Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Breast cancer is the most prevalent type of carcinoma among women worldwide and is the primary cause of cancer-related mortality. It is one of the most challenging cancers to manage and constitutes a significant proportion of cancer-related fatalities. The rising incidence of breast cancer necessitates the pursuit of more effective treatments. Due to the association of most chemotherapeutic medications with drug resistance, cancer recurrence, and adverse effects, researchers are exploring more effective alternatives, such as natural chemicals for the treatment and prevention of breast cancer. Chemoprevention using chemicals derived from plants has become a viable and accessible method for managing and controlling cancer. Among the numerous phytochemicals exhibiting an extensive range of biochemical and pharmacologic properties, gingerols have been documented to be efficacious in inhibiting the transformation, hyperproliferation, and inflammatory mechanisms that commence and foster carcinogenesis, along with the subsequent stages of carcinogenesis, angiogenesis, and metastasis. The chemotherapeutic potential of gingerol has been shown in several and studies. Clinical research has also documented the effectiveness of gingerol in cancer management. This review seeks to explore the pharmacological effects and mechanisms of gingerol with a primary emphasis on breast cancer therapy. This study aimed to highlight gingerol potential in addressing breast cancer and to inform future research pathways for the development of natural product-derived therapies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358402250407052100
2025-04-24
2025-11-03
Loading full text...

Full text loading...

References

  1. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. TahirI.M. RaufA. MehboobH. SadafS. AlamM.S. KalsoomF. BouyahyaA. El AllamA. El OmariN. BakrimS. AkramM. RazaS.K. EmranT.B. MabkhotY.N. ZenginG. DerkhoM. NatalyaS. ShariatiM.A. Prognostic significance of programmed death-1 and programmed death ligand-1 proteins in breast cancer.Hum. Antibodies202230313115010.3233/HAB‑22000135938242
    [Google Scholar]
  5. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  6. BehranvandN. NasriF. Zolfaghari EmamehR. KhaniP. HosseiniA. GarssenJ. FalakR. Chemotherapy: A double-edged sword in cancer treatment.Cancer Immunol. Immunother.202271350752610.1007/s00262‑021‑03013‑334355266
    [Google Scholar]
  7. AndrijauskaiteK. WargovichM.J. Role of natural products in breast cancer related symptomology: Targeting chronic inflammation.Semin. Cancer Biol.20228037037810.1016/j.semcancer.2020.08.01132891720
    [Google Scholar]
  8. WangM. LiY. PanT. JiaN. Plant natural compounds in the cancer treatment: A systematic bibliometric analysis.Heliyon20241014e3446210.1016/j.heliyon.2024.e3446239104486
    [Google Scholar]
  9. GeziciS. ŞekeroğluN. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents.Anticancer Agents Med. Chem.201919110111110.2174/1871520619666181224121004
    [Google Scholar]
  10. AlmilaibaryA. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation.Saudi J. Biol. Sci.202431310393510.1016/j.sjbs.2024.10393538327657
    [Google Scholar]
  11. NafeesS. ZafaryabM. MehdiS. H. ZiaB. RizviM. A. KhanM. A. Anti-cancer effect of gingerol in cancer prevention and treatment.Anticancer Agents Med. Chem.202121442843210.2174/1871520620666200918100833
