Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Mitochondria, the complex powerhouses of eukaryotic cells, lie at the core of energy production, metabolism, and signaling. Mitochondrial dysfunctions underlie a wide range of human diseases, and there is a need for simple and effective tools to target and study these organelles. This review focuses on the applications of mitochondria-targeted cationic probes. It provides an up-to-date review of recent publications investigating the effects of these cationic probes, which are designed to manipulate mitochondrial function and detect dysfunction in different cell lines. In addition, it analyzes the effects of mitochondria-targeted fluorescence cationic probes and studies, and their effects in probe studies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673368188250613112621
2025-07-04
2025-10-29
Loading full text...

Full text loading...

References

  1. ProlaA. BlondelleJ. VandestienneA. PiquereauJ. DenisR.G.P. GuyotS. ChauvinH. MourierA. MaurerM. HenryC. KhadhraouiN. GallerneC. MoliniéT. CourtinG. GuillaudL. GressetteM. SolgadiA. DumontF. CastelJ. TernacleJ. DemarquoyJ. MalgoyreA. KoulmannN. DerumeauxG. GiraudM.F. JoubertF. VekslerV. LuquetS. RelaixF. TiretL. Pilot-StorckF. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle.Sci. Adv.202171eabd632210.1126/sciadv.abd632233523852
    [Google Scholar]
  2. IkonN. RyanR.O. Cardiolipin and mitochondrial cristae organization.Biochim. Biophys. Acta Biomembr.2017185961156116310.1016/j.bbamem.2017.03.01328336315
    [Google Scholar]
  3. ZorovaL.D. PopkovV.A. PlotnikovE.Y. SilachevD.N. PevznerI.B. JankauskasS.S. BabenkoV.A. ZorovS.D. BalakirevaA.V. JuhaszovaM. SollottS.J. ZorovD.B. Mitochondrial membrane potential.Anal. Biochem.2018552505910.1016/j.ab.2017.07.00928711444
    [Google Scholar]
  4. RuprechtJ.J. KunjiE.R.S. Structural mechanism of transport of mitochondrial carriers.Annu. Rev. Biochem.202190153555810.1146/annurev‑biochem‑072820‑02050833556281
    [Google Scholar]
  5. UrbaniA. ProsdocimiE. CarrerA. ChecchettoV. SzabòI. Mitochondrial ion channels of the inner membrane and their regulation in cell death signaling.Front. Cell Dev. Biol.2021862008110.3389/fcell.2020.62008133585458
    [Google Scholar]
  6. PicardM. WallaceD.C. BurelleY. The rise of mitochondria in medicine.Mitochondrion20163010511610.1016/j.mito.2016.07.00327423788
    [Google Scholar]
  7. MitaishviliE. FeinsodH. DavidZ. ShpigelJ. FernandezC. SauaneM. de la ParraC. The molecular mechanisms behind advanced breast cancer metabolism: Warburg effect, OXPHOS, and calcium.Front. Biosci.20242939910.31083/j.fbl290309938538285
    [Google Scholar]
  8. KariS. SubramanianK. AltomonteI.A. MurugesanA. Yli-HarjaO. KandhaveluM. Programmed cell death detection methods: A systematic review and a categorical comparison.Apoptosis2022277-848250810.1007/s10495‑022‑01735‑y35713779
    [Google Scholar]
  9. Gururaja RaoS. SinghH. SheuS-S. Mitochondrial Changes in Cancer.Pharmacology of Mitochondria.Springer International PublishingCham201721122710.1007/164_2016_40
    [Google Scholar]
  10. PrasunP. Mitochondrial dysfunction in metabolic syndrome.Biochim. Biophys. Acta Mol. Basis Dis.202018661016583810.1016/j.bbadis.2020.16583832428560
    [Google Scholar]
  11. AshleighT. SwerdlowR.H. BealM.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis.Alzheimers Dement.202319133334210.1002/alz.1268335522844
    [Google Scholar]
