Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Drug conjugates have emerged as a pivotal research focus in the field of targeted cancer therapy. They represent a widely explored prodrug strategy that significantly enhances the therapeutic index of drugs while minimizing side effects. The stability and selective cleavage of the linker within drug conjugates are critical for the therapeutic efficacy and targeted treatment achieved by these conjugates. In this review, we have categorized the linkers based on their cleavage mode and summarized the chemical properties, advantages, and limitations of various types of cleavable linkers. Particularly, examples have been provided to illustrate their specific potential for development.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673320170240829110110
2024-09-16
2025-11-03
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. LeiZ. ZhuoC. Research progress of structure based antitumor drug design. Chinese.J. Struct. Chem.20203920852090
    [Google Scholar]
  3. HehE. AllenJ. RamirezF. LovaszD. FernandezL. HoggT. RivaH. HollandN. ChaconJ. Peptide drug conjugates and their role in cancer therapy.Int. J. Mol. Sci.202324182910.3390/ijms24010829 36614268
    [Google Scholar]
  4. MckertishC. KayserV. Advances and limitations of antibody drug conjugates for cancer.Biomedicines20219887210.3390/biomedicines9080872 34440076
    [Google Scholar]
  5. Fuentes-AntrásJ. GentaS. VijenthiraA. SiuL.L. Antibody–drug conjugates: In search of partners of choice.Trends Cancer20239433935410.1016/j.trecan.2023.01.003 36746689
    [Google Scholar]
  6. PettinatoM.C. Introduction to antibody-drug conjugates.Antibodies (Basel)20211044210.3390/antib10040042 34842621
    [Google Scholar]
  7. YangY. WangS. MaP. JiangY. ChengK. YuY. JiangN. MiaoH. TangQ. LiuF. ZhaY. LiN. Drug conjugate-based anticancer therapy - Current status and perspectives.Cancer Lett.202355221596910.1016/j.canlet.2022.215969 36279982
    [Google Scholar]
  8. YinH. YangJ. ZhangQ. YangJ. WangH. XuJ. ZhengJ. iRGD as a tumor-penetrating peptide for cancer therapy.Mol. Med. Rep.20171552925293010.3892/mmr.2017.6419 28358432
    [Google Scholar]
  9. SuZ. XiaoD. XieF. LiuL. WangY. FanS. ZhouX. LiS. Antibody–drug conjugates: Recent advances in linker chemistry.Acta Pharm. Sin. B202111123889390710.1016/j.apsb.2021.03.042 35024314
    [Google Scholar]
  10. XuS. ZhaoZ. ZhaoJ. Recent advances in enzyme-mediated peptide ligation.Chin. Chem. Lett.20182971009101610.1016/j.cclet.2018.05.024
    [Google Scholar]
  11. Bellmann-SickertK. Beck-SickingerA.G. Peptide drugs to target G protein-coupled receptors.Trends Pharmacol. Sci.201031943444110.1016/j.tips.2010.06.003 20655603
    [Google Scholar]
  12. FirerM.A. GellermanG. Targeted drug delivery for cancer therapy: The other side of antibodies.J. Hematol. Oncol.2012517010.1186/1756‑8722‑5‑70 23140144
    [Google Scholar]
  13. PoojaD. GunukulaA. GuptaN. AdamsD.J. KulhariH. Bombesin receptors as potential targets for anticancer drug delivery and imaging.Int. J. Biochem. Cell Biol.201911410556710.1016/j.biocel.2019.105567 31295552
    [Google Scholar]
  14. GongL. ZhaoH. LiuY. WuH. LiuC. ChangS. ChenL. JinM. WangQ. GaoZ. HuangW. Research advances in peptide‒drug conjugates.Acta Pharm. Sin. B20231393659367710.1016/j.apsb.2023.02.013 37719380