    [Google Scholar]
  12. AnhN.H. KimS.J. LongN.P. MinJ.E. YoonY.C. LeeE.G. KimM. KimT.J. YangY.Y. SonE.Y. YoonS.J. DiemN.C. KimH.M. KwonS.W. Ginger on human health: A comprehensive systematic review of 109 randomized controlled trials.Nutrients202012115710.3390/nu1201015731935866
    [Google Scholar]
  13. MahomoodallyM.F. AumeeruddyM.Z. RengasamyK.R.R. RoshanS. HammadS. PandoheeJ. HuX. ZenginG. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications.Semin. Cancer Biol.20216914014910.1016/j.semcancer.2019.08.00931412298
    [Google Scholar]
  14. MashabelaM.N. Otang-MbengW. The therapeutic and phytopharmacological potential of ginger (Zingiber officinale).Ginger-Cultivation and Use.London, UKIntechOpen202310.5772/intechopen.105900
    [Google Scholar]
  15. Mohd YusofY. A. Gingerol and its role in chronic diseases.Adv. Exp. Med. Biol.201692917720710.1007/978‑3‑319‑41342‑6_8
    [Google Scholar]
  16. Nafi’A. LingF. BakarJ. GhazaliH. Partial characterization of an enzymatic extract from Bentong ginger (Zingiber officinale var. Bentong).Molecules2014198123361234810.3390/molecules19081233625153861
    [Google Scholar]
  17. SharmaS. ShuklaM.K. SharmaK.C. Tirath KumarL. AnalJ.M.H. UpadhyayS.K. BhattacharyyaS. KumarD. Revisiting the therapeutic potential of gingerols against different pharmacological activities.Naunyn Schmiedebergs Arch. Pharmacol.2023396463364710.1007/s00210‑022‑02372‑736585999
    [Google Scholar]
  18. BallesterP. CerdáB. ArcusaR. MarhuendaJ. YamedjeuK. ZafrillaP. Effect of ginger on inflammatory diseases.Molecules20222721722310.3390/molecules2721722336364048
    [Google Scholar]
  19. JoladS.D. LantzR.C. SolyomA.M. ChenG.J. BatesR.B. TimmermannB.N. Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production.Phytochemistry200465131937195410.1016/j.phytochem.2004.06.00815280001
    [Google Scholar]
  20. SinghP. MishraG. PottooF.H. SinghB. ZelekeM.M. Zingiber officinale: Its ethanobotanical uses, phytochemistry, and pharmacology.In Edible Plants in Health and Diseases: Volume II: Phytochemical and Pharmacological PropertiesSpringerSingapore2022142
    [Google Scholar]
  21. TalibW.H. AlHurM.J. Al NaimatS. AhmadR.E. Al-YasariA.H. Al-DalaeenA. ThiabS. MahmodA.I. Anticancer effect of spices used in mediterranean diet: Preventive and therapeutic potentials.Front. Nutr.2022990565810.3389/fnut.2022.90565835774546
    [Google Scholar]
  22. Bischoff-KontI. FürstR. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes.Pharmaceuticals202114657110.3390/ph1406057134203813
    [Google Scholar]
  23. YahyazadehR. Baradaran RahimiV. YahyazadehA. MohajeriS.A. AskariV.R. Promising effects of gingerol against toxins: A review article.Biofactors202147688591310.1002/biof.177934418196
    [Google Scholar]
  24. ChoiH. HamS.Y. ChaE. ShinY. KimH.S. BangJ.K. SonS.H. ParkH.D. ByunY. Structure–activity relationships of 6-and 8-gingerol analogs as anti-biofilm agents.J. Med. Chem.201760239821983710.1021/acs.jmedchem.7b0142629135250
    [Google Scholar]
  25. Diniz do NascimentoL. MoraesA.A.B. CostaK.S. Pereira GalúcioJ.M. TaubeP.S. CostaC.M.L. Neves CruzJ. de Aguiar AndradeE.H. FariaL.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications.Biomolecules202010798810.3390/biom1007098832630297
    [Google Scholar]
