Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The human intestine is continuously exposed to a variety of aggressive agents, including food antigens, xenobiotics, numerous pathogenic microorganisms, metabolic products, and toxins. Consequently, it has developed a specialized system for protection against these adverse factors.

Objective

This study aims to investigate the biochemical compounds synthesized by Paneth cells and their mechanisms of action to develop new therapeutic approaches for gastroenterological diseases.

Methods

We conducted a systematic review, excluding a comprehensive meta-analysis, of the current scientific literature sourced from electronic libraries (CyberLeninka, e-Library.ru, and Cochrane Library), search engines (Google Scholar, Embase, and Global Health), and scientific databases (Elsevier, Medline, PubMed-NCBI, eMedicine, the National Library of Medicine (NLM), and ReleMed and Scopus). Following PRISMA guidelines, a total of 104 articles were initially selected based on defined inclusion and exclusion criteria. After careful evaluation, 63 articles were included in this study.

Results

Our findings indicate that Paneth cells play a crucial role in regulating small intestine homeostasis by secreting numerous biologically active molecules. A key feature of these cells is their ability to recognize soluble microbial products pattern recognition receptors and respond by releasing a variety of antimicrobial peptides and enzymes. These secretions contribute to the formation of a biochemical barrier that prevents pathogen adhesion and translocation. Paneth cells are integral to immunological protection, maintaining protective inflammatory responses under both normal and pathological conditions. Additionally, they regulate the division, growth, and differentiation of intestinal stem cells, ensuring proper enterocyte localization. Paneth cells also aid digestive processes through enzyme secretion and are the only epithelial cells capable of eliminating activated autoreactive lymphocytes and abnormal enterocytes.

Conclusion

Paneth cells are unique epithelial cells that, through the synthesis of numerous biologically active molecules, control the timely regeneration of the intestinal epithelium, maintain a healthy microbiota, and prevent infectious, autoimmune, and cancerous diseases. Understanding their role in these processes is crucial for developing new therapies for gastroenterological diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673357073250526104619
2025-06-18
2025-10-28
Loading full text...

Full text loading...

References

  1. BevinsC.L. SalzmanN.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.Nat. Rev. Microbiol.20119535636810.1038/nrmicro254621423246
    [Google Scholar]
  2. HollyM.K. SmithJ.G. Paneth cells during viral infection and pathogenesis.Viruses201810522510.3390/v1005022529701691
    [Google Scholar]
  3. BykovV.L. Paneth cells: History of discovery, structural and functional characteristics and the role in the maintenance of homeostasis in the small intestine.Morfologiia20141451678025051805
    [Google Scholar]
  4. ZellenP. Ueber die panethschen zellen sowie die gelben zellen des duodenums beim schwein und den anderen wirbeltieren.Arch. Micros. Anat.192296183209
    [Google Scholar]
  5. CleversH.C. BevinsC.L. Paneth cells: Maestros of the small intestinal crypts.Annu. Rev. Physiol.201375128931110.1146/annurev‑physiol‑030212‑18374423398152
    [Google Scholar]
  6. GasslerN. Paneth cells in intestinal physiology and pathophysiology.World J. Gastrointest. Pathophysiol.20178415016010.4291/wjgp.v8.i4.150
    [Google Scholar]
  7. OkamotoR. WatanabeM. Functional relevance of intestinal epithelial cells in inflammatory bowel disease.Nihon Rinsho Meneki Gakkai Kaishi201639652252710.2177/jsci.39.52228049961
    [Google Scholar]
  8. YuS. BalasubramanianI. LaubitzD. TongK. BandyopadhyayS. LinX. FloresJ. SinghR. LiuY. MacazanaC. ZhaoY. Béguet-CrespelF. PatilK. Midura-KielaM.T. WangD. YapG.S. FerrarisR.P. WeiZ. BonderE.M. HäggblomM.M. ZhangL. DouardV. VerziM.P. CadwellK. KielaP.R. GaoN. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine.Immunity2020532398416.e810.1016/j.immuni.2020.07.01032814028
    [Google Scholar]
  9. BalasubramanianI. BandyopadhyayS. FloresJ. Bianchi-SmakJ. LinX. LiuH. SunS. GolovchenkoN.B. LiuY. WangD. PatelR. JosephI. SuntornsaratoonP. VargasJ. GreenP.H.R. BhagatG. LaganaS.M. YingW. ZhangY. WangZ. LiW.V. SinghS. ZhouZ. KolliasG. FarrL.A. MoonahS.N. YuS. WeiZ. BonderE.M. ZhangL. KielaP.R. EdelblumK.L. FerrarisR. LiuT.C. GaoN. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression.EMBO J.20234221e11397510.15252/embj.202311397537718683
    [Google Scholar]
  10. JayawardenaD. AnbazhaganA.N. MajumderA. AkramR. NazmiA. KaurR. KumarA. SaksenaS. Olivares-VillagómezD. DudejaP.K. Ion transport basis of diarrhea, paneth cell metaplasia, and upregulation of mechanosensory pathway in anti-cd40 colitis mice.Inflamm. Bowel Dis.20243091454146610.1093/ibd/izae00238300738
    [Google Scholar]
  11. OkumuraR. TakedaK. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation.Semin. Immunopathol.2025471210.1007/s00281‑024‑01026‑539589551
