Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Heart failure (HF), a widespread public health issue, affects about 26 million people all around the world, and its incidence and prevalence are still growing. Measuring serum biomarkers is beneficial in diagnosing HF and evaluating its prognosis. During the previous decade, various investigations have focused on identifying new HF biological markers that would have additional and/or superior prognostic, diagnostic, or classification value. While heart-specific biological markers, such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are commonly applied in clinical practice, there is still an unmet need for new markers in HF management. Insulin-like growth factor-binding protein-7 (IGFBP7), a cellular senescence marker, has been considered as a candidate biomarker in HF. This study aims to comprehensively reveal the underlying mechanism connecting IGFBP-7 to HF and review studies evaluating the prognostic or diagnostic performance of IGFBP-7 in combination with or in contrast with other potential HF biological markers. Increased IGFBP7 levels are associated with a set of functional and structural heart abnormalities such as diastolic dysfunction. Increased IGFBP7 concentrations seem to be an indicator of cardiac overload or injury and are related to HF major risk factors, including atherosclerosis, diabetes, and renal function. IGFBP7 is predictive of short and long-term outcomes in the HF population and can independently predict the rate of hospitalization and HF-related mortality.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346933241223063559
2025-02-11
2025-10-29
Loading full text...

Full text loading...

References

  1. ChenJ. AronowitzP. Congestive heart failure.Med. Clin. North Am.2022106344745810.1016/j.mcna.2021.12.00235491065
    [Google Scholar]
  2. KhanmohammadiS. TavolinejadH. AminorroayaA. RezaieY. AshrafH. Vasheghani-FarahaniA. Association of lipid accumulation product with type 2 diabetes mellitus, hypertension, and mortality: A systematic review and meta-analysis.J. Diabetes Metab. Disord.20222121943197310.1007/s40200‑022‑01114‑z36404835
    [Google Scholar]
  3. PonikowskiP. VoorsA.A. AnkerS.D. BuenoH. ClelandJ.G.F. CoatsA.J.S. FalkV. González-JuanateyJ.R. HarjolaV.P. JankowskaE.A. JessupM. LindeC. NihoyannopoulosP. ParissisJ.T. PieskeB. RileyJ.P. RosanoG.M.C. RuilopeL.M. RuschitzkaF. RuttenF.H. van der MeerP. ESC Scientific Document Group 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.201637272129220010.1093/eurheartj/ehw12827206819
    [Google Scholar]
  4. BraunwaldE. Heart failure.JACC Heart Fail.20131112010.1016/j.jchf.2012.10.00224621794
    [Google Scholar]
  5. SnyderM.L. LoveS.A. SorlieP.D. RosamondW.D. AntiniC. MetcalfP.A. HardyS. SuchindranC.M. ShaharE. HeissG. Redistribution of heart failure as the cause of death: The atherosclerosis risk in communities study.Popul. Health Metr.20141211010.1186/1478‑7954‑12‑1024716810
    [Google Scholar]
  6. MaronB.J. TowbinJ.A. ThieneG. AntzelevitchC. CorradoD. ArnettD. MossA.J. SeidmanC.E. YoungJ.B. American Heart Association Council on Clinical Cardiology, Heart Failure and Transplantation Committee Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups Council on Epidemiology and Prevention Contemporary definitions and classification of the cardiomyopathies.Circulation2006113141807181610.1161/CIRCULATIONAHA.106.17428716567565
    [Google Scholar]
  7. KhalajiA. BehnoushA.H. KhanmohammadiS. Ghanbari MardasiK. SharifkashaniS. SahebkarA. VinciguerraC. CannavoA. Triglyceride-glucose index and heart failure: A systematic review and meta-analysis.Cardiovasc. Diabetol.202322124410.1186/s12933‑023‑01973‑737679763
    [Google Scholar]