  26. ShahrajabianM.H. SunW. ChengQ. Clinical aspects and health benefits of ginger ( Zingiber officinale ) in both traditional Chinese medicine and modern industry.Acta Agric. Scand. B Soil Plant Sci.201969654655610.1080/09064710.2019.1606930
    [Google Scholar]
  27. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑025646037
    [Google Scholar]
  28. VendittiP. Di StefanoL. Di MeoS. Mitochondrial metabolism of reactive oxygen species.Mitochondrion2013132718210.1016/j.mito.2013.01.00823376030
    [Google Scholar]
  29. HaniadkaR. SaldanhaE. SunitaV. PalattyP.L. FayadR. BaligaM.S. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe).Food Funct.20134684585510.1039/c3fo30337c23612703
    [Google Scholar]
  30. SangS. SnookH.D. TareqF.S. FasinaY. Precision research on ginger: The type of ginger matters.J. Agric. Food Chem.202068328517852310.1021/acs.jafc.0c0388832663000
    [Google Scholar]
  31. SemwalR.B. SemwalD.K. CombrinckS. ViljoenA.M. Gingerols and shogaols: Important nutraceutical principles from ginger.Phytochemistry201511755456810.1016/j.phytochem.2015.07.01226228533
    [Google Scholar]
  32. UnuofinJ.O. MasukuN.P. PaimoO.K. LebeloS.L. Ginger from farmyard to town: Nutritional and pharmacological applications.Front. Pharmacol.20211277935210.3389/fphar.2021.77935234899343
    [Google Scholar]
  33. CrichtonM. MarshallS. MarxW. IsenringE. LohningA. Therapeutic health effects of ginger (Zingiber officinale): Updated narrative review exploring the mechanisms of action.Nutr. Rev.20238191213122410.1093/nutrit/nuac11536688554
    [Google Scholar]
  34. ZadorozhnaM. MangieriD. Mechanisms of chemopreventive and therapeutic proprieties of ginger extracts in cancer.Int. J. Mol. Sci.20212212659910.3390/ijms2212659934202966
    [Google Scholar]
  35. ZhangS. KouX. ZhaoH. MakK.K. BalijepalliM.K. PichikaM.R. Zingiber officinale var. rubrum: Red Ginger’s Medicinal Uses.Molecules202227377510.3390/molecules2703077535164040
    [Google Scholar]
  36. ZhangF. ThakurK. HuF. ZhangJ.G. WeiZ.J. Cross-talk between 10-gingerol and its anti-cancerous potential: A recent update.Food Funct.2017882635264910.1039/C7FO00844A28745358
    [Google Scholar]
  37. SalaramoliS. MehriS. YarmohammadiF. HashemyS.I. HosseinzadehH. The effects of ginger and its constituents in the prevention of metabolic syndrome: A review.Iran. J. Basic Med. Sci.202225666467435949312
    [Google Scholar]
  38. NaoraK. DingG. HayashibaraM. KatagiriY. KanoY. IwamotoK. Pharmacokinetics of [6]-gingerol after intravenous administration in rats with acute renal or hepatic failure.Chem. Pharm. Bull.19924051295129810.1248/cpb.40.12951394650
    [Google Scholar]
  39. ZickS.M. DjuricZ. RuffinM.T. LitzingerA.J. NormolleD.P. AlrawiS. FengM.R. BrennerD.E. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects.Cancer Epidemiol. Biomarkers Prev.20081781930193610.1158/1055‑9965.EPI‑07‑293418708382
    [Google Scholar]
  40. SongvutP. NakareangritW. CholpraipimolratW. KwangjaiJ. WorasuttayangkurnL. WatcharasitP. SatayavivadJ. Unraveling the interconversion pharmacokinetics and oral bioavailability of the major ginger constituents: [6]-gingerol, [6]-shogaol, and zingerone after single-dose administration in rats.Front. Pharmacol.202415139101910.3389/fphar.2024.139101938904001
    [Google Scholar]