    [Google Scholar]
  12. QiY. HeJ. ZhangY. GeQ. WangQ. ChenL. XuJ. WangL. ChenX. JiaD. LinY. XuC. ZhangY. HouT. SiJ. ChenS. WangL. Heat-inactivated Bifidobacterium adolescentis ameliorates colon senescence through Paneth-like-cell-mediated stem cell activation.Nat. Commun.2023141612110.1038/s41467‑023‑41827‑037777508
    [Google Scholar]
  13. HoriuchiK. HigashiyamaM. TaharaH. YoshidomeY. AyakiK. NishimuraH. TomiokaA. NarimatsuK. KomotoS. TomitaK. HokariR. Absence of paneth cell metaplasia to predict clinical relapse in ulcerative colitis with endoscopically quiescent mucosa.Dig. Dis. Sci.202469103932394110.1007/s10620‑024‑08581‑939110367
    [Google Scholar]
  14. TohJ.W.T. WilsonR.B. Pathways of gastric carcinogenesis, helicobacter pylori virulence and interactions with antioxidant systems, vitamin C and phytochemicals.Int. J. Mol. Sci.20202117645110.3390/ijms2117645132899442
    [Google Scholar]
  15. GoldenringJ.R. MillsJ.C. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond.Gastroenterology2022162241543010.1053/j.gastro.2021.10.03634728185
    [Google Scholar]
  16. LueschowSR McElroySJ. The paneth cell: The curator and defender of the immature small intestine.Front. Immunol.20201158710.3389/fimmu.2020.00587
    [Google Scholar]
  17. NoahT.K. DonahueB. ShroyerN.F. Intestinal development and differentiation.Exp. Cell Res.2011317192702271010.1016/j.yexcr.2011.09.00621978911
    [Google Scholar]
  18. BlanpainC. FuchsE. Plasticity of epithelial stem cells in tissue regeneration.Science20143446189124228110.1126/science.124228124926024
    [Google Scholar]
  19. CrayP. SheahanB.J. DekaneyC.M. Secretory sorcery: Paneth cell control of intestinal repair and homeostasis.Cell. Mol. Gastroenterol. Hepatol.20211241239125010.1016/j.jcmgh.2021.06.00634153524
    [Google Scholar]
  20. TanD.W.M. BarkerN. Intestinal stem cells and their defining niche.Curr. Top. Dev. Biol.20141077710710.1016/B978‑0‑12‑416022‑4.00003‑224439803
    [Google Scholar]
  21. TanG. LiR. LiC. WuF. ZhaoX. MaJ. LeiS. ZhangW. ZhiF. Down-regulation of human enteric antimicrobial peptides by NOD2 during differentiation of the paneth cell lineage.Sci. Rep.201551838310.1038/srep0838325670499
    [Google Scholar]
  22. ConstantinA.M. MihuC.M. BoşcaA.B. MelincoviciC.S. MărgineanM.V. JianuE.M. OnofreiM.M. MicuC.M. AlexandruB.C. SufleţelR.T. MoldovanI.M. ConeacA. CrinteaA. ŞtefanR.A. ŞtefanP.A. DjouiniA. ŞovreaA.S. Short histological kaleidoscope – recent findings in histology. Part III.Rom. J. Morphol. Embryol.202364211513310.47162/RJME.64.2.0137518868
    [Google Scholar]
  23. ScheweM SacchettiA SchmittM FoddeR. The organoid reconstitution assay (ORA) for the functional analysis of intestinal stem and niche cells.J. Vis. Exp.20171295632910.3791/56329
    [Google Scholar]
  24. Rodríguez-ColmanM.J. ScheweM. MeerloM. StigterE. GerritsJ. Pras-RavesM. SacchettiA. HornsveldM. OostK.C. SnippertH.J. Verhoeven-DuifN. FoddeR. BurgeringB.M.T. Interplay between metabolic identities in the intestinal crypt supports stem cell function.Nature2017543764542442710.1038/nature2167328273069
    [Google Scholar]
  25. RoperJ. YilmazÖ.H. Metabolic teamwork in the stem cell niche.Cell Metab.201725599399410.1016/j.cmet.2017.04.01928467944
    [Google Scholar]
  26. CaoS.S. WangM. HarringtonJ.C. ChuangB.M. EckmannL. KaufmanR.J. Phosphorylation of eIF2α is dispensable for differentiation but required at a posttranscriptional level for paneth cell function and intestinal homeostasis in mice.Inflamm. Bowel Dis.201420471272210.1097/MIB.000000000000001024577114
    [Google Scholar]
  27. ParryL. YoungM. MarjouE.F. ClarkeA.R. Evidence for a crucial role of paneth cells in mediating the intestinal response to injury.Stem Cells201331477678510.1002/stem.132623335179
    [Google Scholar]
  28. HsuH.C. LiuY.S. TsengK.C. YangT.S. YehC.Y. YouJ.F. HungH.Y. ChenS.J. ChenH.C. CBB1003, a lysine-specific demethylase 1 inhibitor, suppresses colorectal cancer cells growth through down-regulation of leucine-rich repeat-containing G-protein-coupled receptor 5 expression.J. Cancer Res. Clin. Oncol.20151411112110.1007/s00432‑014‑1782‑425060070
    [Google Scholar]
  29. YanK.S. ChiaL.A. LiX. OotaniA. SuJ. LeeJ.Y. SuN. LuoY. HeilshornS.C. AmievaM.R. SangiorgiE. CapecchiM.R. KuoC.J. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations.Proc. Natl. Acad. Sci. USA2012109246647110.1073/pnas.111885710922190486
    [Google Scholar]
  30. SatoT. EsV.J.H. SnippertH.J. StangeD.E. VriesR.G. BornD.V.M. BarkerN. ShroyerN.F. WeteringD.V.M. CleversH. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.Nature2011469733041541810.1038/nature0963721113151
    [Google Scholar]
  31. VanuytselT. SengerS. FasanoA. Shea-DonohueT. Major signaling pathways in intestinal stem cells.Biochim. Biophys. Acta, Gen. Subj.2013183022410242610.1016/j.bbagen.2012.08.00622922290
    [Google Scholar]
  32. FarinH.F. JordensI. MosaM.H. BasakO. KorvingJ. TaurielloD.V.F. PunderD.K. AngersS. PetersP.J. MauriceM.M. CleversH. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche.Nature2016530759034034310.1038/nature1693726863187
    [Google Scholar]