  8. Melero-FerrerJ.L. López-VilellaR. Morillas-ClimentH. Sanz-SánchezJ. Sánchez-LázaroI.J. Almenar-BonetL. Martínez-DolzL. Novel imaging techniques for heart failure.Card. Fail. Rev.201621273410.15420/cfr.2015:29:228875038
    [Google Scholar]
  9. MuellerC. McDonaldK. de BoerR.A. MaiselA. ClelandJ.G.F. KozhuharovN. CoatsA.J.S. MetraM. MebazaaA. RuschitzkaF. LainscakM. FilippatosG. SeferovicP.M. MeijersW.C. Bayes-GenisA. MuellerT. RichardsM. JanuzziJ.L.Jr. Heart Failure Association of the European Society of Cardiology Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations.Eur. J. Heart Fail.201921671573110.1002/ejhf.149431222929
    [Google Scholar]
  10. de BoerR.A. DanielsL.B. MaiselA.S. JanuzziJ.L.Jr. State of the Art: Newer biomarkers in heart failure.Eur. J. Heart Fail.201517655956910.1002/ejhf.27325880523
    [Google Scholar]
  11. Hernandez-SeguraA. NehmeJ. DemariaM. Hallmarks of cellular senescence.Trends Cell Biol.201828643645310.1016/j.tcb.2018.02.00129477613
    [Google Scholar]
  12. HeS. SharplessN.E. Senescence in health and disease.Cell201716961000101110.1016/j.cell.2017.05.01528575665
    [Google Scholar]
  13. JanuzziJ.L.Jr PackerM. ClaggettB. LiuJ. ShahA.M. ZileM.R. PieskeB. VoorsA. GandhiP.U. PrescottM.F. ShiV. LefkowitzM.P. McMurrayJ.J.V. SolomonS.D. IGFBP7 (Insulin-Like Growth Factor–Binding Protein-7) and neprilysin inhibition in patients with heart failure.Circ. Heart Fail.20181110e00513310.1161/CIRCHEARTFAILURE.118.00513330354399
    [Google Scholar]
  14. RuanW. WuM. ShiL. LiF. DongL. QiuY. WuX. YingK. Serum levels of IGFBP7 are elevated during acute exacerbation in COPD patients.Int. J. Chron. Obstruct. Pulmon. Dis.2017121775178010.2147/COPD.S13265228684903
    [Google Scholar]
  15. RuanW. KangZ. LiY. SunT. WangL. LiangL. LaiM. WuT. Interaction between IGFBP7 and insulin: A theoretical and experimental study.Sci. Rep.2016611958610.1038/srep1958627101796
    [Google Scholar]
  16. JinL. ShenF. WeinfeldM. SergiC. Insulin Growth Factor Binding Protein 7 (IGFBP7)-related cancer and IGFBP3 and IGFBP7 crosstalk.Front. Oncol.20201072710.3389/fonc.2020.0072732500027
    [Google Scholar]
  17. SeverinoV. AlessioN. FarinaA. SandomenicoA. CipollaroM. PelusoG. GalderisiU. ChamberyA. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells.Cell Death Dis.2013411e91110.1038/cddis.2013.44524201810
    [Google Scholar]
  18. van den BoschE. BossersS.S.M. KamphuisV.P. BoersmaE. Roos-HesselinkJ.W. BreurJ.M.P.J. Ten HarkelA.D.J. KapustaL. BarteldsB. RoestA.A.W. KuipersI.M. BlomN.A. KoopmanL.P. HelbingW.A. Associations between blood biomarkers, cardiac function, and adverse outcome in a young fontan cohort.J. Am. Heart Assoc.2021105e01502210.1161/JAHA.119.01502233624507
    [Google Scholar]
  19. ChenZ. LiL. WuW. LiuZ. HuangY. YangL. LuoQ. ChenJ. HouY. SongG. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis.Theranostics202010146448646610.7150/thno.4357732483463
    [Google Scholar]
  20. MeessenJ.M.T.A. CesaroniG. MuredduG.F. BoccanelliA. Wienhues-ThelenU.H. KastnerP. Ojeda-FernandezL. NovelliD. BazzoniG. MangiavacchiM. AgabitiN. MassonS. StaszewskyL. LatiniR. PREDICTOR Investigators IGFBP7 and GDF-15, but not P1NP, are associated with cardiac alterations and 10-year outcome in an elderly community-based study.BMC Cardiovasc. Disord.202121132810.1186/s12872‑021‑02138‑834217226
    [Google Scholar]
  21. IbrahimN.E. AfilaloM. Chen-TournouxA. ChristensonR.H. GagginH.K. HollanderJ.E. KastnerP. LevyP.D. MangA. MassonS. NagurneyJ.T. NowakR.M. PangP.S. PeacockW.F. Dipl-StatV.R. WaltersE.L. JanuzziJ.L.Jr. Diagnostic and prognostic utilities of insulin-like growth factor binding protein-7 in patients with dyspnea.JACC Heart Fail.20208541542210.1016/j.jchf.2020.02.00932354416
    [Google Scholar]