  41. ZickS.M. TurgeonD.K. VareedS.K. RuffinM.T. LitzingerA.J. WrightB.D. AlrawiS. NormolleD.P. DjuricZ. BrennerD.E. Phase II study of the effects of ginger root extract on eicosanoids in colon mucosa in people at normal risk for colorectal cancer.Cancer Prev. Res.20114111929193710.1158/1940‑6207.CAPR‑11‑022421990307
    [Google Scholar]
  42. LeeH. SeoE. KangN. KimW. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells.J. Nutr. Biochem.200819531331910.1016/j.jnutbio.2007.05.00817683926
    [Google Scholar]
  43. MartinA.C.B.M. FuzerA.M. BecceneriA.B. da SilvaJ.A. TomasinR. DenoyerD. KimS.H. McIntyreK.A. PearsonH.B. YeoB. NagpalA. LingX. Selistre-de-AraújoH.S. VieiraP.C. CominettiM.R. PouliotN. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo.Oncotarget2017842722607227110.18632/oncotarget.2013929069785
    [Google Scholar]
  44. SpN. KangD.Y. LeeJ.M. BaeS.W. JangK.J. Potential antitumor effects of 6-gingerol in p53-dependent mitochondrial apoptosis and inhibition of tumor sphere formation in breast cancer cells.Int. J. Mol. Sci.2021229466010.3390/ijms2209466033925065
    [Google Scholar]
  45. BernardM.M. McConneryJ.R. HoskinD.W. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.Exp. Mol. Pathol.2017102237037610.1016/j.yexmp.2017.03.00628315687
    [Google Scholar]
  46. HuangP. ZhouP. LiangY. WuJ. WuG. XuR. DaiY. GuoQ. LuH. ChenQ. Exploring the molecular targets and mechanisms of [10]-Gingerol for treating triple-negative breast cancer using bioinformatics approaches, molecular docking, and in vivo experiments.Transl. Cancer Res.202110114680469310.21037/tcr‑21‑113835116323
    [Google Scholar]
  47. FuzerA.M. MartinA.C. BecceneriA.B. da SilvaJ.A. VieiraP.C. CominettiM.R. [10]-Gingerol affects multiple metastatic processes and induces apoptosis in MDAMB-231 breast tumor cells.Anti Can. Agents Med. Chem.201919564565410.2174/1871520618666181029125607
    [Google Scholar]
  48. JooJ.H. HongS.S. ChoY.R. SeoD.W. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity.Oncol. Rep.201635277978410.3892/or.2015.440526554741
    [Google Scholar]
  49. EdiriweeraM.K. MoonJ.Y. NguyenY.T.K. ChoS.K. 10-Gingerol targets lipid rafts associated PI3K/Akt signaling in radio-resistant triple negative breast cancer cells.Molecules20202514316410.3390/molecules2514316432664351
    [Google Scholar]
  50. FuzerA.M. LeeS.Y. MottJ.D. CominettiM.R. [10]-Gingerol reverts malignant phenotype of breast cancer cells in 3D culture.J. Cell. Biochem.201711892693269910.1002/jcb.2590628112417
    [Google Scholar]
  51. KimH.W. OhD.H. KohJ.T. LimY.C. Apoptotic effects of 6-gingerol in human breast cancer cells.Int. J. Oral Biol.201540422322810.11620/IJOB.2015.40.4.223
    [Google Scholar]
  52. LingH. YangH. TanS-H. ChuiW-K. ChewE-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation.Br. J. Pharmacol.201016181763177710.1111/j.1476‑5381.2010.00991.x20718733
    [Google Scholar]
  53. McGrowderD.A. MillerF.G. NwokochaC.R. AndersonM.S. Wilson-ClarkeC. VazK. Anderson-JacksonL. BrownJ. Medicinal herbs used in traditional management of breast cancer: Mechanisms of action.Medicines2020784710.3390/medicines708004732823812
    [Google Scholar]
  54. MeysamiM. RahaieM. EbrahimiA. SamieeF. Four Matrix Metalloproteinase genes involved in murine breast cancer affected by ginger extract.Gene Rep.20212510133210.1016/j.genrep.2021.101332
    [Google Scholar]
  55. MohammedM.S. The molecular activity of gingerol on inhibits proliferation of breast cancer cell line (MCF7) through caspase activity.Ann. Rom. Soc. Cell Biol.202161109511103
