconomy principles, reducing production costs, and exploring personalized applications, biosurfactants are poised to revolutionize industries, promoting sustainability and environmental health. Thus, continued innovation and interdisciplinary collaboration may further drive the development and utilization of biosurfactants, contributing to a cleaner, greener future. This review delves into the advancements in biosurfactant synthesis, their broad applications, and emerging research focusing on optimizing production processes through waste-biomass-valorisation and biotechnological innovations. The review article also addresses challenges in production cost and scalability. Future perspectives emphasize sustainable production strategies to enhance industrial viability.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673376660250612103900
2025-07-01
2025-11-01
Loading full text...

Full text loading...

References

  1. MarkandeA.R. PatelD. VarjaniS. A review on biosurfactants: Properties, applications and current developments.Bioresour. Technol.202133012496310.1016/j.biortech.2021.12496333744735
    [Google Scholar]
  2. Selva FilhoA.A.P. ConvertiA. Soares da SilvaR.C.F. SarubboL.A. Biosurfactants as multifunctional remediation agents of environmental pollutants generated by the petroleum industry.Energies2023163120910.3390/en16031209
    [Google Scholar]
  3. KarlapudiA.P. VenkateswaruluT.C. TammineediJ. KanumuriL. RavuruB.K. DirisalaV. KodaliV.P. Role of biosurfactants in bioremediation of oil pollution-A review.Petroleum20184324124910.1016/j.petlm.2018.03.007
    [Google Scholar]
  4. KarmakarK. SarkarR. PalA. RahamanS.M. AcharjeeA. SahaB. Recent advances and emerging trends in biosurfactants: A concise review.J. Solution Chem.202512810.1007/s10953‑024‑01425‑0
    [Google Scholar]
  5. AraújoJ. RochaJ. FilhoM.O. MatiasS. JúniorS.O. PadilhaC. SantosE. Rhamno lipids biosurfactants from Pseudomonas aeruginosa - a review.Biosci. Biotechnol. Res. Asia201815476778110.13005/bbra/2685
    [Google Scholar]
  6. PalS. ChatterjeeN. DasA.K. McClementsD.J. DharP. Sophorolipids: A comprehensive review on properties and applications.Adv. Colloid Interface Sci.202331310285610.1016/j.cis.2023.10285636827914
    [Google Scholar]
  7. FernandesN.A.T. SimõesL.A. DiasD.R. Biosurfactants produced by yeasts: Fermentation, screening, recovery, purification, characterization, and applications.Fermentation20239320710.3390/fermentation9030207
    [Google Scholar]
  8. LadB.C. ColemanS.M. AlperH.S. Microbial valorization of underutilized and nonconventional waste streams.J. Ind. Microbiol. Biotechnol.2022492kuab05610.1093/jimb/kuab05634529075
    [Google Scholar]
  9. ChaudharyV KajlaP LuthraA SiwachR. Whey: As a low-cost substrate for the production of biosurfactants.Whey Valorization.SpringerSingapore202328531010.1007/978‑981‑99‑5459‑9_14
    [Google Scholar]
  10. JahanR. BodrattiA.M. TsianouM. AlexandridisP. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications.Adv. Colloid Interface Sci.202027510206110.1016/j.cis.2019.10206131767119
    [Google Scholar]
  11. Domínguez RiveraÁ. Martínez UrbinaM.Á. López y LópezV.E. Advances on research in the use of agro-industrial waste in biosurfactant production.World J. Microbiol. Biotechnol.2019351015510.1007/s11274‑019‑2729‑331576428
    [Google Scholar]