  22. KalayciA. PeacockW.F. NagurneyJ.T. HollanderJ.E. LevyP.D. SingerA.J. ShapiroN.I. ChengR.K. CannonC.M. BlomkalnsA.L. WaltersE.L. ChristensonR.H. Chen-TournouxA. NowakR.M. LurieM.D. PangP.S. KastnerP. MassonS. GibsonC.M. GagginH.K. JanuzziJ.L.Jr. Echocardiographic assessment of insulin-like growth factor binding protein-7 and early identification of acute heart failure.ESC Heart Fail.2020741664167510.1002/ehf2.1272232406612
    [Google Scholar]
  23. LeRoithD. RobertsC.T.Jr. The insulin-like growth factor system and cancer.Cancer Lett.2003195212713710.1016/S0304‑3835(03)00159‑912767520
    [Google Scholar]
  24. BurgerA.M. Leyland-JonesB. BanerjeeK. SpyropoulosD.D. SethA.K. Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer.Eur. J. Cancer200541111515152710.1016/j.ejca.2005.04.02315979304
    [Google Scholar]
  25. PollakM. The insulin and insulin-like growth factor receptor family in neoplasia: An update.Nat. Rev. Cancer201212315916910.1038/nrc321522337149
    [Google Scholar]
  26. YuH. MistryJ. NicarM.J. KhosraviM.J. DiamandisA. van DoornJ. JuulA. Insulin-like growth factors (IGF-I, free IGF-I, and IGF-II) and insulin-like growth factor binding proteins (IGFBP-2, IGFBP-3, IGFBP-6, and ALS) in blood circulation.J. Clin. Lab. Anal.199913416617210.1002/(SICI)1098‑2825(1999)13:4<166::AID‑JCLA5>3.0.CO;2‑X10414596
    [Google Scholar]
  27. HuQ. ZhouY. YingK. RuanW. IGFBP, a novel target of lung cancer?Clin. Chim. Acta201746617217710.1016/j.cca.2017.01.01728104361
    [Google Scholar]
  28. FirthS.M. BaxterR.C. Cellular actions of the insulin- like growth factor binding proteins.Endocr. Rev.200223682485410.1210/er.2001‑003312466191
    [Google Scholar]
  29. SubramanianA. SharmaA. MokbelK. Insulin-like growth factor binding proteins and breast cancer.Breast Cancer Res. Treat.2008107218119410.1007/s10549‑007‑9549‑017611793
    [Google Scholar]
  30. HwaV. OhY. RosenfeldR.G. The insulin-like growth factor-binding protein (IGFBP) superfamily.Endocr. Rev.199920676178710605625
    [Google Scholar]
  31. ShibataY. TsukazakiT. HirataK. XinC. YamaguchiA. Role of a new member of IGFBP superfamily, IGFBP-rP10, in proliferation and differentiation of osteoblastic cells.Biochem. Biophys. Res. Commun.200432541194120010.1016/j.bbrc.2004.10.15715555553
    [Google Scholar]
  32. YamanakaY. WilsonE.M. RosenfeldR.G. OhY. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins.J. Biol. Chem.199727249307293073410.1074/jbc.272.49.307299388210
    [Google Scholar]
  33. OhY. NagallaS.R. YamanakaY. KimH.S. WilsonE. RosenfeldR.G. Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II.J. Biol. Chem.199627148303223032510.1074/jbc.271.48.303228939990
    [Google Scholar]
  34. AkielM. GuoC. LiX. RajasekaranD. MendozaR.G. RobertsonC.L. JariwalaN. YuanF. SublerM.A. WindleJ. GarciaD.K. LaiZ. ChenH.I.H. ChenY. GiashuddinS. FisherP.B. WangX.Y. SarkarD. IGFBP7 deletion promotes hepatocellular carcinoma.Cancer Res.201777154014402510.1158/0008‑5472.CAN‑16‑288528619711
    [Google Scholar]
  35. BartramI. ErbenU. Ortiz-TanchezJ. BlunertK. SchleeC. NeumannM. HeeschS. BaldusC.D. Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL.BMC Cancer201515166310.1186/s12885‑015‑1677‑z26450156
    [Google Scholar]
  36. De MeytsP. WallachB. ChristoffersenC.T. UrsøB. GrønskovK. LatusL.J. YakushijiF. IlondoM. ShymkoR.M. The insulin-like growth factor-I receptor. Structure, ligand-binding mechanism and signal transduction.Horm. Res.1994424-515216910.1159/0001841887868068
    [Google Scholar]
  37. KatoM.V. A secreted tumor-suppressor, mac25, with activin-binding activity.Mol. Med.20006212613510.1007/BF0340178010859029
    [Google Scholar]
  38. SwisshelmK. RyanK. TsuchiyaK. SagerR. Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid.Proc. Natl. Acad. Sci. USA199592104472447610.1073/pnas.92.10.44727538673
    [Google Scholar]
