Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

LGALS3BP exhibits differential expression in various types of tumors. This study aimed to analyze its potential diagnostic and prognostic value in Triple-negative Breast Cancer (TNBC).

Methods

We conducted a comprehensive analysis of LGALS3BP's differential expression and its association with patient survival outcomes using data from public databases. To further validate these findings, Immunohistochemistry (IHC) experiments were performed to confirm the differential expression of LGALS3BP protein in TNBC. Additionally, we also investigated the relationship among LGALS3BP, tumor immune infiltration, and drug sensitivity.

Results

Results indicated LGALS3BP to be significantly upregulated in TNBC, with its high expression correlating with improved survival outcomes. Furthermore, LGALS3BP expression correlated with immune cell infiltration. Notably, high LGALS3BP expression may confer a greater likelihood of benefiting from immunotherapy.

Conclusion

LGALS3BP may serve as a diagnostic and prognostic biomarker for TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367980250101053748
2025-01-20
2025-11-01
Loading full text...

Full text loading...

References

  1. ZhuS. WuY. SongB. YiM. YanY. MeiQ. WuK. Recent advances in targeted strategies for triple-negative breast cancer.J. Hematol. Oncol.202316110010.1186/s13045‑023‑01497‑337641116
    [Google Scholar]
  2. LoiblS. PoortmansP. MorrowM. DenkertC. CuriglianoG. Breast cancer.Lancet2021397102861750176910.1016/S0140‑6736(20)32381‑333812473
    [Google Scholar]
  3. LeeJ.Y. LeeJ.W. ChungM.S. ChoiJ.G. SimS.H. KimH.J. KimJ.E. LeeK.E. ParkY.H. KangM.J. AhnM.S. ChaeY.S. ParkJ.H. KimJ.H. KimG.M. ByunJ.H. ParkK.U. KimJ.W. JungS.P. LeeJ.H. AnJ.S. JangB. YoonD. KimJ. HongJ. KooH. ChoK.R. KimC.Y. SaJ.K. ParkK.H. Age- and ethnic-driven molecular and clinical disparity of East Asian breast cancers.BMC Med.202422142210.1186/s12916‑024‑03638‑y39334392
    [Google Scholar]
  4. DentR. TrudeauM. PritchardK.I. HannaW.M. KahnH.K. SawkaC.A. LickleyL.A. RawlinsonE. SunP. NarodS.A. Triple-negative breast cancer: Clinical features and patterns of recurrence.Clin. Cancer Res.200713154429443410.1158/1078‑0432.CCR‑06‑304517671126
    [Google Scholar]
  5. GucalpA. TrainaT.A. Triple-negative breast cancer: Adjuvant therapeutic options.Chemother. Res. Pract.20112011169620822312556
    [Google Scholar]
  6. LinN.U. VanderplasA. HughesM.E. TheriaultR.L. EdgeS.B. WongY.N. BlayneyD.W. NilandJ.C. WinerE.P. WeeksJ.C. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network.Cancer2012118225463547210.1002/cncr.2758122544643
    [Google Scholar]
  7. BianchiniG. De AngelisC. LicataL. GianniL. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs.Nat. Rev. Clin. Oncol.20221929111310.1038/s41571‑021‑00565‑234754128
    [Google Scholar]
  8. BardiaA. HurvitzS.A. TolaneyS.M. LoiratD. PunieK. OliveiraM. BrufskyA. SardesaiS.D. KalinskyK. ZelnakA.B. WeaverR. TrainaT. DalencF. AftimosP. LynceF. DiabS. CortésJ. O’ShaughnessyJ. DiérasV. FerrarioC. SchmidP. CareyL.A. GianniL. PiccartM.J. LoiblS. GoldenbergD.M. HongQ. OlivoM.S. ItriL.M. RugoH.S. Sacituzumab govitecan in metastatic triple-negative breast cancer.N. Engl. J. Med.2021384161529154110.1056/NEJMoa202848533882206
    [Google Scholar]
  9. CortesJ. RugoH.S. CesconD.W. ImS.A. YusofM.M. GallardoC. LipatovO. BarriosC.H. Perez-GarciaJ. IwataH. MasudaN. Torregroza OteroM. GokmenE. LoiS. GuoZ. ZhouX. KarantzaV. PanW. SchmidP. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer.N. Engl. J. Med.2022387321722610.1056/NEJMoa220280935857659
    [Google Scholar]