  12. LiX. ZhangW. CaoQ. WangZ. ZhaoM. XuL. ZhuangQ. Mitochondrial dysfunction in fibrotic diseases.Cell Death Discov.2020618010.1038/s41420‑020‑00316‑932963808
    [Google Scholar]
  13. SrinivasanS. GuhaM. KashinaA. AvadhaniN.G. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection.Biochim. Biophys. Acta Bioenerg.20171858860261410.1016/j.bbabio.2017.01.00428104365
    [Google Scholar]
  14. ForrestM.D. Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy.BioRxiv201502519710.1101/025197
    [Google Scholar]
  15. CarreteroJ. ObradorE. AnasagastiM.J. MartinJ.J. Vidal-VanaclochaF. EstrelaJ.M. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells.Clin. Exp. Metastasis199917756757410.1023/A:100672522607810845555
    [Google Scholar]
  16. Santo-DomingoJ. DemaurexN. The renaissance of mitochondrial pH.J. Gen. Physiol.2012139641542310.1085/jgp.20111076722641636
    [Google Scholar]
  17. ChoH. ChoY.Y. ShimM.S. LeeJ.Y. LeeH.S. KangH.C. Mitochondria-targeted drug delivery in cancers.Biochim. Biophys. Acta Mol. Basis Dis.20201866816580810.1016/j.bbadis.2020.16580832333953
    [Google Scholar]
  18. WarburgO. On the origin of cancer cells.Science1956123319130931410.1126/science.123.3191.30913298683
    [Google Scholar]
  19. LiQ. ZhangD. SuiX. SongT. HuL. XuX. WangX. WangF. The Warburg effect drives cachectic states in patients with pancreatobiliary adenocarcinoma.FASEB J.2023379e2314410.1096/fj.202300649R37584661
    [Google Scholar]
  20. WaypaG.B. MarksJ.D. GuzyR. MungaiP.T. SchriewerJ. DokicD. SchumackerP.T. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells.Circ. Res.2010106352653510.1161/CIRCRESAHA.109.20633420019331
    [Google Scholar]
  21. BoultonD.P. CainoM.C. Mitochondrial fission and fusion in tumor progression to metastasis.Front. Cell Dev. Biol.20221084996210.3389/fcell.2022.84996235356277
    [Google Scholar]
  22. TrottaA.P. ChipukJ.E. Mitochondrial dynamics as regulators of cancer biology.Cell. Mol. Life Sci.201774111999201710.1007/s00018‑016‑2451‑328083595
    [Google Scholar]
  23. SerasingheM.N. WiederS.Y. RenaultT.T. ElkholiR. AsciollaJ.J. YaoJ.L. JabadoO. HoehnK. KageyamaY. SesakiH. ChipukJ.E. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors.Mol. Cell201557352153610.1016/j.molcel.2015.01.00325658204
    [Google Scholar]
  24. WallaceD.C. Mitochondria and cancer.Nat. Rev. Cancer2012121068569810.1038/nrc336523001348
    [Google Scholar]
  25. SivagnanamS. DasK. PanI. StewartA. BarikA. MaityB. DasP. Engineered triphenylphosphonium-based, mitochondrial-targeted liposomal drug delivery system facilitates cancer cell killing actions of chemotherapeutics.RSC Chem. Biol.20245323624810.1039/D3CB00219E38456034
    [Google Scholar]
  26. QinJ. GongN. LiaoZ. ZhangS. TimashevP. HuoS. LiangX.J. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment.Nanoscale202113157108711810.1039/D1NR01068A33889907
    [Google Scholar]
  27. YangJ. GriffinA. QiangZ. RenJ. Organelle-targeted therapies: A comprehensive review on system design for enabling precision oncology.Signal Transduct. Target. Ther.20227137910.1038/s41392‑022‑01243‑036402753
    [Google Scholar]
  28. GoshishtM.K. TripathiN. PatraG.K. ChaskarM. Organelle-targeting ratiometric fluorescent probes: Design principles, detection mechanisms, bio-applications, and challenges.Chem. Sci.202314225842587110.1039/D3SC01036H37293660
    [Google Scholar]
  29. SolmazB. OguzA. OguzM. OzturkB. YilmazM. Synthesis, anticancer activity, and mitochondria-targeted bioimaging applications of novel fluorescent Calix [4]arenes-benzimidazole derivatives.Curr. Med. Chem.20253210.2174/010929867335604824112018224339901678