  33. FarinH.F. EsV.J.H. CleversH. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells.Gastroenterology2012143615181529.e710.1053/j.gastro.2012.08.03122922422
    [Google Scholar]
  34. NusseR. CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell2017169698599910.1016/j.cell.2017.05.01628575679
    [Google Scholar]
  35. ChaeW.J. BothwellA.L.M. Canonical and non-canonical wnt signaling in immune cells.Trends Immunol.2018391083084710.1016/j.it.2018.08.00630213499
    [Google Scholar]
  36. ColozzaG. LeeH. MerendaA. WuS.H.S. Català-BordesA. RadaszkiewiczT.W. JordensI. LeeJ.H. BamfordA.D. FarnhammerF. LowT.Y. MauriceM.M. BryjaV. KimJ. KooB.K. Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2.Sci. Adv.2023947eadh967310.1126/sciadv.adh967338000028
    [Google Scholar]
  37. ZhengL. DuanS.L. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis.World J. Gastroenterol.202329162380239610.3748/wjg.v29.i16.238037179583
    [Google Scholar]
  38. SchuijersJ. CleversH. Adult mammalian stem cells: The role of Wnt, Lgr5 and R-spondins.EMBO J.201231122685269610.1038/emboj.2012.14922617424
    [Google Scholar]
  39. FlierD.V.L.G. CleversH. Stem cells, self-renewal, and differentiation in the intestinal epithelium.Annu. Rev. Physiol.200971124126010.1146/annurev.physiol.010908.16314518808327
    [Google Scholar]
  40. SatoT. VriesR.G. SnippertH.J. WeteringD.V.M. BarkerN. StangeD.E. EsV.J.H. AboA. KujalaP. PetersP.J. CleversH. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature2009459724426226510.1038/nature0793519329995
    [Google Scholar]
  41. CleversH. The intestinal crypt, a prototype stem cell compartment.Cell2013154227428410.1016/j.cell.2013.07.00423870119
    [Google Scholar]
  42. BarkerN. EsV.J.H. KuipersJ. KujalaP. BornD.V.M. CozijnsenM. HaegebarthA. KorvingJ. BegthelH. PetersP.J. CleversH. Identification of stem cells in small intestine and colon by marker gene Lgr5.Nature200744971651003100710.1038/nature0619617934449
    [Google Scholar]
  43. YinX. FarinH.F. EsV.J.H. CleversH. LangerR. KarpJ.M. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny.Nat. Methods201411110611210.1038/nmeth.273724292484
    [Google Scholar]
  44. CleversH. NusseR. Wnt/β-catenin signaling and disease.Cell201214961192120510.1016/j.cell.2012.05.01222682243
    [Google Scholar]
  45. GrissonnancheG. LegrosA. BadouxS. LefrançoisE. ZatkoV. LizaireM. LalibertéF. GourgoutA. ZhouJ.S. PyonS. TakayamaT. TakagiH. OnoS. Doiron- LeyraudN. TailleferL. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors.Nature2019571776537638010.1038/s41586‑019‑1375‑031316196
    [Google Scholar]
  46. VanDussenK.L. CarulliA.J. KeeleyT.M. PatelS.R. PuthoffB.J. MagnessS.T. TranI.T. MaillardI. SiebelC. KolterudÅ. GrosseA.S. GumucioD.L. ErnstS.A. TsaiY.H. DempseyP.J. SamuelsonL.C. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells.Development2012139348849710.1242/dev.07076322190634
    [Google Scholar]
  47. TakahashiT. ShiraishiA. Stem cell signaling pathways in the small intestine.Int. J. Mol. Sci.2020216203210.3390/ijms2106203232188141
    [Google Scholar]
  48. CarulliA.J. KeeleyT.M. DemitrackE.S. ChungJ. MaillardI. SamuelsonL.C. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration.Dev. Biol.201540219810810.1016/j.ydbio.2015.03.01225835502
    [Google Scholar]
  49. BarkerN. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration.Nat. Rev. Mol. Cell Biol.2014151193310.1038/nrm372124326621
    [Google Scholar]
  50. DaytonT.L. CleversH. Beyond growth signaling: Paneth cells metabolically support ISCs.Cell Res.201727785185210.1038/cr.2017.5928429766
    [Google Scholar]
  51. GreenhillC. Calorie restriction affects intestinal cells.Nat. Rev. Endocrinol.201612949610.1038/nrendo.2016.11227388985
    [Google Scholar]
  52. YilmazÖ.H. KatajistoP. LammingD.W. GültekinY. Bauer-RoweK.E. SenguptaS. BirsoyK. DursunA. YilmazV.O. SeligM. NielsenG.P. Mino-KenudsonM. ZukerbergL.R. BhanA.K. DeshpandeV. SabatiniD.M. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.Nature2012486740449049510.1038/nature1116322722868
    [Google Scholar]
  53. IgarashiM. GuarenteL. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction.Cell2016166243645010.1016/j.cell.2016.05.04427345368
    [Google Scholar]
  54. RouhanifardS.H. AguilarL.A. MengL. MoremenK.W. WuP. Engineered glycocalyx regulates stem cell proliferation in murine crypt organoids.Cell Chem. Biol.2018254439446.e510.1016/j.chembiol.2018.01.01029429899
    [Google Scholar]
  55. DateS. SatoT. Mini-gut organoids: Reconstitution of the stem cell niche.Annu. Rev. Cell Dev. Biol.201531126928910.1146/annurev‑cellbio‑100814‑12521826436704
    [Google Scholar]
  56. WuA. YuB. ZhangK. XuZ. WuD. HeJ. LuoJ. LuoY. YuJ. ZhengP. CheL. MaoX. HuangZ. WangL. ZhaoJ. ChenD. Transmissible gastroenteritis virus targets Paneth cells to inhibit the self-renewal and differentiation of Lgr5 intestinal stem cells via Notch signaling.Cell Death Dis.20201114010.1038/s41419‑020‑2233‑631959773
    [Google Scholar]
  57. GehartH. CleversH. Tales from the crypt: New insights into intestinal stem cells.Nat. Rev. Gastroenterol. Hepatol.2019161193410.1038/s41575‑018‑0081‑y30429586
    [Google Scholar]