  12. JohnsonP. TrybalaA. StarovV. PinfieldV.J. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants.Adv. Colloid Interface Sci.202128810234010.1016/j.cis.2020.10234033383470
    [Google Scholar]
  13. KumariR. SinghaL.P. ShuklaP. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications.FEMS Microbes20234xtad01510.1093/femsmc/xtad01537614639
    [Google Scholar]
  14. FracchiaL CavalloM MartinottiMG BanatIM. Biosurfactants and bioemulsifiers biomedical and related applications–present status and future potentials.Biomedical Science, Engineering and TechnologyInTech201210.5772/23821
    [Google Scholar]
  15. OhadiM. ForootanfarH. DehghannoudehG. EslaminejadT. AmeriA. ShakibaieM. Adeli-SardouM. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6.Microb. Pathog.202013810380610.1016/j.micpath.2019.10380631629797
    [Google Scholar]
  16. SchirmeisterC.G. MülhauptR. Closing the carbon loop in the circular plastics economy.Macromol. Rapid Commun.20224313220024710.1002/marc.20220024735635841
    [Google Scholar]
  17. SharmaD. Biosurfactants: greener surface active agents for sustainable future.SingaporeSpringer202110.1007/978‑981‑16‑2705‑7
    [Google Scholar]
  18. AzmanN.R. AsliU.A. DolitS.A. SakariaN.D. AbidinM.H.S.Z. NazriM.Z. Pineapple waste biosurfactant: sustainable soil clean up via optimization, characterization and sorption kinetics.Int. J. Environ. Sci. Technol.202421159593961010.1007/s13762‑024‑05620‑w
    [Google Scholar]
  19. WideraB. TyszkiewiczN. TruuJ. RutkowskiP. MłynarzP. PasternakG. Relationship between biodiversity and power generated by anodic bacteria enriched from petroleum-contaminated soil at various potentials.Int. Biodeterior. Biodegradation202419410584910.1016/j.ibiod.2024.105849
    [Google Scholar]
  20. ChakankarM. PollmannK. RudolphM. Selective removal of Gallium from mixed metal solutions with Arsenic by ion flotation using the biosurfactant rhamnolipid.J. Water Process Eng.20245810487910.1016/j.jwpe.2024.104879
    [Google Scholar]
  21. AhmadZ. ZhangX. ImranM. ZhongH. AndleebS. ZulekhaR. LiuG. AhmadI. CoulonF. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems.Ecotoxicol. Environ. Saf.202120711151410.1016/j.ecoenv.2020.11151433254394
    [Google Scholar]
  22. BeheraS. DasS. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations.Microbiol. Res.202327312739910.1016/j.micres.2023.12739937150049
    [Google Scholar]
  23. Golzar-AhmadiM. Bahaloo-HorehN. PourhosseinF. NorouziF. SchoenbergerN. HintersatzC. Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste.Biotechnol. Adv.20247710843810.1016/j.biotechadv.2024.108438
    [Google Scholar]
  24. FernandesS. GomesI.B. SimõesM. SimõesL.C. Novel chemical-based approaches for biofilm cleaning and disinfection.Curr Opin Food Sci20245510112410.1016/j.cofs.2024.101124
    [Google Scholar]
  25. SchalchliH. LamillaC. RubilarO. BriceñoG. GallardoF. DuránN. HuenchupanA. DiezM.C. Production and characterization of a biosurfactant produced by Bacillus amyloliquefaciens C11 for enhancing the solubility of pesticides.J. Environ. Chem. Eng.202311611157210.1016/j.jece.2023.111572
    [Google Scholar]
  26. SharmaV. TsaiM.L. NargotraP. ChenC.W. KuoC.H. SunP.P. DongC.D. Agro-industrial food waste as a low-cost substrate for sustainable production of industrial enzymes: A critical review.Catalysts20221211137310.3390/catal12111373
    [Google Scholar]
  27. CheS. MenY. Synthetic microbial consortia for biosynthesis and biodegradation: Promises and challenges.J. Ind. Microbiol. Biotechnol.2019469-101343135810.1007/s10295‑019‑02211‑431278525