    [Google Scholar]
  30. IppolitoL. GiannoniE. ChiarugiP. ParriM. Mitochondrial redox hubs as promising targets for anticancer therapy.Front. Oncol.20201025610.3389/fonc.2020.0025632185131
    [Google Scholar]
  31. MaC. XiaF. KelleyS.O. Mitochondrial targeting of probes and therapeutics to the powerhouse of the cell.Bioconjug. Chem.202031122650266710.1021/acs.bioconjchem.0c0047033191743
    [Google Scholar]
  32. SunY. ZhangH. LuG. WangH. LuY. FanL. Mitochondria-targeted cancer therapy based on functional peptides.Chin. Chem. Lett.202334510781710.1016/j.cclet.2022.107817
    [Google Scholar]
  33. ShiC. HuangH. ZhouX. ZhangZ. MaH. YaoQ. ShaoK. SunW. DuJ. FanJ. LiuB. WangL. PengX. Reversing multidrug resistance by inducing mitochondrial dysfunction for enhanced chemo-photodynamic therapy in tumor.ACS Appl. Mater. Interfaces20211338452594526810.1021/acsami.1c1272534533937
    [Google Scholar]
  34. LiuD. RongH. ChenY. WangQ. QianS. JiY. YaoW. YinJ. GaoX. Targeted disruption of mitochondria potently reverses multidrug resistance in cancer therapy.Br. J. Pharmacol.2022179133346336210.1111/bph.1580135040123
    [Google Scholar]
  35. HongW. ChenD. ZhangX. ZengJ. HuH. ZhaoX. QiaoM. Reversing multidrug resistance by intracellular delivery of Pluronic® P85 unimers.Biomaterials201334379602961410.1016/j.biomaterials.2013.08.03224021757
    [Google Scholar]
  36. WeiY.F. ZhangX.Q. SunR. XuY.J. GeJ.F. Fluorescent probes based 1,8-naphthalimide-nitrogen heterocyclic for monitoring the fluctuation of mitochondrial viscosity.Dyes Pigments202119410955910.1016/j.dyepig.2021.109559
    [Google Scholar]
  37. LibermanE.A. TopalyV.P. TsofinaL.M. JasaitisA.A. SkulachevV.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature196922251981076107810.1038/2221076a05787094
    [Google Scholar]
  38. WangJ. LiJ. XiaoY. FuB. QinZ. TPP-based mitocans: A potent strategy for anticancer drug design.RSC Med. Chem.202011885887510.1039/C9MD00572B33479681
    [Google Scholar]
  39. BoujutM. ChevalierA. SchapmanD. BénardM. GalasL. GallavardinT. FranckX. Indazole versus indole-based cationic merocyanines with red shifted in-cellulo emission for selective mitochondria imaging.Dyes Pigments202219810998810.1016/j.dyepig.2021.109988
    [Google Scholar]
  40. ZhangY. WangL. RaoQ. BuY. XuT. ZhuX. ZhangJ. TianY. ZhouH. Tuning the hydrophobicity of pyridinium-based probes to realize the mitochondria-targeted photodynamic therapy and mitophagy tracking.Sens. Actuators B Chem.202032112846010.1016/j.snb.2020.128460
    [Google Scholar]
  41. TongH. GaoY. LiJ. LiJ. HuangD. ShiJ. SantosH.A. XiaB. Mitochondria-targeted bovine serum Albumin@Copper sulfide nanocomposites conjugated with Rhodamine-110 dye for an enhanced efficacy of cancer photothermal therapy.Part. Part. Syst. Charact.2021384210001310.1002/ppsc.202100013
    [Google Scholar]
  42. JiX. WangN. ZhangJ. XuS. SiY. ZhaoW. Meso-pyridinium substituted BODIPY dyes as mitochondria- targeted probes for the detection of cysteine in living cells and in vivo.Dyes Pigments202118710908910.1016/j.dyepig.2020.109089
    [Google Scholar]
  43. TangP. WangQ. TanQ. HuangK. DuB. LiangL. A terpyridyl functionalized rhodamine dye for viscosity sensing with fluorescence enhancement and mitochondria- targeting imaging.Microchem. J.202319410929610.1016/j.microc.2023.109296
    [Google Scholar]