    [Google Scholar]
  15. DasS. Al-ToubahT. El-HaddadG. StrosbergJ. 177 Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors.Expert Rev. Gastroenterol. Hepatol.201913111023103110.1080/17474124.2019.1685381 31652074
    [Google Scholar]
  16. MateosM.V. BladéJ. BringhenS. OcioE.M. EfeberaY. PourL. GayF. SonneveldP. GullboJ. RichardsonP.G. Melflufen: A peptide-drug conjugate for the treatment of multiple myeloma.J. Clin. Med.2020910312010.3390/jcm9103120 32992506
    [Google Scholar]
  17. HasanM. LeakR.K. StratfordR.E. ZlotosD.P. Witt-EnderbyP.A. Drug conjugates - an emerging approach to treat breast cancer.Pharmacol. Res. Perspect.201864e0041710.1002/prp2.417 29983986
    [Google Scholar]
  18. Dal CorsoA. PignataroL. BelvisiL. GennariC. Innovative linker strategies for tumor‐targeted drug conjugates.Chemistry20192565147401475710.1002/chem.201903127
    [Google Scholar]
  19. BuechelerJ.W. WinzerM. TonilloJ. WeberC. GieselerH. Impact of payload hydrophobicity on the stability of antibody-drug conjugates.Mol. Pharm.20181572656266410.1021/acs.molpharmaceut.8b00177 29809017
    [Google Scholar]
  20. BöhmeD. Beck-SickingerA.G. Drug delivery and release systems for targeted tumor therapy.J. Pept. Sci.201521318620010.1002/psc.2753 25703117
    [Google Scholar]
  21. McCombsJ.R. OwenS.C. Antibody drug conjugates: Design and selection of linker, payload and conjugation chemistry.AAPS J.201517233935110.1208/s12248‑014‑9710‑8 25604608
    [Google Scholar]
  22. DorywalskaM. StropP. Melton-WittJ.A. Hasa-MorenoA. FariasS.E. Galindo CasasM. DelariaK. LuiV. PoulsenK. SuttonJ. BoltonG. ZhouD. MoineL. DushinR. TranT.T. LiuS.H. RickertM. FolettiD. SheltonD.L. PonsJ. RajpalA. Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy.PLoS One2015107e013228210.1371/journal.pone.0132282 26161543
    [Google Scholar]
  23. EricksonH.K. WiddisonW.C. MayoM.F. WhitemanK. AudetteC. WilhelmS.D. SinghR. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates.Bioconjug. Chem.2010211849210.1021/bc900315y 19891424
    [Google Scholar]
  24. StokkeJ.L. BhojwaniD. Antibody–drug conjugates for the treatment of acute pediatric leukemia.J. Clin. Med.20211016355610.3390/jcm10163556 34441852
    [Google Scholar]
  25. GiuglianoF. CortiC. TarantinoP. MicheliniF. CuriglianoG. Bystander effect of antibody–drug conjugates: Fact or fiction?Curr. Oncol. Rep.202224780981710.1007/s11912‑022‑01266‑4 35305211
    [Google Scholar]
  26. KovtunY.V. GoldmacherV.S. Cell killing by antibody–drug conjugates.Cancer Lett.2007255223224010.1016/j.canlet.2007.04.010 17553616
    [Google Scholar]
  27. AlasM. SaghaeidehkordiA. KaurK. Peptide–drug conjugates with different linkers for cancer therapy.J. Med. Chem.202164121623210.1021/acs.jmedchem.0c01530 33382619
    [Google Scholar]
  28. SonawaneS.J. KalhapureR.S. GovenderT. Hydrazone linkages in pH responsive drug delivery systems.Eur. J. Pharm. Sci.201799456510.1016/j.ejps.2016.12.011 27979586
    [Google Scholar]
  29. CasiG. NeriD. Antibody–drug conjugates: Basic concepts, examples and future perspectives.J. Control. Release2012161242242810.1016/j.jconrel.2012.01.026 22306430
    [Google Scholar]