  39. ChenY.B. LiaoX.Y. ZhangJ.B. WangF. QinH.D. ZhangL. ShugartY.Y. ZengY.X. JiaW.H. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma.Int. J. Oncol.201750262263010.3892/ijo.2016.382328035363
    [Google Scholar]
  40. EvdokimovaV. TognonC.E. BenatarT. YangW. KrutikovK. PollakM. SorensenP.H.B. SethA. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors.Sci. Signal.20125255ra9210.1126/scisignal.200318423250396
    [Google Scholar]
  41. AkaogiK. OkabeY. SatoJ. NagashimaY. YasumitsuH. SugaharaK. MiyazakiK. Specific accumulation of tumor-derived adhesion factor in tumor blood vessels and in capillary tube-like structures of cultured vascular endothelial cells.Proc. Natl. Acad. Sci. USA199693168384838910.1073/pnas.93.16.83848710880
    [Google Scholar]
  42. CroixB.S. RagoC. VelculescuV. TraversoG. RomansK.E. MontgomeryE. LalA. RigginsG.J. LengauerC. VogelsteinB. KinzlerK.W. Genes expressed in human tumor endothelium.Science200028954821197120210.1126/science.289.5482.119710947988
    [Google Scholar]
  43. López-BermejoA. KhosraviJ. CorlessC.L. KrishnaR.G. DiamandiA. BodaniU. KofoedE.M. GrahamD.L. HwaV. RosenfeldR.G. Generation of anti-insulin- like growth factor-binding protein-related protein 1 (IGFBP-rP1/MAC25) monoclonal antibodies and immunoassay: Quantification of IGFBP-rP1 in human serum and distribution in human fluids and tissues.J. Clin. Endocrinol. Metab.20038873401340810.1210/jc.2002‑02131512843194
    [Google Scholar]
  44. JoshiM. KothaS.R. MalireddyS. SelvarajuV. SatoskarA.R. PalestyA. McFaddenD.W. ParinandiN.L. MaulikN. Conundrum of pathogenesis of diabetic cardiomyopathy: Role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria.Mol. Cell. Biochem.20143861-223324910.1007/s11010‑013‑1861‑x24307101
    [Google Scholar]
  45. ChughS. OuzounianM. LuZ. MohamedS. LiW. BousetteN. LiuP.P. GramoliniA.O. Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A 2 as circulating biomarkers of human heart failure.Proteomics201313152324233410.1002/pmic.20120045523713052
    [Google Scholar]
  46. HooperA.T. ShmelkovS.V. GuptaS. MildeT. BambinoK. GillenK. GoetzM. ChavalaS. BaljevicM. MurphyA.J. ValenzuelaD.M. GaleN.W. ThurstonG. YancopoulosG.D. VahdatL. EvansT. RafiiS. Angiomodulin is a specific marker of vasculature and regulates vascular endothelial growth factor-A-dependent neoangiogenesis.Circ. Res.2009105220120810.1161/CIRCRESAHA.109.19679019542015
    [Google Scholar]
  47. GandhiP.U. ChowS.L. RectorT.S. KrumH. GagginH.K. McMurrayJ.J. ZileM.R. KomajdaM. McKelvieR.S. CarsonP.E. JanuzziJ.L.Jr AnandI.S. Prognostic value of insulin-like growth factor-binding protein 7 in patients with heart failure and preserved ejection fraction.J. Card. Fail.2017231202810.1016/j.cardfail.2016.06.00627317843
    [Google Scholar]
  48. MotiwalaS.R. SzymonifkaJ. BelcherA. WeinerR.B. BaggishA.L. GagginH.K. BhardwajA. JanuzziJ.L.Jr. Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling.J. Cardiovasc. Transl. Res.20147225026110.1007/s12265‑013‑9522‑824309956
    [Google Scholar]
  49. Del PintoR. FerriC. Inflammation-accelerated senescence and the cardiovascular system: Mechanisms and perspectives.Int. J. Mol. Sci.20181912370110.3390/ijms1912370130469478
    [Google Scholar]
  50. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.30932628209797
    [Google Scholar]
  51. TsutsuiH. KinugawaS. MatsushimaS. Oxidative stress and heart failure.Am. J. Physiol. Heart Circ. Physiol.20113016H2181H219010.1152/ajpheart.00554.201121949114
    [Google Scholar]
  52. TrompJ. WestenbrinkB.D. OuwerkerkW. van VeldhuisenD.J. SamaniN.J. PonikowskiP. MetraM. AnkerS.D. ClelandJ.G. DicksteinK. FilippatosG. van der HarstP. LangC.C. NgL.L. ZannadF. ZwindermanA.H. HillegeH.L. van der MeerP. VoorsA.A. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction.J. Am. Coll. Cardiol.201872101081109010.1016/j.jacc.2018.06.05030165978