  44. YangX.Z. WeiX.R. SunR. XuY.J. GeJ.F. A novel xanthylene-based effective mitochondria-targeting ratiometric cysteine probe and its bioimaging in living cells.Talanta202020912058010.1016/j.talanta.2019.12058031892055
    [Google Scholar]
  45. LiuJ. LiuX. LuS. ZhangL. FengL. ZhongS. ZhangN. BingT. ShangguanD. Ratiometric detection and imaging of hydrogen sulfide in mitochondria based on a cyanine/naphthalimide hybrid fluorescent probe.Analyst2020145206549655510.1039/D0AN01314E32776047
    [Google Scholar]
  46. WangL. RenM. LiZ. DaiL. LinW. Development of a FRET-based ratiometric fluorescent probe to monitor the changes in palladium(ii) in aqueous solution and living cells.New J. Chem.201943255255510.1039/C8NJ04866E
    [Google Scholar]
  47. ChengH. MunroD. PamenterM.E. Dynamic calculation of ATP/O ratios measured using Magnesium Green (MgGr)™.MethodsX2021810152010.1016/j.mex.2021.10152034754791
    [Google Scholar]
  48. ParedesR.M. EtzlerJ.C. WattsL.T. ZhengW. LechleiterJ.D. Chemical calcium indicators.Methods200846314315110.1016/j.ymeth.2008.09.02518929663
    [Google Scholar]
  49. NeikirkK. MarshallA.G. KulaB. SmithN. LeBlancS. HintonA.Jr. MitoTracker: A useful tool in need of better alternatives.Eur. J. Cell Biol.2023102415137110.1016/j.ejcb.2023.15137137956476
    [Google Scholar]
  50. MonteiroL.B. DavanzoG.G. de AguiarC.F. Moraes-VieiraP.M.M. Using flow cytometry for mitochondrial assays.MethodsX2020710093810.1016/j.mex.2020.10093832551241
    [Google Scholar]
  51. NumasawaK. HanaokaK. IkenoT. EchizenH. IshikawaT. MorimotoM. KomatsuT. UenoT. IkegayaY. NaganoT. UranoY. A cytosolically localized far-red to near-infrared rhodamine-based fluorescent probe for calcium ions.Analyst2020145237736774010.1039/D0AN01739F33000768
    [Google Scholar]
  52. AmidonG.L. LennernäsH. ShahV.P. CrisonJ.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm. Res.199512341342010.1023/A:10162128042887617530
    [Google Scholar]
  53. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/19572722830056
    [Google Scholar]
  54. Sousa-PimentaM. EstevinhoL.M. SzopaA. BasitM. KhanK. ArmaghanM. IbrayevaM. Sönmez GürerE. CalinaD. HanoC. Sharifi-RadJ. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel.Front. Pharmacol.202314115730610.3389/fphar.2023.115730637229270
    [Google Scholar]
  55. HuangL. SunZ. ShenQ. HuangZ. WangS. YangN. LiG. WuQ. WangW. LiL. YuC. Rational design of nanocarriers for mitochondria-targeted drug delivery.Chin. Chem. Lett.20223394146415610.1016/j.cclet.2022.02.047
    [Google Scholar]
  56. KimS. NamH.Y. LeeJ. SeoJ. Mitochondrion-targeting peptides and peptidomimetics: Recent progress and design principles.Biochemistry202059327028410.1021/acs.biochem.9b0085731696703
    [Google Scholar]
  57. LinR. ZhangP. CheethamA.G. WalstonJ. AbadirP. CuiH. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.Bioconjug. Chem.2015261717710.1021/bc500408p25547808
    [Google Scholar]
  58. SzetoH.H. Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents.AAPS J.200683E521E53110.1208/aapsj08036217025271
    [Google Scholar]
  59. XieJ. TuH. ChenY. ChenZ. YangZ. LiuY. Triphenyl phosphate induces clastogenic effects potently in mammalian cells, human CYP1A2 and 2E1 being major activating enzymes.Chem. Biol. Interact.202336911025910.1016/j.cbi.2022.11025936372259
    [Google Scholar]
  60. MurphyM.P. Targeting lipophilic cations to mitochondria.Biochim. Biophys. Acta Bioenerg.200817777-81028103110.1016/j.bbabio.2008.03.02918439417