  30. DoroninaS.O. TokiB.E. TorgovM.Y. MendelsohnB.A. CervenyC.G. ChaceD.F. DeBlancR.L. GearingR.P. BoveeT.D. SiegallC.B. FranciscoJ.A. WahlA.F. MeyerD.L. SenterP.D. Development of potent monoclonal antibody auristatin conjugates for cancer therapy.Nat. Biotechnol.200321777878410.1038/nbt832 12778055
    [Google Scholar]
  31. BeckA. GoetschL. DumontetC. CorvaïaN. Strategies and challenges for the next generation of antibody–drug conjugates.Nat. Rev. Drug Discov.201716531533710.1038/nrd.2016.268 28303026
    [Google Scholar]
  32. YangX. PanZ. ChoudhuryM.R. YuanZ. AnifowoseA. YuB. WangW. WangB. Making smart drugs smarter: The importance of linker chemistry in targeted drug delivery.Med. Res. Rev.20204062682271310.1002/med.21720 32803765
    [Google Scholar]
  33. ShengY. XuJ. YouY. XuF. ChenY. Acid-sensitive peptide-conjugated doxorubicin mediates the lysosomal pathway of apoptosis and reverses drug resistance in breast cancer.Mol. Pharm.20151272217222810.1021/mp500386y 26035464
    [Google Scholar]
  34. BarghJ.D. Isidro-LlobetA. ParkerJ.S. SpringD.R. Cleavable linkers in antibody–drug conjugates.Chem. Soc. Rev.201948164361437410.1039/C8CS00676H 31294429
    [Google Scholar]
  35. RicartA.D. Antibody-drug conjugates of calicheamicin derivative: Gemtuzumab ozogamicin and inotuzumab ozogamicin.Clin. Cancer Res.201117206417642710.1158/1078‑0432.CCR‑11‑0486 22003069
    [Google Scholar]
  36. ZhengY. RenJ. WuY. MengX. ZhaoY. WuC. Proteolytic unlocking of ultrastable twin‐acylhydrazone linkers for lysosomal acid‐triggered release of anticancer drugs.Bioconjug. Chem.201728102620262610.1021/acs.bioconjchem.7b00471 28922598
    [Google Scholar]
  37. JacquesS.A. LericheG. MosserM. NothisenM. MullerC.D. RemyJ.S. WagnerA. From solution to in-cell study of the chemical reactivity of acid sensitive functional groups: A rational approach towards improved cleavable linkers for biospecific endosomal release.Org. Biomol. Chem.201614214794480310.1039/C6OB00846A 27169758
    [Google Scholar]
  38. KongS.D. LuongA. ManorekG. HowellS.B. YangJ. Acidic hydrolysis of N-Ethoxybenzylimidazoles (NEBIs): Potential applications as pH-sensitive linkers for drug delivery.Bioconjug. Chem.200718229329610.1021/bc060224s 17261055
    [Google Scholar]
  39. CaoY. YangJ. Development of a folate receptor (FR)-targeted indenoisoquinoline using a pH-sensitive N-ethoxybenzylimidazole (NEBI) bifunctional cross-linker.Bioconjug. Chem.201425587387810.1021/bc500146p 24758386
    [Google Scholar]
  40. LeeM.H. YangZ. LimC.W. LeeY.H. DongbangS. KangC. KimJ.S. Disulfide-cleavage-triggered chemosensors and their biological applications.Chem. Rev.201311375071510910.1021/cr300358b 23577659
    [Google Scholar]
  41. RikkouM.D. PatrickiosC.S. Polymers prepared using cleavable initiators: Synthesis, characterization and degradation.Prog. Polym. Sci.20113681079109710.1016/j.progpolymsci.2011.01.004
    [Google Scholar]
  42. CooperB.M. IegreJ. O’ DonovanD.H. Ölwegård HalvarssonM. SpringD.R. Peptides as a platform for targeted therapeutics for cancer: Peptide–drug conjugates (PDCs).Chem. Soc. Rev.20215031480149410.1039/D0CS00556H 33346298
    [Google Scholar]
  43. WuC. ChengZ. LuD. LiuK. ChengY. WangP. ZhouY. LiM. ShaoX. LiH. SuW. FangL. Novel N-methylated cyclodepsipeptide prodrugs for targeted cancer therapy.J. Med. Chem.2021642991100010.1021/acs.jmedchem.0c01387 33417771
    [Google Scholar]