  10. LiedtkeC. MazouniC. HessK.R. AndréF. TordaiA. MejiaJ.A. SymmansW.F. Gonzalez-AnguloA.M. HennessyB. GreenM. CristofanilliM. HortobagyiG.N. PusztaiL. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer.J. Clin. Oncol.20082681275128110.1200/JCO.2007.14.414718250347
    [Google Scholar]
  11. KassamF. EnrightK. DentR. DranitsarisG. MyersJ. FlynnC. FralickM. KumarR. ClemonsM. Survival outcomes for patients with metastatic triple-negative breast cancer: Implications for clinical practice and trial design.Clin. Breast Cancer200991293310.3816/CBC.2009.n.00519299237
    [Google Scholar]
  12. LarkinJ. Chiarion-SileniV. GonzalezR. GrobJ.J. RutkowskiP. LaoC.D. CoweyC.L. SchadendorfD. WagstaffJ. DummerR. FerrucciP.F. SmylieM. HoggD. HillA. Márquez-RodasI. HaanenJ. GuidoboniM. MaioM. SchöffskiP. CarlinoM.S. LebbéC. McArthurG. AsciertoP.A. DanielsG.A. LongG.V. BastholtL. RizzoJ.I. BaloghA. MoshykA. HodiF.S. WolchokJ.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma.N. Engl. J. Med.2019381161535154610.1056/NEJMoa191083631562797
    [Google Scholar]
  13. SwisherS.K. WuY. CastanedaC.A. LyonsG.R. YangF. TapiaC. WangX. CasavilcaS.A.A. BassettR. CastilloM. SahinA. MittendorfE.A. Interobserver agreement between pathologists assessing tumor-infiltrating lymphocytes (TILs) in breast cancer using methodology proposed by the international TILs working group.Ann. Surg. Oncol.20162372242224810.1245/s10434‑016‑5173‑826965699
    [Google Scholar]
  14. MaoY. QuQ. ChenX. HuangO. WuJ. ShenK. The prognostic value of tumor-infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis.PLoS One2016114e015250010.1371/journal.pone.015250027073890
    [Google Scholar]
  15. ZhuY. ZhangH. PanC. HeG. CuiX. YuX. ZhangX. WuD. YangJ. WuX. LuoH. LiuX. Integrated tumor genomic and immune microenvironment analysis identifies predictive biomarkers associated with the efficacy of neoadjuvant therapy for triple-negative breast cancer.Cancer Med.20231255846585810.1002/cam4.537236271505
    [Google Scholar]
  16. WhiteM.J.V. RoifeD. GomerR.H. Galectin-3 binding protein secreted by breast cancer cells inhibits monocyte-derived fibrocyte differentiation.J. Immunol.201519541858186710.4049/jimmunol.150036526136428
    [Google Scholar]
  17. SchmidP. CortesJ. PusztaiL. McArthurH. KümmelS. BerghJ. DenkertC. ParkY.H. HuiR. HarbeckN. TakahashiM. FoukakisT. FaschingP.A. CardosoF. UntchM. JiaL. KarantzaV. ZhaoJ. AktanG. DentR. O’ShaughnessyJ. Pembrolizumab for early triple-negative breast cancer.N. Engl. J. Med.2020382981082110.1056/NEJMoa191054932101663
    [Google Scholar]
  18. SchmidP. AdamsS. RugoH.S. SchneeweissA. BarriosC.H. IwataH. DiérasV. HeggR. ImS.A. Shaw WrightG. HenschelV. MolineroL. ChuiS.Y. FunkeR. HusainA. WinerE.P. LoiS. EmensL.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.N. Engl. J. Med.2018379222108212110.1056/NEJMoa180961530345906
    [Google Scholar]
  19. NakhjavaniM. ShigdarS. Future of PD-1/PD-L1 axis modulation for the treatment of triple-negative breast cancer.Pharmacol. Res.202217510601910.1016/j.phrs.2021.10601934861397
    [Google Scholar]
  20. LiuY. HuY. XueJ. LiJ. YiJ. BuJ. ZhangZ. QiuP. GuX. Advances in immunotherapy for triple-negative breast cancer.Mol. Cancer202322114510.1186/s12943‑023‑01850‑737660039
    [Google Scholar]
  21. BarecheY. BuisseretL. GruossoT. GirardE. VenetD. DupontF. DesmedtC. LarsimontD. ParkM. RothéF. StaggJ. SotiriouC. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: Towards an optimized treatment approach.J. Natl. Cancer Inst.2020112770871910.1093/jnci/djz20831665482
    [Google Scholar]