    [Google Scholar]
  56. HsuY.L. ChenC.Y. LinI.P. TsaiE.M. KuoP.L. HouM.F. 4-Shogaol, an active constituent of dietary ginger, inhibits metastasis of MDA-MB-231 human breast adenocarcinoma cells by decreasing the repression of NF-κB/Snail on RKIP.J. Agric. Food Chem.201260385286110.1021/jf205251522224671
    [Google Scholar]
  57. HongB.H. WuC.H. YehC.T. YenG.C. Invadopodia-associated proteins blockade as a novel mechanism for 6-shogaol and pterostilbene to reduce breast cancer cell motility and invasion.Mol. Nutr. Food Res.201357588689510.1002/mnfr.20120071523417847
    [Google Scholar]
  58. TanB.S. KangO. MaiC.W. TiongK.H. KhooA.S.B. PichikaM.R. BradshawT.D. LeongC.O. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ).Cancer Lett.2013336112713910.1016/j.canlet.2013.04.01423612072
    [Google Scholar]
  59. RayA. VasudevanS. SenguptaS. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death.PLoS One2015109e013761410.1371/journal.pone.013761426355461
    [Google Scholar]
  60. GuG. DustinD. FuquaS.A.W. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment.Curr. Opin. Pharmacol.2016319710310.1016/j.coph.2016.11.00527883943
    [Google Scholar]
  61. JhanJ.R. AndrechekE.R. Triple-negative breast cancer and the potential for targeted therapy.Pharmacogenomics201718171595160910.2217/pgs‑2017‑011729095114
    [Google Scholar]
  62. HsuY.L. ChenC.Y. HouM.F. TsaiE.M. JongY.J. HungC.H. KuoP.L. 6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cells.Mol. Nutr. Food Res.20105491307131710.1002/mnfr.20090012520175081
    [Google Scholar]
  63. El-RahmanA. AtefA. El-ShafeiS.M.A. ElwanH.A. AlimovaF.K. Ginger essential oil in vitro inhibits cell growth and induces apoptosis in mcf-7 human breast adenocarcinoma cells.Zagazig J. Agricult. Res.20174462673268310.21608/zjar.2017.51379
    [Google Scholar]
  64. Luna-DulceyL. TomasinR. NavesM.A. da SilvaJ.A. CominettiM.R. Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells.Oncotarget2018956307873080410.18632/oncotarget.2570430112107
    [Google Scholar]
  65. BryanS. WitzelI. BorgmannK. Oliveira-FerrerL. Molecular mechanisms associated with brain metastases in HER2-positive and triple negative breast cancers.Cancers20211316413710.3390/cancers1316413734439289
    [Google Scholar]
  66. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms2109323332370233
    [Google Scholar]
  67. BawadoodA.S. Al-AbbasiF.A. AnwarF. El-HalawanyA.M. Al-AbdA.M. 6-Shogaol suppresses the growth of breast cancer cells by inducing apoptosis and suppressing autophagy via targeting notch signaling pathway.Biomed. Pharmacother.202012811030210.1016/j.biopha.2020.11030232505819
    [Google Scholar]
  68. SaramiS. DadmaneshM. HassanZ. M. GhorbanK. Study on the effect of ethanol ginger extract on cell viability and p53 level in breast and pancreatic cancer.Arch. Pharma. Pract.2020113115121
    [Google Scholar]
  69. Zanesco-FontesI. SilvaA.C.L. da SilvaP.B. DuarteJ.L. Di FilippoL.D. ChorilliM. CominettiM.R. MartinA.C.B.M. [10]-Gingerol-loaded nanoemulsion and its biological effects on triple-negative breast cancer cells.AAPS PharmSciTech202122515710.1208/s12249‑021‑02006‑w34008089
    [Google Scholar]
  70. MathiyazhaganJ. SivaR. JayarajR. MadhyasthaH. Kodiveri MuthukaliannanG. Preventive effect of combined Zingiber officinale and Terminalia chebula against DMBA-induced breast cancer rats via mTOR inhibition.Nutr. Cancer202274268769610.1080/01635581.2021.190394833821702