    [Google Scholar]
  28. KamaleshT. Advances in stabilization of metallic nanoparticle with biosurfactants-A review on current trends.Heliyon2024
    [Google Scholar]
  29. MgbechidinmaC.L. AkanO.D. ZhangC. HuangM. LinusN. ZhuH. WakilS.M. Integration of green economy concepts for sustainable biosurfactant production – A review.Bioresour. Technol.202236412802110.1016/j.biortech.2022.12802136167175
    [Google Scholar]
  30. GayathiriE. PrakashP. KarmegamN. VarjaniS. AwasthiM.K. RavindranB. Biosurfactants: Potential and eco-friendly material for sustainable agriculture and environmental safety-A review.Agronomy202212366210.3390/agronomy12030662
    [Google Scholar]
  31. WandigaC.A. Success factors linking new environmental products with academic knowledge and firm knowledge partnerships: An examination of biosurfactant decision-making complexity.Doctoral dissertation, Walden University2024
    [Google Scholar]
  32. AmbayeT.G. FormicolaF. SbaffoniS. LimaA.T.M. FranzettiA. VaccariM. Environmental and economic performance of chemical and biological processes for treating petroleum hydrocarbon-contaminated soil: An experimental study.J. Environ. Chem. Eng.202412511367210.1016/j.jece.2024.113672
    [Google Scholar]
  33. KarnwalA. ShrivastavaS. Al-TawahaA.R.M.S. KumarG. SinghR. KumarA. MohanA. Yogita MalikT. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: A critical review.BioMed Res. Int.202320231237522310.1155/2023/237522337090190
    [Google Scholar]
  34. NurfarahinA.H. MohamedM.S. PhangL.Y. Culture medium development for microbial-derived surfactants production-An overview.Molecules2018235104910.3390/molecules2305104929723959
    [Google Scholar]
  35. Miró-VinyalsB. ArtiguesM. WostrikoffK. MonteE. Broto-PuigF. LeivarP. PlanasA. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants.N. Biotechnol.20237611210.1016/j.nbt.2023.03.00537004923
    [Google Scholar]
  36. QamarS.A. PacificoS. Cleaner production of biosurfactants via bio-waste valorization: A comprehensive review of characteristics, challenges, and opportunities in bio-sector applications.J. Environ. Chem. Eng.202311611155510.1016/j.jece.2023.111555
    [Google Scholar]
  37. XuY.Y. WeiF.D. XuR. ChengT. MaY.L. Characterization and genomic analysis of a nitrate reducing bacterium from shale oil in the Ordos Basin and the associated biosurfactant production.J. Environ. Chem. Eng.202210610877610.1016/j.jece.2022.108776
    [Google Scholar]
  38. López-PrietoA. Rodríguez-LópezL. Rincón-FontánM. CruzJ.M. MoldesA.B. Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor.Microbiol. Res.202124212661410.1016/j.micres.2020.12661433045681
    [Google Scholar]
  39. PhulpotoI.A. QiZ. QaziM.A. YuZ. Biosurfactants-based mixed polycyclic aromatic hydrocarbon degradation: From microbial community structure toward non-targeted metabolomic profile determination.Environ. Int.202418410844810.1016/j.envint.2024.10844838246038
    [Google Scholar]
  40. JimohA.A. SenbadejoT.Y. AdelekeR. LinJ. Development and genetic engineering of hyper-producing microbial strains for improved synthesis of biosurfactants.Mol. Biotechnol.202163426728810.1007/s12033‑021‑00302‑133523418
    [Google Scholar]
  41. Ashok, A.; Doriya, K.; Rao, DRM.; Kumar, DS. Design of solid-state bioreactor for industrial applications: an overview to conventional bioreactors.Biocatal Agric Biotechnol.201794111810.1016/j.bcab.2016.10.014