  22. StowellS.R. JuT. CummingsR.D. Protein glycosylation in cancer.Annu. Rev. Pathol.201510147351010.1146/annurev‑pathol‑012414‑04043825621663
    [Google Scholar]
  23. PeixotoA. Relvas-SantosM. AzevedoR. SantosL.L. FerreiraJ.A. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks.Front. Oncol.2019938010.3389/fonc.2019.0038031157165
    [Google Scholar]
  24. CaponeE. IacobelliS. SalaG. Role of galectin 3 binding protein in cancer progression: A potential novel therapeutic target.J. Transl. Med.202119140510.1186/s12967‑021‑03085‑w34565385
    [Google Scholar]
  25. HongC.S. ParkM.R. SunE.G. ChoiW. HwangJ.E. BaeW.K. RheeJ.H. ChoS.H. ChungI.J. Gal-3BP negatively regulates NF-κB signaling by inhibiting the activation of TAK1.Front. Immunol.201910176010.3389/fimmu.2019.0176031402917
    [Google Scholar]
  26. FogeronM.L. MüllerH. SchadeS. DreherF. LehmannV. KühnelA. ScholzA.K. KashoferK. ZerckA. FaulerB. LurzR. HerwigR. ZatloukalK. LehrachH. GobomJ. NordhoffE. LangeB.M.H. LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells.Nat. Commun.201341153110.1038/ncomms251723443559
    [Google Scholar]
  27. LiL. QinS. TanH. ZhouJ. LGALS3BP is a novel and potential biomarker in clear cell renal cell carcinoma.Aging (Albany NY)20241644033405110.18632/aging.20557838393692
    [Google Scholar]
  28. PiccoloE. TinariN. D’AddarioD. RossiC. IacobelliV. La SordaR. LattanzioR. D’EgidioM. Di RisioA. PiantelliM. NataliP.G. IacobelliS. Prognostic relevance of LGALS3BP in human colorectal carcinoma.J. Transl. Med.201513124810.1186/s12967‑015‑0606‑x26219351
    [Google Scholar]
  29. WooJ.K. JangJ.E. KangJ.H. SeongJ.K. YoonY.S. KimH.C. LeeS.J. OhS.H. Lectin, galactoside-binding soluble 3 binding protein promotes 17-N-allylamino-17-demethoxygeldanamycin resistance through PI3K/Akt pathway in lung cancer cell line.Mol. Cancer Ther.20171671355136510.1158/1535‑7163.MCT‑16‑057428336809
    [Google Scholar]
  30. ZhouY.F. XiaoY. JinX. DiG.H. JiangY.Z. ShaoZ.M. Integrated analysis reveals prognostic value of HLA-I LOH in triple-negative breast cancer.J. Immunother. Cancer2021910e00337110.1136/jitc‑2021‑00337134615706
    [Google Scholar]
  31. KomatsuM. YoshimaruT. MatsuoT. KiyotaniK. MiyoshiY. TanahashiT. RokutanK. YamaguchiR. SaitoA. ImotoS. MiyanoS. NakamuraY. SasaM. ShimadaM. KatagiriT. Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis.Int. J. Oncol.201342247850610.3892/ijo.2012.174423254957
    [Google Scholar]
  32. NingR. PanS. XiaoD. ZhengY. ZhangJ. ANO10 is a potential prognostic biomarker and correlates with immune infiltration in breast cancer.Am. J. Cancer Res.20231351845186237293146
    [Google Scholar]
  33. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor–immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz21030903160
    [Google Scholar]
  34. SpektorA.M. GutjahrE. LangM. GlattingF.M. HackertT. PauschT. TjadenC. SchreckenbergerM. HaberkornU. RöhrichM. Immunohistochemical FAP expression reflects 68 Ga-FAPI PET imaging properties of low- and high-grade intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinoma.J. Nucl. Med.2024651525810.2967/jnumed.123.26639338167622
    [Google Scholar]
  35. KujiS. EndoA. KubotaM. UekawaA. KawakamiF. MikamiY. KoikeJ. SuzukiN. Immunosensitivity and specificity of insulinoma-associated protein 1 (INSM1) for neuroendocrine neoplasms of the uterine cervix.J. Gynecol. Oncol.2023341e110.3802/jgo.2023.34.e136245222
    [Google Scholar]
  36. GuoZ. ZhangX. ZhuH. ZhongN. LuoX. ZhangY. TuF. ZhongJ. WangX. HeJ. HuangL. TELO2 induced progression of colorectal cancer by binding with RICTOR through mTORC2.Oncol. Rep.202045252353410.3892/or.2020.789033416177
    [Google Scholar]