    [Google Scholar]
  71. Hoseini PajoohK. AbdollahM. The effect of hydroalcoholic extract of cumin and ginger plants separately and combined on MDA-MB-231 and MCF-7 breast cancer cell lines.Adv. Res. Med. Plants2022113748
    [Google Scholar]
  72. MathiyazhaganJ. MuthukaliannanK.G. Combined Zingiber officinale and Terminalia chebula induces apoptosis and modulates mTOR and hTERT gene expressions in MCF-7 cell line.Nutr. Cancer20217371207121610.1080/01635581.2020.179251832664754
    [Google Scholar]
  73. YuT.J. TangJ.Y. ShiauJ.P. HouM.F. YenC.H. Ou-YangF. ChenC.Y. ChangH.W. Gingerenone A induces antiproliferation and senescence of breast cancer cells.Antioxidants202211358710.3390/antiox1103058735326237
    [Google Scholar]
  74. Luna-DulceyL. Almada da SilvaJ. Jimenez-RenardV. CaleirasE. MouronS. Quintela-FandinoM. CominettiM.R. [6]-Gingerol-derived semi-synthetic compound SSi6 inhibits tumor growth and metastatic dissemination in triple-negative breast cancer xenograft models.Cancers20211312285510.3390/cancers1312285534201040
    [Google Scholar]
  75. LuoL. ChenY. MaQ. HuangY. HongT. ShuK. LiuZ. Exploring the mechanism of an active ingredient of ginger, dihydrocapsaicin, on triple negative breast cancer based on network pharmacology and in vitro experiments.Oncol. Lett.202325519510.3892/ol.2023.1378137113393
    [Google Scholar]
  76. ChenC.Y. ChenY.N. ShiauJ.P. TangJ.Y. HouM.F. ChangH.W. Ginger-derived 3HDT exerts antiproliferative effects on breast cancer cells by apoptosis and DNA damage.Int. J. Mol. Sci.2023246574110.3390/ijms2406574136982818
    [Google Scholar]
  77. Baptista Moreno MartinA.C. TomasinR. Luna-DulceyL. GraminhaA.E. Araújo NavesM. TelesR.H.G. da SilvaV.D. da SilvaJ.A. VieiraP.C. AnnabiB. CominettiM.R. [10]-Gingerol improves doxorubicin anticancer activity and decreases its side effects in triple negative breast cancer models.Cell Oncol.202043591592910.1007/s13402‑020‑00539‑z32761561
    [Google Scholar]
  78. WalaK. SzlasaW. SauerN. Kasperkiewicz-WasilewskaP. SzewczykA. SaczkoJ. RembiałkowskaN. KulbackaJ. BaczyńskaD. Anticancer efficacy of 6-gingerol with paclitaxel against wild type of human breast adenocarcinoma.Molecules2022279269310.3390/molecules2709269335566044
    [Google Scholar]
  79. KaratayK.B. KılçarA.Y. DervişE. MüftülerF.Z. B. Radioiodinated ginger compounds (6-gingerol and 6-shogaol) and incorporation assays on breast cancer cells.Anti Can. Agents Med. Chem.20202091129113910.2174/1871520620666200128114215
    [Google Scholar]
  80. BawadoodA.S. Al-AbbasiF.A. El-HalawanyA.M. Al-AbdA.M. Abstract 313: Synergistic interaction between gingerol, shogaol and paradol with platinum-based chemotherapeutic drugs against naïve and resistant breast cancer cells.Cancer Res.20218113_Suppl.31331310.1158/1538‑7445.AM2021‑313
    [Google Scholar]
  81. LiangY. WuG. LuoT. XieH. ZuoQ. HuangP. LiH. ChenL. LuH. ChenQ. 10-Gingerol enhances the effect of taxol in triple-negative breast cancer via targeting ADRB2 signaling.Drug Des. Devel. Ther.20231712914210.2147/DDDT.S39060236712945
    [Google Scholar]
  82. PashizehF. MansouriA. BazzazanS. AbdihajiM. KhaleghianM. BazzazanS. RezeiN. EskandariA. MashayekhiF. HeydariM. Tavakkoli YarakiM. Bioresponsive gingerol-loaded alginate-coated niosomal nanoparticles for targeting intracellular bacteria and cancer cells.Int. J. Biol. Macromol.2024258Pt 212895710.1016/j.ijbiomac.2023.12895738154726