    [Google Scholar]
  53. SimmondsS.J. CuijpersI. HeymansS. JonesE.A.V. Cellular and molecular differences between HFpEF and HFrEF: A step ahead in an improved pathological understanding.Cells20209124210.3390/cells901024231963679
    [Google Scholar]
  54. PaulusW.J. TschöpeC. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.J. Am. Coll. Cardiol.201362426327110.1016/j.jacc.2013.02.09223684677
    [Google Scholar]
  55. BracunV. van EssenB. VoorsA.A. van VeldhuisenD.J. DicksteinK. ZannadF. MetraM. AnkerS. SamaniN.J. PonikowskiP. FilippatosG. ClelandJ.G.F. LangC.C. NgL.L. ShiC. de WitS. AboumsallemJ.P. MeijersW.C. KlipI.J.T. van der MeerP. de BoerR.A. Insulin-like growth factor binding protein 7 (IGFBP7), a link between heart failure and senescence.ESC Heart Fail.2022964167417610.1002/ehf2.1412036088651
    [Google Scholar]
  56. ChangZ.S. XiaJ.B. WuH.Y. PengW.T. JiangF.Q. LiJ. LiangC.Q. ZhaoH. ParkK.S. SongG.H. KimS.K. HuangR. ZhengL. CaiD.Q. QiX.F. Forkhead box O3 protects the heart against paraquat-induced aging-associated phenotypes by upregulating the expression of antioxidant enzymes.Aging Cell2019185e1299010.1111/acel.1299031264342
    [Google Scholar]
  57. WhiteR.R. MaslovA.Y. LeeM. WilnerS.E. LevyM. VijgJ. FOXO3a acts to suppress DNA double-strand break-induced mutations.Aging Cell2020199e1318410.1111/acel.1318432720744
    [Google Scholar]
  58. YoneyamaY. LanzerstorferP. NiwaH. UmeharaT. ShibanoT. YokoyamaS. ChidaK. WeghuberJ. HakunoF. TakahashiS.I. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.eLife20187e3289310.7554/eLife.3289329661273
    [Google Scholar]
  59. KishimotoS. UnoM. NishidaE. Molecular mechanisms regulating lifespan and environmental stress responses.Inflamm. Regen.20183812210.1186/s41232‑018‑0080‑y30555601
    [Google Scholar]
  60. NogueiraV. ParkY. ChenC.C. XuP.Z. ChenM.L. TonicI. UntermanT. HayN. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis.Cancer Cell200814645847010.1016/j.ccr.2008.11.00319061837
    [Google Scholar]
  61. ZhangL. SmythD. Al-KhalafM. BletA. DuQ. BernickJ. GongM. ChiX. OhY. Roba-OshinM. ColettaE. FeletouM. GramoliniA.O. KimK.H. CoutinhoT. JanuzziJ.L.Jr TylB. ZieglerA. LiuP.P. Insulin- like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure.Nat. Cardiovasc. Res.20221121195121410.1038/s44161‑022‑00181‑y39196168
    [Google Scholar]
  62. CowanC.A. YokoyamaN. SaxenaA. ChumleyM.J. SilvanyR.E. BakerL.A. SrivastavaD. HenkemeyerM. Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development.Dev. Biol.2004271226327110.1016/j.ydbio.2004.03.02615223333
    [Google Scholar]
  63. GeretyS.S. AndersonD.J. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis.Development200212961397141010.1242/dev.129.6.139711880349
    [Google Scholar]
  64. SuS. XieY. ZhangY. XiY. ChengJ. XiangM. Essential roles of EphrinB2 in mammalian heart: from development to diseases.Cell Commun. Signal.20191712910.1186/s12964‑019‑0337‑330909943
    [Google Scholar]
  65. YuanX. BraunT. Multimodal regulation of cardiac myocyte proliferation.Circ. Res.2017121329330910.1161/CIRCRESAHA.117.30842828729454
    [Google Scholar]
  66. SuS. YangD. WuY. XieY. ZhuW. CaiZ. ShenJ. FuZ. WangY. JiaL. WangY. WangJ. XiangM. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling.Circ. Res.2017121661762710.1161/CIRCRESAHA.117.31104528743805
    [Google Scholar]
  67. LiY. ChenY. TanL. PanJ.Y. LinW.W. WuJ. HuW. ChenX. WangX.D. RNA i-mediated ephrin-B2 silencing attenuates astroglial-fibrotic scar formation and improves spinal cord axon growth.CNS Neurosci. Ther.2017231077978910.1111/cns.1272328834283
    [Google Scholar]
  68. YoshimatsuY. WatabeT. Roles of TGF-β signals in endothelial-mesenchymal transition during cardiac fibrosis.Int. J. Inflamm.201120111810.4061/2011/72408022187661