    [Google Scholar]
  61. WangZ. GuoW. KuangX. HouS. LiuH. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective.Asian J. Pharm. Sci.201712649850810.1016/j.ajps.2017.05.00632104363
    [Google Scholar]
  62. VašíčekJ. BalážiA. SvoradováA. VozafJ. DujíčkováL. MakarevichA.V. BauerM. ChrenekP. Comprehensive flow-cytometric quality assessment of ram sperm intended for gene banking using standard and novel fertility biomarkers.Int. J. Mol. Sci.20222311592010.3390/ijms2311592035682598
    [Google Scholar]
  63. MarchettiC. JouyN. Leroy-MartinB. DefossezA. FormstecherP. MarchettiP. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility.Hum. Reprod.200419102267227610.1093/humrep/deh41615256505
    [Google Scholar]
  64. LiaoJ. ZhaoQ. HanX. DiwuZ. Analyzing cellular apoptosis through monitoring mitochondrial membrane potential changes with JC-10.Biophys. J.2011100339a10.1016/j.bpj.2010.12.417
    [Google Scholar]
  65. YounesN. AlsahanB.S. Al-MesaifriA.J. Da’asS.I. PintusG. MajdalawiehA.F. NasrallahG.K. JC-10 probe as a novel method for analyzing the mitochondrial membrane potential and cell stress in whole zebrafish embryos.Toxicol. Res.2022111778710.1093/toxres/tfab11435237413
    [Google Scholar]
  66. WalterE.R.H. LeeL.C.C. LeungP.K.K. LoK.K.W. LongN.J. Mitochondria-targeting biocompatible fluorescent BODIPY probes.Chem. Sci.202415134846485210.1039/D3SC06445J38550684
    [Google Scholar]
  67. MaJ. KongX. WangX. XuY. ZhaoM. XieH. SiW. ZhangZ. A dual-emission mitochondria targeting fluorescence probe for detecting hydroxyl radical and its generation induced by cellular activities.J. Mol. Liq.202440612512610.1016/j.molliq.2024.125126
    [Google Scholar]
  68. YangF. SongX. ZhangM. MaH. ZhangS. WangW. WangR. WangZ. YuanZ. RenD. SunW. Mitochondria-targeting phenothiazine-based ratiometric fluorescent probe for visual and rapid detection of hypochlorous acid in living cells and zebrafish.Dyes Pigments202422911225810.1016/j.dyepig.2024.112258
    [Google Scholar]
  69. WangJ. WuY. LiH. KangW. LiW. FuS. Antitumor effects of polydopamine coated hydroxyapatite nanoparticles and its mechanism: Mitochondria-targeted ROS and calcium channels.Biomater. Adv.202416121385810.1016/j.bioadv.2024.21385838692179
    [Google Scholar]
  70. LiangY. ZhangC. MengZ. GongS. TianJ. LiR. WangZ. WangS. In situ evaluation the fluctuation of hypochlorous acid in acute liver injury mice models with a mitochondria-targeted NIR ratiometric fluorescent probe.Talanta202427712635510.1016/j.talanta.2024.12635538838563
    [Google Scholar]
  71. ZhangF. YanH. LiuC. YangY. ZhangQ. LiZ. ZhangP. DingC. Mitochondria-targeting near-infrared fluorescence/afterglow sensing assay for the rapid detection of HClO and its application in the early detection of Alzheimer’s disease.Sens. Actuators B Chem.202441513599510.1016/j.snb.2024.135995
    [Google Scholar]
  72. NiJ. YuL. WangY. YangT. BaiY. ZhengB. LiangM. YeX. QuanY.Y. LinF. HuangZ.S. Win-win integration: A mitochondria targeted AIE photosensitizer for hypochlorite detection and type I & type II photodynamic therapy.Anal. Chim. Acta2024132034303510.1016/j.aca.2024.34303539142775
    [Google Scholar]
  73. ZhongL. TianJ. HuQ. ZhaoL. ZhanQ. ZhaoM. Mitochondria-targeted nanoparticles based on glycated oat protein for enhanced curcumin bioavailability and antioxidant activity.Food Biosci.20246010438610.1016/j.fbio.2024.104386
    [Google Scholar]