  58. Shoshkes-CarmelM. WangY.J. WangensteenK.J. TóthB. KondoA. MassasaE.E. ItzkovitzS. KaestnerK.H. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts.Nature2018557770424224610.1038/s41586‑018‑0084‑429720649
    [Google Scholar]
  59. MihaylovaMM ChengC-W CaoAQ TripathiS ManaMD Bauer-RoweKE Abu-RemailehM ClavainL ErdemirA LewisCA. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging.Cell Stem. Cell.201822576977810.1016/j.stem.2018.04.001
    [Google Scholar]
  60. TianJ. LiY. BaoX. YangF. TangX. JiangQ. YinY. YaoK. Early weaning causes small intestinal atrophy by inhibiting the activity of intestinal stem cells: Involvement of Wnt/β-catenin signaling.Stem Cell Res. Ther.20231416510.1186/s13287‑023‑03293‑937020258
    [Google Scholar]
  61. PentinmikkoN. IqbalS. ManaM. AnderssonS. CognettaA.B.III SuciuR.M. RoperJ. LuopajärviK. MarkelinE. GopalakrishnanS. SmolanderO.P. NaranjoS. SaarinenT. JuutiA. PietiläinenK. AuvinenP. RistimäkiA. GuptaN. TammelaT. JacksT. SabatiniD.M. CravattB.F. YilmazÖ.H. KatajistoP. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium.Nature2019571776539840210.1038/s41586‑019‑1383‑031292548
    [Google Scholar]
  62. AlfaroD. Rodríguez-SosaM.R. ZapataA.G. Eph/ephrin signaling and biology of mesenchymal stromal/stem cells.J. Clin. Med.20209231010.3390/jcm902031031979096
    [Google Scholar]
  63. WangD. PeregrinaK. DhimaE. LinE.Y. MariadasonJ.M. AugenlichtL.H. Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer.Proc. Natl. Acad. Sci. USA201110825102721027710.1073/pnas.101766810821652773
    [Google Scholar]
  64. FlanaganD.J. PhesseT.J. BarkerN. SchwabR.H.M. AminN. MalaterreJ. StangeD.E. NowellC.J. CurrieS.A. SawJ.T.S. BeuchertE. RamsayR.G. SansomO.J. ErnstM. CleversH. VincanE. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells.Stem Cell Reports20154575976710.1016/j.stemcr.2015.03.00325892522
    [Google Scholar]
  65. FentonC.G. TamanH. FlorholmenJ. SørbyeS.W. PaulssenR.H. Transcriptional signatures that define ulcerative colitis in remission.Inflamm. Bowel Dis.20212719410510.1093/ibd/izaa07532322884
    [Google Scholar]
  66. BodinR. PailléV. OullierT. DurandT. AubertP. Le Berre-ScoulC. HulinP. NeunlistM. CisséM. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons.J. Biol. Chem.2021297510130010.1016/j.jbc.2021.10130034648765
    [Google Scholar]
  67. QiuP. LiD. XiaoC. XuF. ChenX. ChangY. LiuL. ZhangL. ZhaoQ. ChenY. The Eph/ephrin system symphony of gut inflammation.Pharmacol. Res.202319710697610.1016/j.phrs.2023.10697638032293
    [Google Scholar]
  68. PapadakosS.P. PetrogiannopoulosL. PergarisA. TheocharisS. The EPH/ephrin system in colorectal cancer.Int. J. Mol. Sci.2022235276110.3390/ijms2305276135269901
    [Google Scholar]
  69. ZhangZ. LiuZ. Paneth cells: The hub for sensing and regulating intestinal flora.Sci. China Life Sci.201659546346710.1007/s11427‑016‑5018‑526842130
    [Google Scholar]
  70. JangW.H. ParkA. WangT. KimC.J. ChangH. YangB.G. KimM.J. MyungS.J. ImS.H. JangM.H. KimY.M. KimK.H. Two-photon microscopy of Paneth cells in the small intestine of live mice.Sci. Rep.2018811417410.1038/s41598‑018‑32640‑730242205
    [Google Scholar]
  71. BelS. PendseM. WangY. LiY. RuhnK.A. HassellB. LealT. WinterS.E. XavierR.J. HooperL.V. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine.Science201735763551047105210.1126/science.aal467728751470
    [Google Scholar]
  72. JanaM. GhoshA. SantraA. KarR.K. MisraA.K. BhuniaA. Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited.J. Colloid Interface Sci.201749839540410.1016/j.jcis.2017.03.06028343137
    [Google Scholar]
  73. NashJ.A. BallardT.N.S. WeaverT.E. AkinbiH.T. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo.J. Immunol.2006177151952610.4049/jimmunol.177.1.51916785549
    [Google Scholar]
  74. DerdeM. LechevalierV. Guérin-DubiardC. CochetM.F. JanS. BaronF. GautierM. ViéV. NauF. Hen egg white lysozyme permeabilizes Escherichia coli outer and inner membranes.J. Agric. Food Chem.201361419922992910.1021/jf402919924047287
    [Google Scholar]
  75. ZhangX. JiangA. YuH. XiongY. ZhouG. QinM. DouJ. WangJ. Human lysozyme synergistically enhances bactericidal dynamics and lowers the resistant mutant prevention concentration for metronidazole to Helicobacter pylori by increasing cell permeability.Molecules20162111143510.3390/molecules2111143527801837
    [Google Scholar]
  76. RubioC. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions.Pathogens201431739210.3390/pathogens301007325437608
    [Google Scholar]
  77. StarlingS. A new way out for lysozyme.Nat. Rev. Immunol.201717953210.1038/nri.2017.9828804131
    [Google Scholar]
  78. YangW. XiC. YaoH. YuanQ. ZhangJ. ChenQ. WuG. HuJ. Oral administration of lysozyme protects against injury of ileum via modulating gut microbiota dysbiosis after severe traumatic brain injury.Front. Cell. Infect. Microbiol.202414130421810.3389/fcimb.2024.130421838352055
    [Google Scholar]
  79. BevinsC.L. Innate immune functions of α-defensins in the small intestine.Dig. Dis.2013313-429930410.1159/00035468124246978
    [Google Scholar]
  80. Sankaran-WaltersS. HartR. DillsC. Guardians of the gut: Enteric defensins.Front. Microbiol.2017864710.3389/fmicb.2017.0064728469609