  44. SzychowskiJ. MahdaviA. HodasJ.J.L. BagertJ.D. NgoJ.T. LandgrafP. DieterichD.C. SchumanE.M. TirrellD.A. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition.J. Am. Chem. Soc.201013251183511836010.1021/ja1083909 21141861
    [Google Scholar]
  45. YangY. VerhelstS.H.L. Cleavable trifunctional biotin reagents for protein labelling, capture and release.Chem. Commun. (Camb.)201349475366536810.1039/c3cc42076k 23648945
    [Google Scholar]
  46. Lewis PhillipsG.D. LiG. DuggerD.L. CrockerL.M. ParsonsK.L. MaiE. BlättlerW.A. LambertJ.M. ChariR.V.J. LutzR.J. WongW.L.T. JacobsonF.S. KoeppenH. SchwallR.H. Kenkare-MitraS.R. SpencerS.D. SliwkowskiM.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate.Cancer Res.200868229280929010.1158/0008‑5472.CAN‑08‑1776 19010901
    [Google Scholar]
  47. FonovićM. VerhelstS.H.L. SorumM.T. BogyoM. Proteomics evaluation of chemically cleavable activity-based probes.Mol. Cell. Proteomics20076101761177010.1074/mcp.M700124‑MCP200 17615255
    [Google Scholar]
  48. XuL. XuS. XiangT. LiuH. ChenL. JiangB. YaoJ. ZhuH. HuR. ChenZ. Multifunctional building elements for the construction of peptide drug conjugates.Eng. Reg.2022319210910.1016/j.engreg.2022.02.004
    [Google Scholar]
  49. VerhelstS.H.L. FonovićM. BogyoM. A mild chemically cleavable linker system for functional proteomic applications.Angew. Chem. Int. Ed.20074681284128610.1002/anie.200603811 17205587
    [Google Scholar]
  50. LericheG. BudinG. BrinoL. WagnerA. Optimization of the azobenzene scaffold for reductive cleavage by dithionite; development of an azobenzene cleavable linker for proteomic applications.Eur. J. Org. Chem.20222343604364
    [Google Scholar]
  51. PengX. GandhiV. ROS-activated anticancer prodrugs: A new strategy for tumor-specific damage.Ther. Deliv.20123782383310.4155/tde.12.61 22900465
    [Google Scholar]
  52. AiY. ObianomO.N. KuserM. LiY. ShuY. XueF. Enhanced tumor selectivity of 5‐fluorouracil using a reactive oxygen species‐activated prodrug approach.ACS Med. Chem. Lett.201910112713110.1021/acsmedchemlett.8b00539 30655959
    [Google Scholar]
  53. MaurerA. ZeyherC. AminB. KalbacherH. A periodate-cleavable linker for functional proteomics under slightly acidic conditions: Application for the analysis of intracellular aspartic proteases.J. Proteome Res.201312119920710.1021/pr300758c 23176076
    [Google Scholar]
  54. XuQ. HeC. XiaoC. ChenX. Reactive oxygen species (ROS) responsive polymers for biomedical applications.Macromol. Biosci.201616563564610.1002/mabi.201500440 26891447
    [Google Scholar]
  55. ShimM.S. XiaY. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells.Angew. Chem. Int. Ed.201352276926692910.1002/anie.201209633 23716349
    [Google Scholar]
  56. YangY. HahneH. KusterB. VerhelstS.H.L. A simple and effective cleavable linker for chemical proteomics applications.Mol. Cell. Proteomics201312123724410.1074/mcp.M112.021014 23028061
    [Google Scholar]
  57. YanJ. XiongH. CaiS. WenN. HeQ. LiuY. PengD. LiuZ. Advances in aptamer screening technologies.Talanta201920012414410.1016/j.talanta.2019.03.015 31036165
    [Google Scholar]
  58. NauwelaertsK. VastmansK. FroeyenM. KempeneersV. RozenskiJ. RosemeyerH. Van AerschotA. BussonR. LaceyJ.C. EfimtsevaE. MikhailovS. LescrinierE. HerdewijnP. Cleavage of DNA without loss of genetic information by incorporation of a disaccharide nucleoside.Nucleic Acids Res.200331236758676910.1093/nar/gkg911 14627809