    [Google Scholar]
  69. ZeisbergE.M. TarnavskiO. ZeisbergM. DorfmanA.L. McMullenJ.R. GustafssonE. ChandrakerA. YuanX. PuW.T. RobertsA.B. NeilsonE.G. SayeghM.H. IzumoS. KalluriR. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis.Nat. Med.200713895296110.1038/nm161317660828
    [Google Scholar]
  70. YangD. JinC. MaH. HuangM. ShiG.P. WangJ. XiangM. EphrinB2/EphB4 pathway in postnatal angiogenesis: A potential therapeutic target for ischemic cardiovascular disease.Angiogenesis201619329730910.1007/s10456‑016‑9514‑927216867
    [Google Scholar]
  71. Månsson-BrobergA. SiddiquiA.J. GenanderM. GrinnemoK.H. HaoX. AnderssonA.B. WärdellE. SylvénC. CorbascioM. Modulation of ephrinB2 leads to increased angiogenesis in ischemic myocardium and endothelial cell proliferation.Biochem. Biophys. Res. Commun.2008373335535910.1016/j.bbrc.2008.06.03618571496
    [Google Scholar]
  72. KaurK. SinghN. DhawanR.K. Potential role of EphrinA2 receptors in postconditioning induced cardioprotection in rats.Eur. J. Pharmacol.202088317323110.1016/j.ejphar.2020.17323132589885
    [Google Scholar]
  73. TorresM.J. McLaughlinK.L. RenegarR.H. ValsarajS. WhitehurstK.S.S. SharafO.M. SharmaU.M. HortonJ.L. SarathyB. ParksJ.C. BraultJ.J. Fisher-WellmanK.H. NeuferP.D. ViragJ.A.I. Intracardiac administration of ephrinA1-Fc preserves mitochondrial bioenergetics during acute ischemia/reperfusion injury.Life Sci.201923911705310.1016/j.lfs.2019.11705331733316
    [Google Scholar]
  74. PungsrinontT. KallenbachJ. BaniahmadA. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer.Int. J. Mol. Sci.202122201108810.3390/ijms22201108834681745
    [Google Scholar]
  75. HolenH.L. ShadidiM. NarvhusK. KjøsnesO. TierensA. AasheimH.C. Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis.J. Leukoc. Biol.20088441183119110.1189/jlb.120782918593733
    [Google Scholar]
  76. KoT. NomuraS. YamadaS. FujitaK. FujitaT. SatohM. OkaC. KatohM. ItoM. KatagiriM. SassaT. ZhangB. HatsuseS. YamadaT. HaradaM. TokoH. AmiyaE. HatanoM. KinoshitaO. NawataK. AbeH. UshikuT. OnoM. IkeuchiM. MoritaH. AburataniH. KomuroI. Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis.Nat. Commun.2022131327510.1038/s41467‑022‑30630‑y35672400
    [Google Scholar]
  77. PalD. PertotA. ShiroleN.H. YaoZ. AnaparthyN. GarvinT. CoxH. ChangK. RollinsF. KendallJ. EdwardsL. SinghV.A. StoneG.C. SchatzM.C. HicksJ. HannonG.J. SordellaR. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24− cancer cells.eLife20176e2161510.7554/eLife.2161528092266
    [Google Scholar]
  78. ZhangH. KozonoD.E. O’ConnorK.W. Vidal-CardenasS. RousseauA. HamiltonA. MoreauL. GaudianoE.F. GreenbergerJ. BagbyG. SoulierJ. GrompeM. ParmarK. D’AndreaA.D. TGF-β inhibition rescues hematopoietic stem cell defects and bone marrow failure in Fanconi Anemia.Cell Stem Cell201618566868110.1016/j.stem.2016.03.00227053300
    [Google Scholar]
  79. KurodaJ. AgoT. MatsushimaS. ZhaiP. SchneiderM.D. SadoshimaJ. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.Proc. Natl. Acad. Sci. USA201010735155651557010.1073/pnas.100217810720713697
    [Google Scholar]
  80. TakahashiA. LooT.M. OkadaR. KamachiF. WatanabeY. WakitaM. WatanabeS. KawamotoS. MiyataK. BarberG.N. OhtaniN. HaraE. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells.Nat. Commun.201891124910.1038/s41467‑018‑03555‑829593264
    [Google Scholar]
  81. GorgoulisV. AdamsP.D. AlimontiA. BennettD.C. BischofO. BishopC. CampisiJ. ColladoM. EvangelouK. FerbeyreG. GilJ. HaraE. KrizhanovskyV. JurkD. MaierA.B. NaritaM. NiedernhoferL. PassosJ.F. RobbinsP.D. SchmittC.A. SedivyJ. VougasK. von ZglinickiT. ZhouD. SerranoM. DemariaM. Cellular senescence: Defining a path forward.Cell2019179481382710.1016/j.cell.2019.10.00531675495
    [Google Scholar]