    [Google Scholar]
  42. SatputeS.K. BanpurkarA.G. DhakephalkarP.K. BanatI.M. ChopadeB.A. Methods for investigating biosurfactants and bioemulsifiers: A review.Crit. Rev. Biotechnol.201030212714410.3109/0738855090342728020210700
    [Google Scholar]
  43. ThakurV. BaghmareP. VermaA. VermaJ.S. GeedS.R. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook.Bioresour. Technol.202440813121110.1016/j.biortech.2024.13121139102966
    [Google Scholar]
  44. JimohA.A. LinJ. Biosurfactant: A new frontier for greener technology and environmental sustainability.Ecotoxicol. Environ. Saf.201918410960710.1016/j.ecoenv.2019.10960731505408
    [Google Scholar]
  45. SarubboL.A. SilvaM.G.C. DurvalI.J.B. BezerraK.G.O. RibeiroB.G. SilvaI.A. TwiggM.S. BanatI.M. Biosurfactants: Production, properties, applications, trends, and general perspectives.Biochem. Eng. J.202218110837710.1016/j.bej.2022.108377
    [Google Scholar]
  46. ChoW.Y. NgJ.F. YapW.H. GohB.H. Sophorolipids-bio-based antimicrobial formulating agents for applications in food and health.Molecules20222717555610.3390/molecules2717555636080322
    [Google Scholar]
  47. Eras-MuñozE. FarréA. SánchezA. FontX. GeaT. Microbial biosurfactants: A review of recent environmental applications.Bioengineered2022135123651239110.1080/21655979.2022.207462135674010
    [Google Scholar]
  48. GaurV.K. SharmaP. GuptaS. VarjaniS. SrivastavaJ.K. WongJ.W.C. NgoH.H. Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: Strategies and advancements.Environ. Technol. Innov.20222510213210.1016/j.eti.2021.102132
    [Google Scholar]
  49. RameR. PurwantoP. SudarnoS. Biotechnological approaches in utilizing agro-waste for biofuel production: An extensive review on techniques and challenges.Bioresour. Technol. Rep.20232410166210.1016/j.biteb.2023.101662
    [Google Scholar]
  50. Pacwa-PłociniczakM. PłazaG.A. Piotrowska-SegetZ. CameotraS.S. Environmental applications of biosurfactants: Recent advances.Int. J. Mol. Sci.201112163365410.3390/ijms1201063321340005
    [Google Scholar]
  51. FisherW.S. ForeL.S. HutchinsA. QuarlesR.L. CampbellJ.G. LoBueC. DavisW.S. Evaluation of stony coral indicators for coral reef management.Mar. Pollut. Bull.200856101737174510.1016/j.marpolbul.2008.07.00218715598
    [Google Scholar]
  52. VarotsosC.A. KrapivinV.F. SoldatovV.Y. Modeling the carbon and nitrogen cycles.Front. Environ. Sci.20142810.3389/fenvs.2014.00008
    [Google Scholar]
  53. NitschkeM. CostaS.G.V.A.O. Biosurfactants in food industry.Trends Food Sci. Technol.200718525225910.1016/j.tifs.2007.01.002
    [Google Scholar]
  54. D’IncauE. SpaudoA. HenryS. OuvrardS. Phytotoxic response of ryegrass (Lolium multiflorum L.) to extreme exposure to two anionic surfactants.Ecotoxicol. Environ. Saf.202428811732010.1016/j.ecoenv.2024.11732039549569
    [Google Scholar]
  55. Lázaro-MassS. Gómez-CornelioS. Castillo-VidalM. Alvarez-VillagomezC.S. QuintanaP. De la Rosa-GarcíaS. Biodegradation of hydrocarbons from contaminated soils by microbial consortia: A laboratory microcosm study.Electron. J. Biotechnol.202361243210.1016/j.ejbt.2022.10.002
    [Google Scholar]
  56. HosnyM El-SheshtawyHS. Effect of biosurfactant on hydrolysis of municipal waste by cellulases producing bacteria for bioethanol production.Curr. Res. Green Sustain. Chem.2022510029410.1016/j.crgsc.2022.100294
    [Google Scholar]