    [Google Scholar]
  59. BeardH.A. KorovesisD. ChenS. VerhelstS.H.L. Cleavable linkers and their application in MS-based target identification.Mol. Omics202117219720910.1039/D0MO00181C 33507200
    [Google Scholar]
  60. Conda-SheridanM. KrishnaiahM. Protecting groups in peptide synthesis.Methods Mol. Biol.2020210311112810.1007/978‑1‑0716‑0227‑0_7 31879921
    [Google Scholar]
  61. WangP. Photolabile protecting groups: Structure and reactivity.Asian J. Org. Chem.20132645246410.1002/ajoc.201200197
    [Google Scholar]
  62. RaibautL. El MahdiO. MelnykO. Solid phase protein chemical synthesis.Top. Curr. Chem.201436310315410.1007/128_2014_609 25791484
    [Google Scholar]
  63. GuillierF. OrainD. BradleyM. Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry.Chem. Rev.200010062091215810.1021/cr980040+ 11749285
    [Google Scholar]
  64. RudolfG.C. HeydenreuterW. SieberS.A. Chemical proteomics: Ligation and cleavage of protein modifications.Curr. Opin. Chem. Biol.201317111011710.1016/j.cbpa.2012.11.007 23273612
    [Google Scholar]
  65. LericheG. ChisholmL. WagnerA. Cleavable linkers in chemical biology.Bioorg. Med. Chem.201220257158210.1016/j.bmc.2011.07.048 21880494
    [Google Scholar]
  66. MayerG. HeckelA. Biologically active molecules with a “light switch”.Angew. Chem. Int. Ed.200645304900492110.1002/anie.200600387 16826610
    [Google Scholar]
  67. LiJ. XiaoD. XieF. LiW. ZhaoL. SunW. YangX. ZhouX. Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release.Bioorg. Chem.202111110447510.1016/j.bioorg.2020.104475
    [Google Scholar]
  68. HammondN. KoumiP. LangleyG.J. LoweA. BrownT. Rapid mass spectrometric identification of human genomic polymorphisms using multiplexed photocleavable mass-tagged probes and solid phase capture.Org. Biomol. Chem.20075121878188510.1039/b704587e 17551636
    [Google Scholar]
  69. MaurelD. BanalaS. LarocheT. JohnssonK. Photoactivatable and photoconvertible fluorescent probes for protein labeling.ACS Chem. Biol.20105550751610.1021/cb1000229 20218675
    [Google Scholar]
  70. ChowdhuryS.M. MunskeG.R. TangX. BruceJ.E. Collisionally activated dissociation and electron capture dissociation of several mass spectrometry-identifiable chemical cross-linkers.Anal. Chem.200678248183819310.1021/ac060789h 17165806
    [Google Scholar]
  71. OlejniczakJ. CarlingC.J. AlmutairiA. Photocontrolled release using one-photon absorption of visible or NIR light.J. Control. Release2015219183010.1016/j.jconrel.2015.09.030 26394063
    [Google Scholar]
  72. RéginaA. DemeuleM. ChéC. LavalléeI. PoirierJ. GabathulerR. BéliveauR. CastaigneJ-P. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep‐2.Br. J. Pharmacol.2008155218519710.1038/bjp.2008.260 18574456
    [Google Scholar]
  73. BushnellD.L. BodekerK.L. Overview and current status of peptide receptor radionuclide therapy.Surg. Oncol. Clin. N. Am.202029231732610.1016/j.soc.2019.11.005 32151363
    [Google Scholar]
  74. BanerjeeS. PillaiM.R.A. KnappF.F.R. Lutetium-177 therapeutic radiopharmaceuticals: Linking chemistry, radiochemistry, and practical applications.Chem. Rev.201511582934297410.1021/cr500171e 25865818