    [Google Scholar]
  83. BehroozehA. Mazloumi TabriziM. KazemiS.M. ChoupaniE. KabiriN. IlbeigiD. Heidari NasabA. Akbarzadeh KhiyaviA. Seif KurdiA. Evaluation the anti-cancer effect of pegylated nano-niosomal gingerol, on breast cancer cell lines (T47D), in-vitro.APJCP201819364564829580033
    [Google Scholar]
  84. AlshaikhF. Al-SamydaiA. IssaR. AlshaerW. AlqaralehM. Al-HalasehL.K. AlsanabrahA. GhanimB.Y. Al AzzamK.M. QinnaN.A. Encapsulation of gingerol into nanoliposomes: Evaluation of in vitro anti-inflammatory and anti-cancer activity.Biomed. Chromatogr.2024388e589910.1002/bmc.589938797863
    [Google Scholar]
  85. LalamiZ.A. TafviziF. NasehV. SalehipourM. Characterization and optimization of co-delivery Farnesol-Gingerol Niosomal formulation to enhance anticancer activities against breast cancer cells.J. Drug Deliv. Sci. Technol.20227210337110.1016/j.jddst.2022.103371
    [Google Scholar]
  86. SheybatzadehK. MoshtaghieS.A.A. ShahanipourK. GolabF. Integrative bioinformatics analysis reveals potential target genes and pten signaling in breast cancer and effect of zingiber officinale (Ginger) and Allium sativum (Garlic) extract on it.Asian Pac. J. Cancer Prev.202425389390810.31557/APJCP.2024.25.3.89338546072
    [Google Scholar]
  87. Asghari LalamiZ. TafviziF. NasehV. SalehipourM. Fabrication, optimization, and characterization of pH-responsive PEGylated nanoniosomes containing gingerol for enhanced treatment of breast cancer.Naunyn Schmiedebergs Arch. Pharmacol.2023396123867388610.1007/s00210‑023‑02579‑237368028
    [Google Scholar]
  88. AhmadiL. ChianiM. Masoud SinakiJ. To evaluate the effect of formulation of Nanoarchaeosomal 6-gingerol on the growth of breast cancer MCF-7 cell line.New Cell. Mol.r Biotechnol. J.20155194752
    [Google Scholar]
  89. Al-ZiyadiR.K.M. HayatiN. RezaeiM.R. Es-haghiA. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CS-NLC) containing (6)-gingerol and investigating their toxicity against MCF-7 breast cancer cell line.Bionanoscience202414115316310.1007/s12668‑023‑01261‑4
    [Google Scholar]
  90. WardanaA. KristantiA. AminahN. FahmiM.Z. RaoovM. Indriani breast cancer chemoprevention from nano Zingiber officinale roscoe.Int. J. Nanomed.202419110391105310.2147/IJN.S47461139502639
    [Google Scholar]
  91. AlamM.S. KamruzzamanM. KhanomS.A.A. PatowaryM.R.H. ElahiM.T. HasanuzzamanM. PaulD.K. Quality evaluation of ginger candy prepared by osmotic dehydration techniques.Food Nutr. Sci.20189437638910.4236/fns.2018.94030
    [Google Scholar]
  92. KamaruddinM.S.H. ChongG.H. Mohd DaudN. PutraN.R. Md SallehL. SuleimanN. Bioactivities and green advanced extraction technologies of ginger oleoresin extracts: A review.Food Res. Int.202316411228310.1016/j.foodres.2022.11228336737895
    [Google Scholar]
  93. NolanE. LindemanG.J. VisvaderJ.E. Deciphering breast cancer: From biology to the clinic.Cell202318681708172810.1016/j.cell.2023.01.04036931265
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358402250407052100
Loading
/content/journals/cmc/10.2174/0109298673358402250407052100
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): breast cancer; chemoprevention; Gingerol; nanoformulation; phytochemicals; synergism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test