    [Google Scholar]
  81. LiL. BianT. LyuJ. CuiD. LeiL. YanF. Human β-defensin-3 alleviates the progression of atherosclerosis accelerated by Porphyromonas gingivalis lipopoly- saccharide.Int. Immunopharmacol.20163820421310.1016/j.intimp.2016.06.00327289299
    [Google Scholar]
  82. FuJ. ZongX. JinM. MinJ. WangF. WangY. Mechanisms and regulation of defensins in host defense.Signal Transduct. Target. Ther.20238130010.1038/s41392‑023‑01553‑x37574471
    [Google Scholar]
  83. AkahoshiD.T. NatwickD.E. YuanW. LuW. CollinsS.R. BevinsC.L. Flagella-driven motility is a target of human Paneth cell defensin activity.PLoS Pathog.2023192e101120010.1371/journal.ppat.101120036821624
    [Google Scholar]
  84. NakamuraK SakuragiN TakakuwaA AyabeT. Paneth cell α-defensins and enteric microbiota in health and disease.Biosci. Microbiota. Food Health2016352576710.12938/bmfh.2015‑019
    [Google Scholar]
  85. MahendraJ. BediT. AmbalavananN. Defensins in periodontal health.Indian J. Dent. Res.201526434034410.4103/0970‑9290.16762726481877
    [Google Scholar]
  86. XuD. LuW. Defensins: A double-edged sword in host immunity.Front. Immunol.20201176410.3389/fimmu.2020.0076432457744
    [Google Scholar]
  87. LehrerR.I. LuW. α-Defensins in human innate immunity.Immunol. Rev.201224518411210.1111/j.1600‑065X.2011.01082.x22168415
    [Google Scholar]
  88. WangC. WangS. LiD. WeiD.Q. ZhaoJ. WangJ. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2.Gastroenterology2020159311451147.e410.1053/j.gastro.2020.05.01532437749
    [Google Scholar]
  89. ShuklaP.K. RaoR.G. MeenaA.S. GiorgianniF. LeeS.C. RajuP. ShashikanthN. ShekharC. BeranovaS. BalazsL. TigyiG. GosainA. RaoR. Paneth cell dysfunction in radiation injury and radio-mitigation by human α-defensin 5.Front. Immunol.202314117414010.3389/fimmu.2023.117414037638013
    [Google Scholar]
  90. ZhaoG. HeY. ChenY. JiangY. LiC. XiongT. HanS. HeY. GaoJ. SuY. WangJ. WangC. Application of a derivative of human defensin 5 to treat ionizing radiation-induced enterogenic infection.J. Radiat. Res.202465219420410.1093/jrr/rrad10438264835
    [Google Scholar]
  91. WuJ. RanX. WangT. XiongK. LongS. HaoY. WangP. WangA. Enteric α-defensin contributes to recovery of radiation-induced intestinal injury by modulating gut microbiota and fecal metabolites.Radiat. Res.2024201216017310.1667/RR3034.138124379
    [Google Scholar]
  92. LiX. DuanD. YangJ. WangP. HanB. ZhaoL. JepsenS. DommischH. WinterJ. XuY. The expression of human β-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia.Arch. Oral Biol.201666152110.1016/j.archoralbio.2016.01.01226874342
    [Google Scholar]
  93. WilsonS.S. WiensM.E. SmithJ.G. Antiviral mechanisms of human defensins.J. Mol. Biol.2013425244965498010.1016/j.jmb.2013.09.03824095897
    [Google Scholar]
  94. ShimizuY. NakamuraK. YoshiiA. YokoiY. KikuchiM. ShinozakiR. NakamuraS. OhiraS. SugimotoR. AyabeT. Paneth cell α-defensin misfolding correlates with dysbiosis and ileitis in Crohn’s disease model mice.Life Sci. Alliance202036e20190059210.26508/lsa.20190059232345659
    [Google Scholar]
  95. HollyM.K. DiazK. SmithJ.G. Defensins in viral infection and pathogenesis.Annu. Rev. Virol.20174136939110.1146/annurev‑virology‑101416‑04173428715972
    [Google Scholar]
  96. MikiT. OkadaN. HardtW.D. Inflammatory bactericidal lectin RegIIIβ: Friend or foe for the host?Gut Microbes20189217918710.1080/19490976.2017.138734428985140
    [Google Scholar]
  97. RibattiD. Microbiota and angiogenesis in the intestinal vasculature.Tissue Cell20248910246610.1016/j.tice.2024.10246638986346
    [Google Scholar]
  98. SunD. BaiR. ZhouW. YaoZ. LiuY. TangS. GeX. LuoL. LuoC. HuG. ShengJ. XuZ. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae.Gut202170466667610.1136/gutjnl‑2019‑32013532843357
    [Google Scholar]
  99. JanciauskieneS.M. BalsR. KoczullaR. VogelmeierC. KöhnleinT. WelteT. The discovery of α1-antitrypsin and its role in health and disease.Respir. Med.201110581129113910.1016/j.rmed.2011.02.00221367592
    [Google Scholar]
  100. VaishnavaS. YamamotoM. SeversonK.M. RuhnK.A. YuX. KorenO. LeyR. WakelandE.K. HooperL.V. The antibacterial lectin Reg III gamma promotes the spatial segregation of microbiota and host in the intestine.Science2011334605325525810.1126/science.120979121998396
    [Google Scholar]
  101. DieterichW SchinkM ZopfY. Microbiota in the gastrointestinal tract.Med. Sci.20186411610.3390/medsci6040116
    [Google Scholar]
  102. AdolphT.E. MayrL. GrabherrF. TilgH. Paneth cells and their antimicrobials in intestinal immunity.Curr. Pharm. Des.201824101121112910.2174/138161282466618032716194729589539
    [Google Scholar]
  103. VivacquaG. MancinelliR. LeoneS. VaccaroR. GarroL. CarottiS. CeciL. OnoriP. PannaraleL. FranchittoA. GaudioE. CasiniA. Endoplasmic reticulum stress: A possible connection between intestinal inflammation and neurodegenerative disorders.Neurogastroenterol. Motil.2024365e1478010.1111/nmo.1478038462652
    [Google Scholar]
  104. LeeV.H. GulatiA.S. Implications of Paneth cell dysfunction on gastrointestinal health and disease.Curr. Opin. Gastroenterol.202238653554010.1097/MOG.000000000000088736165037
    [Google Scholar]