    [Google Scholar]
  75. GhoshA.K. BrindisiM. Organic carbamates in drug design and medicinal chemistry.J. Med. Chem.20155872895294010.1021/jm501371s 25565044
    [Google Scholar]
  76. ThieleN.A. KärkkäinenJ. SloanK.B. RautioJ. HuttunenK.M. Secondary carbamate linker can facilitate the sustained release of dopamine from brain-targeted prodrug.Bioorg. Med. Chem. Lett.201828172856286010.1016/j.bmcl.2018.07.030 30055889
    [Google Scholar]
  77. PorebaM. Protease‐activated prodrugs: Strategies, challenges, and future directions.FEBS J.2020287101936196910.1111/febs.15227 31991521
    [Google Scholar]
  78. BehrensC.R. HaE.H. ChinnL.L. BowersS. ProbstG. Fitch-BruhnsM. MonteonJ. ValdioseraA. BermudezA. Liao-ChanS. WongT. MelnickJ. TheunissenJ.W. FloryM.R. HouserD. VenstromK. LevashovaZ. SauerP. MigoneT.S. van der HorstE.H. HalcombR.L. JacksonD.Y. Antibody-drug conjugates (ADCs) derived from interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs.Mol. Pharm.201512113986399810.1021/acs.molpharmaceut.5b00432 26393951
    [Google Scholar]
  79. BarghJ.D. WalshS.J. AshmanN. Isidro-LlobetA. CarrollJ.S. SpringD.R. A dual-enzyme cleavable linker for antibody–drug conjugates.Chem. Commun. (Camb.)202157283457346010.1039/D1CC00957E 33687404
    [Google Scholar]
  80. Raposo Moreira DiasA. BoderoL. MartinsA. ArosioD. GazzolaS. BelvisiL. PignataroL. SteinkühlerC. Dal CorsoA. GennariC. PiarulliU. Synthesis and biological evaluation of RGD and isoDGR-monomethyl auristatin conjugates targeting integrin αVβ3.ChemMedChem201914993894210.1002/cmdc.201900049 30840356
    [Google Scholar]
  81. HartleyJ.A. The development of pyrrolobenzodiazepines as antitumour agents.Expert Opin. Investig. Drugs201120673374410.1517/13543784.2011.573477 21457108
    [Google Scholar]
  82. KostovaV. DésosP. StarckJ.B. KotschyA. The chemistry behind ADCs.Pharmaceuticals (Basel)202114544210.3390/ph14050442 34067144
    [Google Scholar]
  83. MaiC.W. ChungF.F. LeongC.O. Targeting legumain as a novel therapeutic strategy in cancers.Curr. Drug Targets2017181112591268 27993111
    [Google Scholar]
  84. BajjuriK.M. LiuY. LiuC. SinhaS.C. The legumain protease-activated auristatin prodrugs suppress tumor growth and metastasis without toxicity.ChemMedChem201161545910.1002/cmdc.201000478 21154805
    [Google Scholar]
  85. LockL.L. ReyesC.D. ZhangP. CuiH. Tuning cellular uptake of molecular probes by rational design of their assembly into supramolecular nanoprobes.J. Am. Chem. Soc.2016138103533354010.1021/jacs.6b00073 26890853
    [Google Scholar]
  86. OgitaniY. AidaT. HagiharaK. YamaguchiJ. IshiiC. HaradaN. SomaM. OkamotoH. OitateM. ArakawaS. HiraiT. AtsumiR. NakadaT. HayakawaI. AbeY. AgatsumaT. DS-8201a, A novel HER2-targeting ADC with a novel DNA topoisomerase I Inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1.Clin. Cancer Res.201622205097510810.1158/1078‑0432.CCR‑15‑2822 27026201
    [Google Scholar]
  87. JeffreyS.C. AndreykaJ.B. BernhardtS.X. KisslerK.M. KlineT. LenoxJ.S. MoserR.F. NguyenM.T. OkeleyN.M. StoneI.J. ZhangX. SenterP.D. Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates.Bioconjug. Chem.200617383184010.1021/bc0600214 16704224
    [Google Scholar]
  88. GraafM. BovenE. ScheerenH. HaismaH. PinedoH. Beta-glucuronidase-mediated drug release.Curr. Pharm. Des.20028151391140310.2174/1381612023394485 12052215