  74. HuH. LiQ. WangJ. ChengY. ZhaoJ. HuC. YinX. WuY. SangR. JiangH. SunY. WangS. Mitochondria-targeted sonodynamic modulation of neuroinflammation to protect against myocardial ischemia‒reperfusion injury.Acta Biomater.2024S1742-706124004450044810.1016/j.actbio.2024.08.00339122136
    [Google Scholar]
  75. LiY. LiJ. ChangY. ZhangJ. WangZ. WangF. LinY. SuiL. Mitochondria-targeted drug delivery system based on tetrahedral framework nucleic acids for bone regeneration under oxidative stress.Chem. Eng. J.202449615372310.1016/j.cej.2024.153723
    [Google Scholar]
  76. WangX. NingL. LinH. MaN. LiX. WangF. ZhangR. YouC. Efficient tumor treatment by triphenylphosphine conjugated nanocellulose composite hydrogels for enhanced mitochondria targeting.J. Drug Deliv. Sci. Technol.20249210528610.1016/j.jddst.2023.105286
    [Google Scholar]
  77. LiuS. JiangY. ChengX. WangY. FangT. YanX. TangH. YouQ. Mitochondria-targeting nanozyme for catalytical therapy and radiotherapy with activation of cGAS-STING.Colloids Surf. B Biointerfaces202424411413710.1016/j.colsurfb.2024.11413739116601
    [Google Scholar]
  78. YinN. WangY. QinG. WangM. TangJ. YaoX. XuQ. YoonJ. A mitochondria-targeted fluorescent probe for revealing H2O2 elevation modulated by basal HClO in HeLa and A549 cells.Sens. Actuators B Chem.202441913641910.1016/j.snb.2024.136419
    [Google Scholar]
  79. TanY. WuJ.R. WangY.R. ZhangA.H. HuJ.L. LiuX.Y. WangC-F. WangJ-N. ChenM-N. SongH-R. KangY-F. A fluorescence probe with targeted mitochondria was developed for detecting H2O2 in vitro and vivo.Microchem. J.202420111065610.1016/j.microc.2024.110656
    [Google Scholar]
  80. LiuR. ZhangX. FeiS. TanM. Orally deliverable lutein nanoparticles as robust ROS scavenger for dry eye disease by targeting Peyer’s patches and mitochondria of ocular cell.Chem. Eng. J.202449415302410.1016/j.cej.2024.153024
    [Google Scholar]
  81. LiX. HouJ. PengC. ChenL. LiuW. LiuY. A 1,8- naphthalimide-based fluorescent probe for selective and sensitive detection of peroxynitrite and its applications in living cell imaging.RSC Advances2017754342873429210.1039/C7RA04317A
    [Google Scholar]
  82. PengY. MoR. YangM. XieH. MaF. DingZ. WuS. LamJ.W.Y. DuJ. ZhangJ. ZhaoZ. TangB.Z. Mitochondria-targeting AIEgens as pyroptosis inducers for boosting Type-I photodynamic therapy of tongue squamous cell carcinoma.ACS Nano202418acsnano.4c0680810.1021/acsnano.4c0680839268809
    [Google Scholar]
  83. CaoY.Y. WuS.Y. YuanL.C. SuW. ChenX.Y. PanJ.C. YeY.X. JiaoQ.C. ZhuH.L. A mitochondria-targeted fluorescent sensor for imaging endogenous peroxynitrite changes in acute lung injury.Talanta202427912656110.1016/j.talanta.2024.12656139047628
    [Google Scholar]
  84. ZuoY. LanY. GouZ. ChaiY. YanM. Polysiloxane-based fluorescent probes for visualizing pH and thiocyanate during mitochondrial autophagy.Anal. Chem.20249642168111681710.1021/acs.analchem.4c0349939387845
    [Google Scholar]
  85. WangY. DengY. WangZ. GeJ. YangJ. WangJ. ZhangS. HuL. WangH. Near-infrared emission viscosity-sensitive fluorescent probe for wash-free and specific targeting mitochondria.J. Photochem. Photobiol. Chem.202445411573410.1016/j.jphotochem.2024.115734
    [Google Scholar]
  86. ZhangD. TangD. LiJ. WuZ. LiuH. WangF. RenJ. WangE. A mitochondria-targeted dual-response fluorescent probe with large Stokes shift for visualizing viscosity and cysteine in cancer cells and zebrafish.Dyes Pigments202423111238310.1016/j.dyepig.2024.112383
    [Google Scholar]