  82. PenA. MorenoM.J. DurocherY. Deb-RinkerP. StanimirovicD.B. Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-β signaling.Oncogene200827546834684410.1038/onc.2008.28718711401
    [Google Scholar]
  83. LisowskaA. ŚwięckiP. KnappM. GilM. MusiałW.J. KamińskiK. HirnleT. TycińskaA. Insulin-like growth factor-binding protein 7 (IGFBP 7) as a new biomarker in coronary heart disease.Adv. Med. Sci.201964119520110.1016/j.advms.2018.08.01730769262
    [Google Scholar]
  84. López-BermejoA. KhosraviJ. Fernández-RealJ.M. HwaV. PrattK.L. CasamitjanaR. Garcia-GilM.M. RosenfeldR.G. RicartW. Insulin resistance is associated with increased serum concentration of IGF-binding protein-related protein 1 (IGFBP-rP1/MAC25).Diabetes20065582333233910.2337/db05‑162716873698
    [Google Scholar]
  85. LisowskaA. SzyszkowskaA. KnappM. ŁapińskaM. KondraciukM. KamińskaI. HryszkoT. Ptaszyńska-KopczyńskaK. KamińskiK. IGFBP7 concentration may reflect subclinical myocardial damage and kidney function in patients with stable ischemic heart disease.Biomolecules202212227410.3390/biom1202027435204773
    [Google Scholar]
  86. SchanzM. ShiJ. WasserC. AlscherM.D. KimmelM. Urinary [ TIMP -2] × [ IGFBP7 ] for risk prediction of acute kidney injury in decompensated heart failure.Clin. Cardiol.201740748549110.1002/clc.2268328295429
    [Google Scholar]
  87. BarrosoM.C. KramerF. GreeneS.J. ScheyerD. KöhlerT. KaroffM. SeyfarthM. GheorghiadeM. DinhW. Serum insulin-like growth factor-1 and its binding protein-7: potential novel biomarkers for heart failure with preserved ejection fraction.BMC Cardiovasc. Disord.201616119910.1186/s12872‑016‑0376‑227769173
    [Google Scholar]
  88. AdamsonC. WelshP. DochertyK.F. de BoerR.A. DiezM. DrożdżJ. DukátA. InzucchiS.E. KøberL. KosiborodM.N. LjungmanC.E.A. MartinezF.A. PonikowskiP. SabatineM.S. MorrowD.A. LindholmD. HammarstedtA. BoultonD.W. GreasleyP.J. LangkildeA.M. SolomonS.D. SattarN. McMurrayJ.J.V. JhundP.S. IGFBP-7 and outcomes in heart failure with reduced ejection fraction.JACC Heart Fail.202311329130410.1016/j.jchf.2022.09.00436592046
    [Google Scholar]
  89. IbrahimN.E. JanuzziJ.L.Jr. Established and emerging roles of biomarkers in heart failure.Circ. Res.2018123561462910.1161/CIRCRESAHA.118.31270630355136
    [Google Scholar]
  90. GandhiP.U. GagginH.K. SheftelA.D. BelcherA.M. WeinerR.B. BaggishA.L. MotiwalaS.R. LiuP.P. JanuzziJ.L.Jr. Prognostic usefulness of insulin-like growth factor-binding protein 7 in heart failure with reduced ejection fraction: A novel biomarker of myocardial diastolic function?Am. J. Cardiol.2014114101543154910.1016/j.amjcard.2014.08.01825248814
    [Google Scholar]
  91. GandhiP.U. GagginH.K. RedfieldM.M. ChenH.H. StevensS.R. AnstromK.J. SemigranM.J. LiuP. JanuzziJ.L.Jr. Insulin-like growth factor–binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction.JACC Heart Fail.201641186086910.1016/j.jchf.2016.08.00227744089
    [Google Scholar]
  92. BlumS. AeschbacherS. MeyreP. KühneM. RodondiN. BeerJ.H. AmmannP. MoschovitisG. BonatiL.H. BlumM.R. KastnerP. BaguleyF. SticherlingC. OsswaldS. ConenD. AeschbacherS. AubersonC. BlumS. BonatiL. CeylanS. ConenD. DoerpfeldS. EkenC. GirodM. HämmerleP. KrisaiP. KühneM. Meyer-ZürnC. MeyreP. MonschA.U. MüllerC. OsswaldS. SpringerA. SticherlingC. SzucsT. VoellminG. ZwimpferL. OsswaldS. KühneM. AujeskyD. FischerU. FuhrerJ. RotenL. JungS. MattleH. AdamL. AubertC.E. FellerM. LoeweA. MoutzouriE. SchneiderC. FlückigerT. GroenC. EhrsamL. HellriglS. NuofferA. RakovicD. SchwabN. WengerR. RodondiN. BeynonC. DillierR. DeubelbeissM. EberliF. FranziniC. JuchliI. LiedtkeC. NadlerJ. ObstT. RothJ. SchlomowitschF. SchneiderX. StuderusK. TynanN. WeishauptD. MüllerA. FontanaS. KuestS. ScheuchK. HischierD. BonettiN. GrauA. VillingerJ. LaubeE. BaumgartnerP. FilipovicM. FrickM. MontrasioG. LeuenbergerS. RutzF. BeerJ-H. AuricchioA. AnesiniA. CamporiniC. ConteG. CaputoM.L. RegoliF. MoccettiT. BrennerR. AltmannD. GemperleM. AmmannP. FirmannM. FoucrasS. RimeM. HayozD. BerteB. JustiV. Kellner-WeldonF. MehmannB. MeierS. RothM. Ruckli-KaeppeliA. RussiI. SchmidtK. YoungM. ZbindenM. KobzaR. Frangi-KultalahtiJ. PinA. VicariL. MoschovitisG. EhretG. GalletH. GuillermetE. LazeyrasF. LovbladK-O. PerretP. TavelP. TeresC. ShahD. LauriersN. MéanM. SalzmannS. SchläpferJ. GrêtA. NovakJ. VitelliS. StephanF-P. Frangi-KultalahtiJ. GallinoA. Di