    [Google Scholar]
  89. RenouxB. LegiganT. BensalmaS. ChadéneauC. MullerJ.M. PapotS. A new cyclopamine glucuronide prodrug with improved kinetics of drug release.Org. Biomol. Chem.20119248459846410.1039/c1ob06081c 22042246
    [Google Scholar]
  90. KolodychS. MichelC. DelacroixS. KonievO. EhkirchA. EberovaJ. CianféraniS. RenouxB. KrezelW. PoinotP. MullerC.D. PapotS. WagnerA. Development and evaluation of β-galactosidase-sensitive antibody-drug conjugates.Eur. J. Med. Chem.201714237638210.1016/j.ejmech.2017.08.008 28818506
    [Google Scholar]
  91. KernJ.C. DooneyD. ZhangR. LiangL. BrandishP.E. ChengM. FengG. BeckA. BressonD. FirdosJ. GatelyD. KnudsenN. ManibusanA. SunY. GarbaccioR.M. Novel phosphate modified cathepsin b linkers: Improving aqueous solubility and enhancing payload scope of ADCs.Bioconjug. Chem.20162792081208810.1021/acs.bioconjchem.6b00337 27469406
    [Google Scholar]
  92. KernJ.C. CancillaM. DooneyD. KwasnjukK. ZhangR. BeaumontM. FigueroaI. HsiehS. LiangL. TomazelaD. ZhangJ. BrandishP.E. PalmieriA. StiversP. ChengM. FengG. GedaP. ShahS. BeckA. BressonD. FirdosJ. GatelyD. KnudsenN. ManibusanA. SchultzP.G. SunY. GarbaccioR.M. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates.J. Am. Chem. Soc.201613841430144510.1021/jacs.5b12547 26745435
    [Google Scholar]
  93. BarghJ.D. WalshS.J. Isidro-LlobetA. OmarjeeS. CarrollJ.S. SpringD.R. Sulfatase-cleavable linkers for antibody-drug conjugates.Chem. Sci. (Camb.)20201192375238010.1039/C9SC06410A 34084399
    [Google Scholar]
  94. HapuarachchigeS. HuangC.T. DonnellyM.C. BařinkaC. LupoldS.E. PomperM.G. ArtemovD. Cellular delivery of bioorthogonal pretargeting therapeutics in PSMA-positive prostate cancer.Mol. Pharm.20201719810810.1021/acs.molpharmaceut.9b00788 31840521
    [Google Scholar]
  95. LinF. ChenL. ZhangH. Bioorthogonal prodrugeantibody conjugates for on-target and ondemand chemotherapy.CCS Chem.2019122623610.31635/ccschem.019.20180038
    [Google Scholar]
  96. WangX. LiuY. FanX. WangJ. NgaiW.S.C. ZhangH. LiJ. ZhangG. LinJ. ChenP.R. Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications.J. Am. Chem. Soc.201914143171331714110.1021/jacs.9b05833 31580665
    [Google Scholar]
  97. LiY. LouZ. LiH. YangH. ZhaoY. FuH. Bioorthogonal ligation and cleavage by reactions of chloroquinoxalines with ortho ‐Dithiophenols.Angew. Chem. Int. Ed.20205993671367710.1002/anie.201913620 31868279
    [Google Scholar]
  98. TortiS.V. TortiF.M. Iron and cancer: More ore to be mined.Nat. Rev. Cancer201313534235510.1038/nrc3495 23594855
    [Google Scholar]
  99. LauterwasserE.M.W. FontaineS.D. LiH. GutJ. KatneniK. CharmanS.A. RosenthalP.J. BogyoM. RensloA.R. Trioxolane-mediated delivery of mefloquine limits brain exposure in a mouse model of malaria.ACS Med. Chem. Lett.20156111145114910.1021/acsmedchemlett.5b00296 26617969
    [Google Scholar]
  100. WangP. GongQ. HuJ. LiX. ZhangX. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: Applications in the ROS-related diseases.J. Med. Chem.202164129832510.1021/acs.jmedchem.0c01704 33356214
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673320170240829110110
Loading
/content/journals/cmc/10.2174/0109298673320170240829110110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test