  87. ZhangH. QiuM. CuiQ. LuoY. LiL. Viscosity-modulated intramolecular excitation energy transfer for mitochondria-targeted sensing and photokilling.Sens. Actuators B Chem.202441413591110.1016/j.snb.2024.135911
    [Google Scholar]
  88. ShanX. RenJ. HanX. WangQ. HuangK. DuB. LiangL. A red emission tetraphenyl ethylene-fused rhodamine dye for viscosity sensing and mitochondria-targeted cell imaging.J. Mol. Struct.2024131013828010.1016/j.molstruc.2024.138280
    [Google Scholar]
  89. HuangB. XieJ. WangP. TianJ. ZhangW. Nanozyme-catalyzed oxygen self-supplying mitochondria- targeting nanoplatform for precise photodynamic therapy.Next Materials2024510023010.1016/j.nxmate.2024.100230
    [Google Scholar]
  90. GuoL. CaoX. LiX. XuJ. ZhaoX. LuH. Nucleus and mitochondria double-targeted phototherapeutic agent based on conjugated small molecule for cancer cell-targeted synergistic phototherapy.Sens. Actuators B Chem.202441813622710.1016/j.snb.2024.136227
    [Google Scholar]
  91. JungY.L. YangY.J. ShilA. SarkarS. AhnK.H. Anticancer prodrug capable of mitochondria-targeting, light-triggered release, and fluorescence monitoring.ACS Appl. Bio Mater.2024763991399610.1021/acsabm.4c0034238835291
    [Google Scholar]
  92. LiX. LiuY. HuQ. ShiT. PanJ. LongS. SunW. FanJ. DuJ. PengX. Mitochondria-targeted and photo-activated CO release for synergistic photodynamic therapy.Sens. Actuators B Chem.202441813635710.1016/j.snb.2024.136357
    [Google Scholar]
  93. WanX. WangW. ZhouY. MaX. GuanM. LiuF. ChenS. FanJ.X. YanG.P. Self-delivery nanoplatform based on amphiphilic apoptosis peptide for precise mitochondria-targeting photothermal therapy.Mol. Pharm.20242131537154710.1021/acs.molpharmaceut.3c0124338356224
    [Google Scholar]
  94. ZhangW. ChenG. ChenZ. YangX. ZhangB. WangS. LiZ. YangY. WuY. LiuZ. YuZ. Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer.J. Control. Release202437147048310.1016/j.jconrel.2024.06.01438849094
    [Google Scholar]
  95. HuX. ZhangM. QuanC. RenS. ChenW. WangJ. ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics.Bioact. Mater.20243649050710.1016/j.bioactmat.2024.06.03839055351
    [Google Scholar]
  96. GongX. PuX. GaoJ. DangJ. WangZ. JinZ. LiuJ. WangY. LiuX. Luminescent nanotherapeutics system for Real-Time imaging and Membrane-Mitochondria stepwise targeted drug delivery in ovarian cancer.Chem. Eng. J.202449315245210.1016/j.cej.2024.152452
    [Google Scholar]
  97. HuL. CaoJ. LvY. A mitochondria-targeted biocompatible photothermal nanoscale hydrogen-bonded organic framework for effective multimodal-imaging guided breast cancer therapy.Chem. Eng. J.202449215227010.1016/j.cej.2024.152270
    [Google Scholar]
  98. DuanY. DengM. LiuB. MengX. LiaoJ. QiuY. WuZ. LinJ. DongY. DuanY. SunY. Mitochondria targeted drug delivery system overcoming drug resistance in intrahepatic cholangiocarcinoma by reprogramming lipid metabolism.Biomaterials202430912260910.1016/j.biomaterials.2024.12260938754290
    [Google Scholar]
  99. WuY. LiuQ. LiS. YuW. FanH. YaoS. HeW. GuoZ. ChenY. Mitochondria targeting photoredox catalyst-induced pyroptosis for enhanced immunotherapy against hypoxic tumor cells.Chem. Eng. J.202449015159910.1016/j.cej.2024.151599
    [Google Scholar]
  100. ZhangG.D. WangM.M. SuY. FangH. XueX.L. LiuH.K. SuZ. Mitochondria-targeted ruthenium complexes can be generated in vitro and in living cells to target triple-negative breast cancer cells by autophagy inhibition.J. Inorg. Biochem.202425611257410.1016/j.jinorgbio.2024.11257438677004