  105. ByndlossM.X. PernitzschS.R. BäumlerA.J. Healthy hosts rule within: Ecological forces shaping the gut microbiota.Mucosal Immunol.20181151299130510.1038/s41385‑018‑0010‑y29743614
    [Google Scholar]
  106. ChairatanaP. NolanE.M. Human α-defensin 6: A small peptide that self-assembles and protects the host by entangling microbes.Acc. Chem. Res.201750496096710.1021/acs.accounts.6b0065328296382
    [Google Scholar]
  107. SabatinoD.A. SantacroceG. RossiC.M. BroglioG. LentiM.V. Role of mucosal immunity and epithelial–vascular barrier in modulating gut homeostasis.Intern. Emerg. Med.20231861635164610.1007/s11739‑023‑03329‑137402104
    [Google Scholar]
  108. FasanoA. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer.Physiol. Rev.201191115117510.1152/physrev.00003.200821248165
    [Google Scholar]
  109. CamilleriM. Leaky gut: Mechanisms, measurement and clinical implications in humans.Gut20196881516152610.1136/gutjnl‑2019‑31842731076401
    [Google Scholar]
  110. Schmitt, M.; Schewe, M.; Sacchetti, A.; Feijtel, D.; van de Geer, W.S.; Teeuwssen, M.; Sleddens, H.F.; Joosten, R.; van Royen, M.E.; van de Werken, H.J.; van Es, J. 2018. Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-Kit signaling.Cell reports201624923122328
    [Google Scholar]
  111. KallioliasG.D. IvashkivL.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies.Nat. Rev. Rheumatol.2016121496210.1038/nrrheum.2015.16926656660
    [Google Scholar]
  112. JangD. LeeA.H. ShinH.Y. SongH.R. ParkJ.H. KangT.B. LeeS.R. YangS.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms2205271933800290
    [Google Scholar]
  113. WuY. ZhouB.P. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion.Br. J. Cancer2010102463964410.1038/sj.bjc.660553020087353
    [Google Scholar]
  114. FaustmanD. DavisM. TNF receptor 2 pathway: Drug target for autoimmune diseases.Nat. Rev. Drug Discov.20109648249310.1038/nrd303020489699
    [Google Scholar]
  115. LiuC. SwaidaniS. QianW. KangZ. SunP. HanY. WangC. GulenM.F. YinW. ZhangC. FoxP.L. AronicaM. HamiltonT.A. MisraS. DengJ. LiX. A CC’ loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation.Sci. Signal.20114197ra7210.1126/scisignal.200184322045852
    [Google Scholar]
  116. KostarevaO.S. GabdulkhakovA.G. KolyadenkoI.A. GarberM.B. TishchenkoS.V. Interleukin-17: Functional and structural features, application as a therapeutic target.Biochemistry (Mosc.)201984S1Suppl. 119320510.1134/S000629791914011631213202
    [Google Scholar]
  117. QianY. LiuC. HartupeeJ. AltuntasC.Z. GulenM.F. Jane-witD. XiaoJ. LuY. GiltiayN. LiuJ. KordulaT. ZhangQ.W. VallanceB. SwaidaniS. AronicaM. TuohyV.K. HamiltonT. LiX. The adaptor Act1 is required for interleukin 17–dependent signaling associated with autoimmune and inflammatory disease.Nat. Immunol.20078324725610.1038/ni143917277779
    [Google Scholar]
  118. LiuC. QianW. QianY. GiltiayN.V. LuY. SwaidaniS. MisraS. DengL. ChenZ.J. LiX. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling.Sci. Signal.2009292ra6310.1126/scisignal.200038219825828
    [Google Scholar]
  119. XiaoX. YeohB.S. Vijay-KumarM. Lipocalin 2: An emerging player in iron homeostasis and inflammation.Annu. Rev. Nutr.201737110313010.1146/annurev‑nutr‑071816‑06455928628361
    [Google Scholar]
  120. Santiago-SánchezG.S. Pita-GrisantiV. Quiñones-DíazB. GumpperK. Cruz-MonserrateZ. Vivas-MejíaP.E. Biological functions and therapeutic potential of lipocalin 2 in cancer.Int. J. Mol. Sci.20202112436510.3390/ijms2112436532575507
    [Google Scholar]
  121. ShenF. HuZ. GoswamiJ. GaffenS.L. Identification of common transcriptional regulatory elements in interleukin-17 target genes.J. Biol. Chem.200628134241382414810.1074/jbc.M60459720016798734
    [Google Scholar]
  122. SunD. NovotnyM. BulekK. LiuC. LiX. HamiltonT. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF).Nat. Immunol.201112985386010.1038/ni.208121822258
    [Google Scholar]
  123. BrabecT. VobořilM. SchierováD. ValterE. ŠplíchalováI. DobešJ. BřezinaJ. DobešováM. AidarovaA. JakubecM. ManningJ. BlumbergR. WaismanA. KolářM. KubovčiakJ. ŠrůtkováD. HudcovicT. SchwarzerM. FroňkováE. PinkasováT. JabandžievP. FilippD. IL-17-driven induction of Paneth cell antimicrobial functions protects the host from microbiota dysbiosis and inflammation in the ileum.Mucosal Immunol.202316437338510.1016/j.mucimm.2023.01.00536739089
    [Google Scholar]
  124. BärE. WhitneyP.G. MoorK. Reis e SousaC. LeibundGut-LandmannS. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells.Immunity201440111712710.1016/j.immuni.2013.12.00224412614
    [Google Scholar]
  125. ThorpeM. FuZ. ChahalG. AkulaS. KervinenJ. GaravillaD.L. HellmanL. Extended cleavage specificity of human neutrophil cathepsin G: A low activity protease with dual chymase and tryptase-type specificities.PLoS One2018134e019507710.1371/journal.pone.019507729652924
    [Google Scholar]
  126. ZhengX.L. KitamotoY. SadlerJ.E. Enteropeptidase, a type II transmembrane serine protease.Front. Biosci.20091124224919482641
    [Google Scholar]
  127. ZamolodchikovaT.S. ShcherbakovI.T. KhrennikovB.N. ShoibonovB.B. SvirshchevskayaE.V. Cathepsin G in the immune defense of the human duodenum: New sources for biosynthesis.Hum. Physiol.201743332633310.1134/S0362119717020177