  57. DebnathK DuttaS. Bio-electrochemical system analysis and improvement: A technical review.Clean. Circ. Bioecon.2023610005210.1016/j.clcb.2023.100052
    [Google Scholar]
  58. AlmutairiH.H. Microbial communities in petroleum refinery effluents and their complex functions.Saudi J. Biol. Sci.202431710400810.1016/j.sjbs.2024.104008
    [Google Scholar]
  59. AmbayeT.G. FormicolaF. SbaffoniS. FranzettiA. VaccariM. Life cycle assessment of bioslurry and bioelectrochemical processes for sustainable remediation of soil polluted with petroleum hydrocarbons: An experimental study.Sustain. Prod. Consum.20233641642410.1016/j.spc.2023.01.021
    [Google Scholar]
  60. AduS.A. NaughtonP.J. MarchantR. BanatI.M. Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations.Pharmaceutics20201211109910.3390/pharmaceutics1211109933207832
    [Google Scholar]
  61. BjerkT.R. SeverinoP. JainS. MarquesC. SilvaA.M. PashirovaT. SoutoE.B. Biosurfactants: Properties and applications in drug delivery, biotechnology and ecotoxicology.Bioengineering20218811510.3390/bioengineering808011534436118
    [Google Scholar]
  62. SariK. SetiawanI.K.I. Utilization of natural surfactants from saponin compound of coconut leaf waste (Cocos Nucifera L.) as an environmentally friendly liquids detergent.J. Phys.: Conf. Ser.20191402303306910.1088/1742‑6596/1402/3/033069
    [Google Scholar]
  63. BaxterM.D. AcostaE. MontoneriE. TabassoS. Waste biomass-extracted surfactants for heavy oil removal.Ind. Eng. Chem. Res.20145393612362110.1021/ie402239p
    [Google Scholar]
  64. BredenbruchS. MüllerC. NvenankengH.A. SchröderL. ZeiselA.C. MedinaR.C. TisoT. BlankL.M. GrundlerF.M.W. SchlekerA.S.S. The biological activity of bacterial rhamnolipids on Arabidopsis thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure.Pestic. Biochem. Physiol.202420410610310.1016/j.pestbp.2024.10610339277425
    [Google Scholar]
  65. RussellC. ZompraA.A. SpyrouliasG.A. SalekK. EustonS.R. The heat stability of Rhamnolipid containing egg-protein stabilised oil-in-water emulsions.Food Hydrocoll.202111610663210.1016/j.foodhyd.2021.106632
    [Google Scholar]
  66. Fei-BaffoeB AmuahEEY AnnanEL SulemanaA SackeyLNA MiezahK. Synergistic use of cattle bile, compost and fertilizer amendments in enhancing the bioremediation of hydrocarbon-contaminated soils.Clean. Circ. Bioeconomy2024910011610.1016/j.clcb.2024.100116
    [Google Scholar]
  67. WójtowiczK. CzogallaA. TrombikT. ŁukaszewiczM. Surfactin cyclic lipopeptides change the plasma membrane composition and lateral organization in mammalian cells.Biochim. Biophys. Acta Biomembr.202118631218373010.1016/j.bbamem.2021.18373034419486
    [Google Scholar]
  68. SelimM.S.M. AbdelhamidS.A. MohamedS.S. Secondary metabolites and biodiversity of actinomycetes.J. Genet. Eng. Biotechnol.2021197210.1186/s43141‑021‑00156‑9
    [Google Scholar]
  69. CorreiaJ. GudiñaE.J. JanekT. DiasR. de FreitasV. TeixeiraJ.A. Surfactin and poly–γ–glutamic acid co–production by Bacillus velezensis P#02 using a corn steep liquor–based medium.Biochem. Eng. J.202421110946110.1016/j.bej.2024.109461
    [Google Scholar]
  70. BaaityZ. CsókaI. Regulatory status quo and prospects for biosurfactants in pharmaceutical applications.Drug Discov Today20212681929193510.1016/j.drudis.2021.03.02933831583
    [Google Scholar]
  71. ZhuT. YangC. BaoX. ChenF. GuoX. Strategies for controlling biofilm formation in food industry.GOST20225417918610.1016/j.gaost.2022.06.003