  37. QuJ. LiJ. ZhangY. HeR. LiuX. GongK. DuanL. LuoW. HuZ. WangG. XiaC. LuoD. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway.Cell Biosci.202111116310.1186/s13578‑021‑00677‑334419144
    [Google Scholar]
  38. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  39. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  40. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  41. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  42. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  43. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa40732442275
    [Google Scholar]
  44. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  45. XuQ. ChenS. HuY. HuangW. Landscape of immune microenvironment under immune cell infiltration pattern in breast cancer.Front. Immunol.20211271143310.3389/fimmu.2021.71143334512634
    [Google Scholar]
  46. StampolidisP. UllrichA. IacobelliS. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, promotes oncogenic cellular events impeded by antibody intervention.Oncogene2015341395210.1038/onc.2013.54824362527
    [Google Scholar]
  47. PiccoloE. TinariN. SemeraroD. TrainiS. FicheraI. CumashiA. La SordaR. SpinellaF. BagnatoA. LattanzioR. D’EgidioM. Di RisioA. StampolidisP. PiantelliM. NatoliC. UllrichA. IacobelliS. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis.J. Mol. Med.2013911839410.1007/s00109‑012‑0936‑622864925
    [Google Scholar]
  48. OzakiY. KontaniK. HanaokaJ. ChanoT. TeramotoK. TezukaN. SawaiS. FujinoS. YoshikiT. OkabeH. OhkuboI. Expression and immunogenicity of a tumor-associated antigen, 90K/Mac-2 binding protein, in lung carcinoma.Cancer20029591954196210.1002/cncr.1089912404290
    [Google Scholar]
  49. NatoliC. GarufiC. TinariN. D’EgidioM. LestiG. GaspariL.A. VisiniR. IacobelliS. Dynamic test with recombinant interferon-alpha-2b: Effect on 90K and other tumour-associated antigens in cancer patients without evidence of disease.Br. J. Cancer199367356456710.1038/bjc.1993.1038439505
    [Google Scholar]
  50. GrecoC. VonaR. CosimelliM. MatarreseP. StrafaceE. ScordatiP. GiannarelliD. CasaleV. AssisiD. MottoleseM. MolesA. MalorniW. Cell surface overexpression of galectin-3 and the presence of its ligand 90k in the blood plasma as determinants in colon neoplastic lesions.Glycobiology200414978379210.1093/glycob/cwh09215140826
    [Google Scholar]
  51. CorrealeM. GiannuzziV. IacovazziP.A. ValenzaM.A. LanzillottaS. AbbateI. QuarantaM. CarusoM.L. ElbaS. ManghisiO.G. Serum 90K/MAC-2BP glycoprotein levels in hepatocellular carcinoma and cirrhosis.Anticancer Res.1999194C3469347210629637
    [Google Scholar]
  52. IacobelliS. SismondiP. GiaiM. D’EgidioM. TinariN. AmatettiC. Di StefanoP. NatoliC. Prognostic value of a novel circulating serum 90K antigen in breast cancer.Br. J. Cancer199469117217610.1038/bjc.1994.298286203
    [Google Scholar]
  53. IacovazziP.A. TrisoliniA. BarlettaD. ElbaS. ManghisiO.G. CorrealeM. Serum 90K/MAC-2BP glycoprotein in patients with liver cirrhosis and hepatocellular carcinoma: A comparison with alpha-fetoprotein.Clin. Chem. Lab. Med.2001391096196510.1515/CCLM.2001.15511758611
    [Google Scholar]
  54. VergilisI.J. SzarekM. FerroneS. ReynoldsS.R. Presence and prognostic significance of melanoma-associated antigens CYT-MAA and HMW-MAA in serum of patients with melanoma.J. Invest. Dermatol.2005125352653110.1111/j.0022‑202X.2005.23798.x16117794
    [Google Scholar]
  55. StrizziL. MuraroR. VianaleG. NatoliC. TaloneL. CatalanoA. MuttiL. TassiG. ProcopioA. Expression of glycoprotein 90K in human malignant pleural mesothelioma: Correlation with patient survival.J. Pathol.2002197221822310.1002/path.112512015746
    [Google Scholar]