    [Google Scholar]
  128. ZamolodchikovaT.S. TolpygoS.M. SvirshchevskayaE.V. Cathepsin G—not only inflammation: The immune protease can regulate normal physiological processes.Front. Immunol.20201141110.3389/fimmu.2020.0041132194574
    [Google Scholar]
  129. HeubergerD.M. SchuepbachR.A. Protease-activated receptors (PARs): Mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases.Thromb. J.2019171410.1186/s12959‑019‑0194‑830976204
    [Google Scholar]
  130. KavanaughJ.S. LeidalK.G. NauseefW.M. HorswillA.R. CathepsinG. Cathepsin G degrades Staphylococcus aureus biofilms.J. Infect. Dis.2021223111865186910.1093/infdis/jiaa61232995850
    [Google Scholar]
  131. DzauV.J. GonzalezD. KaempferC. DubinD. WintroubB.U. Human neutrophils release serine proteases capable of activating prorenin.Circ. Res.198760459560110.1161/01.RES.60.4.5953297385
    [Google Scholar]
  132. ShankmanL.S. FleuryS.T. EvansW.B. PenberthyK.K. ArandjelovicS. BlumbergR.S. AgaisseH. RavichandranK.S. Efferocytosis by paneth cells within the intestine.Curr. Biol.2021311124692476.e510.1016/j.cub.2021.03.05533852873
    [Google Scholar]
  133. PasparakisM. VandenabeeleP. Necroptosis and its role in inflammation.Nature2015517753431132010.1038/nature1419125592536
    [Google Scholar]
  134. GregoryC.D. FordC.A. VossJ.J.L.P. Microenvironmental effects of cell death in malignant disease.Adv. Exp. Med. Biol.2016930518810.1007/978‑3‑319‑39406‑0_327558817
    [Google Scholar]
  135. MansouriP. MansouriP. BehmardE. NajafipourS. KouhpayehA. FarjadfarA. Novel targets for mucosal healing in inflammatory bowel disease therapy.Int. Immunopharmacol.202514411354410.1016/j.intimp.2024.11354439571265
    [Google Scholar]
  136. WeisS. KingI.L. VivasW. To sense or not to sense, Paneth cell regulation of mucosal immunity.Cell Host Microbe202432101648165010.1016/j.chom.2024.09.00539389028
    [Google Scholar]
  137. PaleschD. WagnerJ. MeidA. MolendaN. SienczykM. BurkhardtJ. MünchJ. ProkopL. StevanovicS. WesthoffM.A. HalatschM.E. WirtzC.R. ZimeckiM. BursterT. Cathepsin G-mediated proteolytic degradation of MHC class I molecules to facilitate immune detection of human glioblastoma cells.Cancer Immunol. Immunother.201665328329110.1007/s00262‑016‑1798‑526837514
    [Google Scholar]
  138. BursterT. KnippschildU. MolnárF. ZhanapiyaA. Cathepsin G and its dichotomous role in modulating levels of MHC class I molecules.Arch. Immunol. Ther. Exp.20206842510.1007/s00005‑020‑00585‑332815043
    [Google Scholar]
  139. KirazY. AdanA. YandimK.M. BaranY. Major apoptotic mechanisms and genes involved in apoptosis.Tumour Biol.20163778471848610.1007/s13277‑016‑5035‑927059734
    [Google Scholar]
  140. HadleyG. Essential clinical anatomy.J. Anat.2007211341341310.1111/j.1469‑7580.2007.771_2.x
    [Google Scholar]
  141. PodanyA.B. WrightJ. LamendellaR. SoybelD.I. KelleherS.L. ZnT2-mediated zinc import into paneth cell granules is necessary for coordinated secretion and paneth cell function in mice.Cell. Mol. Gastroenterol. Hepatol.20162336938310.1016/j.jcmgh.2015.12.00628174721
    [Google Scholar]
  142. ZhongW. WeiX. HaoL. LinT.D. YueR. SunX. GuoW. DongH. LiT. AhmadiA.R. SunZ. ZhangQ. ZhaoJ. ZhouZ. Paneth cell dysfunction mediates alcohol-related steatohepatitis through promoting bacterial translocation in mice: Role of zinc deficiency.Hepatology20207151575159110.1002/hep.3094531520476
    [Google Scholar]
  143. ZhangS. TunH.M. ZhangD. ChauH.T. HuangF.Y. KwokH. WongD.K.H. MakL.Y. YuenM.F. SetoW.K. Alleviation of hepatic steatosis: Dithizone-related gut microbiome restoration during paneth cell dysfunction.Front. Microbiol.20221381378310.3389/fmicb.2022.81378335283810
    [Google Scholar]
  144. SkalnyA.V. AschnerM. LeiX.G. GritsenkoV.A. SantamariaA. AlekseenkoS.I. PrakashN.T. ChangJ.S. SizovaE.A. ChaoJ.C.J. AasethJ. TinkovA.A. Gut microbiota as a mediator of essential and toxic effects of zinc in the intestines and other tissues.Int. J. Mol. Sci.202122231307410.3390/ijms22231307434884881
    [Google Scholar]
  145. WallaeysC. Garcia-GonzalezN. LibertC. Paneth cells as the cornerstones of intestinal and organismal health: A primer.EMBO Mol. Med.2023152e1642710.15252/emmm.20221642736573340
    [Google Scholar]
  146. LoB.C. ChenG.Y. NúñezG. CarusoR. Gut microbiota and systemic immunity in health and disease.Int. Immunol.202133419720910.1093/intimm/dxaa07933367688
    [Google Scholar]
  147. QuigleyE.M.M. StevensonA. JefferyI. MastersJ. Editorial: Bacterial gut symbionts as live biotherapeutic agents in IBS —a rosy future despite potential long-term safety concerns. Authorsʼ reply.Aliment. Pharmacol. Ther.202357334734810.1111/apt.1735436641794
    [Google Scholar]
  148. DengL. WangS. Colonization resistance: The role of gut microbiota in preventing Salmonella invasion and infection.Gut Microbes2024161242491410.1080/19490976.2024.242491439514544
    [Google Scholar]
  149. YadavJ. NathanN. PhilpottD.J. Gut symbionts dial up RA to prime host defense.Cell. Host. Microbe.202129121727172910.1016/j.chom.2021.11.01134883060
    [Google Scholar]