    [Google Scholar]
  72. SachdevS. BauddhK. SinghR.P. Prospective of biosurfactant in management of fusarium wilt and early blight of Lycopersicon esculentum.Plant Stress2023710012610.1016/j.stress.2022.100126
    [Google Scholar]
  73. PalM.P. VaidyaB.K. DesaiK.M. JoshiR.M. NeneS.N. KulkarniB.D. Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: Artificial Intelligence versus a statistical approach.J. Ind. Microbiol. Biotechnol.200936574775610.1007/s10295‑009‑0547‑619283419
    [Google Scholar]
  74. ChabhadiyaS. AcharyaD.K. MangrolaA. ShahR. PithawalaE.A. Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions.Biotechnol. Notes2024511111910.1016/j.biotno.2024.07.00139416688
    [Google Scholar]
  75. WaghmodeS. KulkarniC. ShuklaS. SursawantP. VelhalC. Low cost production of biosurfactant from different substrates and their comparative study with commercially available chemical surfactant.IJSTR201433146149
    [Google Scholar]
  76. GrzywaczykA. SmułekW. SmułekG. ŚlachcińskiM. KaczorekE. Application of natural surfactants for improving the leaching of zinc and copper from different soils.Environ. Technol. Innov.20212410192610.1016/j.eti.2021.101926
    [Google Scholar]
  77. DierickxS. MaesK. RoelantsS.L.K.W. PomianB. Van MeulebroekL. De MaeseneireS.L. VanhaeckeL. SoetaertW.K. A multi-omics study to boost continuous bolaform sophorolipid production.N. Biotechnol.20226610711510.1016/j.nbt.2021.11.00234774786
    [Google Scholar]
  78. IsaM. CoragliaD. FrazierR. JauregiP. Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process.J. Membr. Sci.20072961-2515710.1016/j.memsci.2007.03.023
    [Google Scholar]
  79. SolankiJ.D. PatelD.T. PatelK.C. NatarajM. Production of biosurfactants using agroindustrial wastes as substrates.Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for the Bioremediation of Polluted Environments.Elsevier202118521010.1016/B978‑0‑12‑822696‑4.00012‑7
    [Google Scholar]
  80. NitschkeM. Biosurfactant production by Bacillus subtilis using cassava-processing effluent.Appl. Biochem. Biotechnol.2004112316317210.1385/abab:112:3:16315007184
    [Google Scholar]
  81. SubsanguanT. KhondeeN. RongsayamanontW. LuepromchaiE. Formulation of a glycolipid:lipopeptide mixture as biosurfactant-based dispersant and development of a low-cost glycolipid production process.Sci. Rep.20221211635310.1038/s41598‑022‑20795‑336175491
    [Google Scholar]
  82. RayM. KumarV. BanerjeeC. GuptaP. SinghS. SinghA. Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene tolerance.Ecotoxicol. Environ. Saf.202120811162110.1016/j.ecoenv.2020.11162133396141
    [Google Scholar]
  83. FreitasJ.F. SilvaD.F.L. SilvaB.S. CastroJ.N.F. FelipeM.B.M.C. Silva-PortelaR.C.B. MinnicelliC.F. Agnez-LimaL.F. Genomic and phenotypic features of Acinetobacter baumannii isolated from oil reservoirs reveal a novel subspecies specialized in degrading hazardous hydrocarbons.Microbiol. Res.202327312742010.1016/j.micres.2023.12742037270893
    [Google Scholar]
  84. QinX.S. WangM. LiW. ZhangY.S. Biosurfactant-stabilized micropore-forming GelMA inks enable improved usability for 3D printing applications.Regen. Eng. Transl. Med.20228347148110.1007/s40883‑022‑00250‑5
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673376660250612103900
Loading
/content/journals/cmc/10.2174/0109298673376660250612103900
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test