    [Google Scholar]
  101. YiZ. QinX. ZhangL. ChenH. SongT. LuoZ. WangT. LauJ. WuY. TohT.B. LeeC.S. BuW. LiuX. Mitochondria-targeting type-I photodrug: Harnessing caspase-3 activity for pyroptotic oncotherapy.J. Am. Chem. Soc.2024146139413942110.1021/jacs.4c0192938506128
    [Google Scholar]
  102. LiuN. LinQ. HuangZ. LiuC. QinJ. YuY. ChenW. ZhangJ. JiangM. GaoX. HuoS. ZhuX. Mitochondria-targeted prodrug nanoassemblies for efficient ferroptosis-based therapy via devastating ferroptosis defense systems.ACS Nano202418117945795810.1021/acsnano.3c1013338452275
    [Google Scholar]
  103. WuZ. XuN. ZhangD. LiuH. LiL. WangF. RenJ. WangE. A mitochondria-targeted fluorescent probe for discrimination of biothiols by dual-channel imaging in living cells and zebrafish.Spectrochim. Acta A Mol. Biomol. Spectrosc.202432212484610.1016/j.saa.2024.12484639059262
    [Google Scholar]
  104. JiangZ. WangJ. TianM. ZhouL. KongX. YanM. Real time precisely tracing the fluctuations of mitochondrial SO2 in cells during ferroptosis and tissues using a mitochondrial-immobilized ratiometric fluorescent probe.Talanta202427912665410.1016/j.talanta.2024.12665439106645
    [Google Scholar]
  105. ZhouJ. LiJ. XuX. LongS. CuiN. ZhangY. ShiL. ZhouJ. Imaging gastrointestinal damage due to acute mercury poisoning using a mitochondria-targeted dual near-infrared fluorescent probe.J. Hazard. Mater.202447013426910.1016/j.jhazmat.2024.13426938613952
    [Google Scholar]
  106. PulipakaS. ChemponH. SinguruG. SahooS. ShaikhA. KumariS. ThennatiR. KotamrajuS. Mitochondria-targeted esculetin and metformin delay endothelial senescence by promoting fatty acid β-oxidation: Relevance in age-associated atherosclerosis.Mech. Ageing Dev.202421911193110.1016/j.mad.2024.11193138554949
    [Google Scholar]
  107. DongL. ZhangJ. GengZ. ZhangS. WuY. WeiC. WangX. LuH. YangW. ZhuS-E. Synthesis and evaluation of novel mitochondria-targeted, water-soluble phenoxazine-porphyrins for efficient photodynamic therapy.Dyes Pigments202422911227910.1016/j.dyepig.2024.112279
    [Google Scholar]
  108. OguzA. SaglikB.N. OguzM. OzturkB. YilmazM. Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity.Bioorg. Med. Chem.20249811758610.1016/j.bmc.2023.11758638171252
    [Google Scholar]
  109. XiongL.H. YangL. GengJ. TangB.Z. HeX. All-in-one alkaline phosphatase-response aggregation-induced emission probe for cancer discriminative imaging and combinational chemodynamic–photodynamic therapy.ACS Nano20241827178371785110.1021/acsnano.4c0387938938113
    [Google Scholar]
  110. ChenX. ShiL. RanX.Y. ZhangL.N. XieK.P. ZhaoY. ChenJ. YeL. YuX-Q. LiK. Rational design of an intramolecular hydrogen bond enhanced fluorescent probe for diagnosis of drug-induced liver injury.ACS Mater. Lett.2024631059106810.1021/acsmaterialslett.4c00002
    [Google Scholar]
  111. OlowolagbaA.M. IdowuM.O. ArachchigeD.L. AworindeO.R. DwivediS.K. GrahamO.R. WernerT. LuckR.L. LiuH. Syntheses and applications of coumarin-derived fluorescent probes for real-time monitoring of NAD(P)H dynamics in living cells across diverse chemical environments.ACS Appl. Bio Mater.2024785437545110.1021/acsabm.4c0059538995885
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673368188250613112621
Loading
/content/journals/cmc/10.2174/0109298673368188250613112621
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; cell death; fluorescent probe; Mitochondria; MMP; pH; ROS; viscosity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test