  150. RumioC. SommarivaM. SfondriniL. PalazzoM. MorelliD. ViganòL. CeccoD.L. TagliabueE. BalsariA. Induction of Paneth cell degranulation by orally administered Toll-like receptor ligands.J. Cell. Physiol.201222731107111310.1002/jcp.2283021567398
    [Google Scholar]
  151. PriceA.E. ShamardaniK. LugoK.A. DeguineJ. RobertsA.W. LeeB.L. BartonG.M. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns.Immunity2018493560575.e610.1016/j.immuni.2018.07.01630170812
    [Google Scholar]
  152. GenserL. AguannoD. SoulaH.A. DongL. TrystramL. AssmannK. SalemJ.E. VaillantJ.C. OppertJ.M. LaugeretteF. MichalskiM.C. WindP. RoussetM. Brot-LarocheE. LeturqueA. ClémentK. ThenetS. PoitouC. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes.J. Pathol.2018246221723010.1002/path.513429984492
    [Google Scholar]
  153. LiuT.C. KernJ.T. JainU. SonnekN.M. XiongS. SimpsonK.F. VanDussenK.L. WinklerE.S. HarituniansT. MaliqueA. LuQ. SasakiY. StorerC. DiamondM.S. HeadR.D. McGovernD.P.B. StappenbeckT.S. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation.Cell Host Microbe20212969881001.e610.1016/j.chom.2021.04.00434010595
    [Google Scholar]
  154. KumarM.S. Paneth cell: The missing link between obesity, MASH and portal hypertension.Clin. Res. Hepatol. Gastroenterol.202448110225910.1016/j.clinre.2023.10225938070827
    [Google Scholar]
  155. RichardN. SavoyeG. LeboutteM. AmamouA. GhoshS. Marion-LetellierR. Crohn’s disease: Why the ileum?World J. Gastroenterol.202329213222324010.3748/wjg.v29.i21.322237377591
    [Google Scholar]
  156. NakamuraS. NakamuraK. YokoiY. ShimizuY. OhiraS. HagiwaraM. SongZ. GanL. AizawaT. HashimotoD. TeshimaT. OuelletteA.J. AyabeT. Decreased Paneth cell α-defensins promote fibrosis in a choline-deficient L-amino acid-defined high-fat diet-induced mouse model of nonalcoholic steatohepatitis via disrupting intestinal microbiota.Sci. Rep.2023131395310.1038/s41598‑023‑30997‑y36894646
    [Google Scholar]
  157. WangZ. YangS. LiuL. MaoA. KanH. YuF. MaX. FengL. ZhouT. The gut microbiota-derived metabolite indole-3-propionic acid enhances leptin sensitivity by targeting STAT3 against diet-induced obesity.Clin. Transl. Med.20241412e7005310.1002/ctm2.7005339606796
    [Google Scholar]
  158. MaoT. XuX. LiuL. WuY. WuX. NiuW. YouD. CaiX. LuL. ZhouH. ABL1‒YAP1 axis in intestinal stem cell activated by deoxycholic acid contributes to hepatic steatosis.J. Transl. Med.2024221111910.1186/s12967‑024‑05865‑639707364
    [Google Scholar]
  159. ZhangC. XiangC. ZhouK. LiuX. QiaoG. ZhaoY. DongK. SunK. LiuZ. Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD + -secreting ASTB Qing110 bacteria.mSystems202493e01214-2310.1128/msystems.01214‑2338364095
    [Google Scholar]
  160. YokoiY. NakamuraK. YonedaT. KikuchiM. SugimotoR. ShimizuY. AyabeT. Paneth cell granule dynamics on secretory responses to bacterial stimuli in enteroids.Sci. Rep.201991271010.1038/s41598‑019‑39610‑730804449
    [Google Scholar]
  161. SidiqT. YoshihamaS. DownsI. KobayashiK.S. Nod2: A critical regulator of ileal microbiota and crohn’s disease.Front. Immunol.2016736710.3389/fimmu.2016.0036727703457
    [Google Scholar]
  162. Wicherska-PawłowskaK. WróbelT. RybkaJ. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I- like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases.Int. J. Mol. Sci.202122241339710.3390/ijms22241339734948194
    [Google Scholar]
  163. LiD. WuM. Pattern recognition receptors in health and diseases.Signal Transduct. Target. Ther.20216129110.1038/s41392‑021‑00687‑034344870
    [Google Scholar]
  164. DupontA. HeinbockelL. BrandenburgK. HornefM.W. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa.Gut Microbes20145676176510.4161/19490976.2014.97223825483327
    [Google Scholar]
  165. WangH. ZhangX. ZuoZ. ZhangQ. PanY. ZengB. LiW. WeiH. LiuZ. Rip2 is required for Nod2-mediated lysozyme sorting in paneth cells.J. Immunol.201719893729373610.4049/jimmunol.160158328330897
    [Google Scholar]
  166. PashenkovM.V. MuruginaN.E. BudikhinaA.S. PineginB.V. Synergistic interactions between NOD receptors and TLRs: Mechanisms and clinical implications.J. Leukoc. Biol.2019105466968010.1002/JLB.2RU0718‑290R30517768
    [Google Scholar]
  167. MuiseE.D. GandotraN. TackettJ.J. BamdadM.C. CowlesR.A. Distribution of muscarinic acetylcholine receptor subtypes in the murine small intestine.Life Sci.201716961010.1016/j.lfs.2016.10.03027866962
    [Google Scholar]
  168. HeidaF.H. BeyduzG. BulthuisM.L.C. KooiE.M.W. BosA.F. TimmerA. HulscherJ.B.F. Paneth cells in the developing gut: When do they arise and when are they immune competent?Pediatr. Res.201680230631010.1038/pr.2016.6727049291
    [Google Scholar]
  169. MastroianniJ.R. CostalesJ.K. ZaksheskeJ. SelstedM.E. SalzmanN.H. OuelletteA.J. Alternative luminal activation mechanisms for paneth cell α-defensins.J. Biol. Chem.201228714112051121210.1074/jbc.M111.33355922334698
    [Google Scholar]
  170. CuiC. WangX. LiL. WeiH. PengJ. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically.Front. Immunol.202314111555210.3389/fimmu.2023.111555236993974
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673357073250526104619
Loading
/content/journals/cmc/10.2174/0109298673357073250526104619
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test