ValentinoM. WitassekF. SchwenkglenksM. WürfelJ. AltermattA. AmannM. HuberP. RuberteE. SinneckerT. ZuberV. CoslovskyM. BenkertP. DutilhG. MarkovicM. SimonP. SchmidR. BEAT-AF and Swiss-AF Investigators Insulin-like growth factor-binding protein 7 and risk of congestive heart failure hospitalization in patients with atrial fibrillation.Heart Rhythm202118451251910.1016/j.hrthm.2020.11.02833278630
    [Google Scholar]
  93. DinhW. P1288-Serum insulin like growth factor-I and its binding protein-7; novel promising biomarker in heart failure with preserved ejection fraction.Clin. Res. Cardiol.20121
    [Google Scholar]
  94. TanE.S.J. ChanS.P. ChoiY.C. PembertonC.J. TroughtonR. PoppeK. LundM. DevlinG. DoughtyR.N. RichardsA.M. Regional handling and prognostic performance of circulating insulin-like growth factor binding protein-7 in heart failure.JACC Heart Fail.202311666267410.1016/j.jchf.2023.01.01637286261
    [Google Scholar]
  95. TaylorC.J. Ordóñez-MenaJ.M. Lay-FlurrieS.L. GoyderC.R. TaylorK.S. JonesN.R. RoalfeA.K. HobbsF.D.R. Natriuretic peptide testing and heart failure diagnosis in primary care: Diagnostic accuracy study.Br. J. Gen. Pract.202373726e1e810.3399/BJGP.2022.027836543554
    [Google Scholar]
  96. HageC. BjerreM. FrystykJ. GuH.F. BrismarK. DonalE. DaubertJ.C. LindeC. LundL.H. Comparison of prognostic usefulness of serum insulin-like growth factor-binding protein 7 in patients with heart failure and preserved versus reduced left ventricular ejection fraction.Am. J. Cardiol.2018121121558156610.1016/j.amjcard.2018.02.04129622288
    [Google Scholar]
  97. ButtJ.H. AdamsonC. DochertyK.F. de BoerR.A. PetrieM.C. InzucchiS.E. KosiborodM.N. Maria LangkildeA. LindholmD. MartinezF.A. BengtssonO. SchouM. O’MearaE. PonikowskiP. SabatineM.S. SjöstrandM. SolomonS.D. JhundP.S. McMurrayJ.J.V. KøberL. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to N-terminal pro-b-type natriuretic peptide: Insights from the DAPA-HF trial.Circ. Heart Fail.20211412e00883710.1161/CIRCHEARTFAILURE.121.00883734802253
    [Google Scholar]
  98. VaduganathanM. SattarN. XuJ. ButlerJ. MahaffeyK.W. NealB. ShawW. RosenthalN. PfeiferM. HansenM.K. JanuzziJ.L.Jr. Stress cardiac biomarkers, cardiovascular and renal outcomes, and response to canagliflozin.J. Am. Coll. Cardiol.202279543244410.1016/j.jacc.2021.11.02735115099
    [Google Scholar]
  99. AhmedA. AhmedS. ArvidssonM. BouzinaH. LundgrenJ. RådegranG. Elevated plasma sRAGE and IGFBP7 in heart failure decrease after heart transplantation in association with haemodynamics.ESC Heart Fail.2020752340235310.1002/ehf2.1277232548968
    [Google Scholar]
  100. PuarP. MistryN. ConnellyK.A. YanA.T. QuanA. TeohH. PanY. VermaR. HessD.A. VermaS. MazerC.D. IGFBP7 and left ventricular mass regression: A sub-analysis of the EMPA-HEART CardioLink-6 randomized clinical trial.ESC Heart Fail.20231032113211910.1002/ehf2.1433537038626
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346933241223063559
Loading
/content/journals/cmc/10.2174/0109298673346933241223063559
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): atherosclerosis; biomarker; heart failure; IGFBP7; senescence marker; valvopathy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test