  56. ZambelliD. ZuntiniM. NardiF. ManaraM.C. SerraM. LanduzziL. LolliniP.L. FerrariS. AlberghiniM. Llombart-BoschA. PiccoloE. IacobelliS. PicciP. ScotlandiK. Biological indicators of prognosis in Ewing’s sarcoma: An emerging role for lectin galactoside-binding soluble 3 binding protein (LGALS3BP).Int. J. Cancer20101261415210.1002/ijc.2467019544526
    [Google Scholar]
  57. UllrichA. SuresI. D’EgidioM. JallalB. PowellT.J. HerbstR. DrepsA. AzamM. RubinsteinM. NatoliC. The secreted tumor-associated antigen 90K is a potent immune stimulator.J. Biol. Chem.199426928184011840710.1016/S0021‑9258(17)32322‑08034587
    [Google Scholar]
  58. JallalB. PowellJ. ZachwiejaJ. BrakebuschC. GermainL. JacobsJ. IacobelliS. UllrichA. Suppression of tumor growth in vivo by local and systemic 90K level increase.Cancer Res.19955515322332277542166
    [Google Scholar]
  59. BethmannD. FengZ. FoxB.A. Immunoprofiling as a predictor of patient’s response to cancer therapy-promises and challenges.Curr. Opin. Immunol.201745607210.1016/j.coi.2017.01.00528222333
    [Google Scholar]
  60. LiS. ZhangN. ZhangH. YangZ. ChengQ. WeiK. ZhouM. HuangC. Deciphering the role of LGALS2: Insights into tertiary lymphoid structure-associated dendritic cell activation and immunotherapeutic potential in breast cancer patients.Mol. Cancer202423121610.1186/s12943‑024‑02126‑439350165
    [Google Scholar]
  61. YakubovichE. CookD.P. RodriguezG.M. VanderhydenB.C. Mesenchymal ovarian cancer cells promote CD8+ T cell exhaustion through the LGALS3-LAG3 axis.NPJ Syst. Biol. Appl.2023916110.1038/s41540‑023‑00322‑438086828
    [Google Scholar]
  62. HeX. WangB. DengW. CaoJ. TanZ. LiX. GuanF. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage.Cell Commun. Signal.20242217310.1186/s12964‑023‑01432‑638279161
    [Google Scholar]
  63. StephanA. SuhrmannJ.H. SkowronM.A. CheY. PoschmannG. PetzschP. KresbachC. WruckW. PongratanakulP. AdjayeJ. StühlerK. KöhrerK. SchüllerU. NettersheimD. Molecular and epigenetic ex vivo profiling of testis cancer-associated fibroblasts and their interaction with germ cell tumor cells and macrophages.Matrix Biol.2024132102310.1016/j.matbio.2024.06.00138851302
    [Google Scholar]
  64. DeNardoD.G. RuffellB. Macrophages as regulators of tumour immunity and immunotherapy.Nat. Rev. Immunol.201919636938210.1038/s41577‑019‑0127‑630718830
    [Google Scholar]
  65. AhmedI. IsmailN. M1 and M2 macrophages polarization via mTORC1 influences innate immunity and outcome of Ehrlichia infection.J. Cell. Immunol.20202310811532719831
    [Google Scholar]
  66. KashfiK. KannikalJ. NathN. Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO.Cells20211011319410.3390/cells1011319434831416
    [Google Scholar]
  67. ZhouY. QueK.T. ZhangZ. YiZ.J. ZhaoP.X. YouY. GongJ.P. LiuZ.J. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway.Cancer Med.2018784012402210.1002/cam4.167029989329
    [Google Scholar]
  68. WangJ. YangL. MaoX. LiZ. LinX. JiangC. Streptococcus salivarius -mediated CD8 + T cell stimulation required antigen presentation by macrophages in oral squamous cell carcinoma.Exp. Cell Res.2018366212112610.1016/j.yexcr.2018.03.00729530474
    [Google Scholar]
  69. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  70. LiM. SunX. ZhaoJ. XiaL. LiJ. XuM. WangB. GuoH. YuC. GaoY. WuH. KongX. XiaQ. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization.Cell. Mol. Immunol.202017775376410.1038/s41423‑019‑0279‑031481754
    [Google Scholar]
  71. YeY. XuY. LaiY. HeW. LiY. WangR. LuoX. ChenR. ChenT. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization.J. Cell. Biochem.201811932951296310.1002/jcb.2650929131381
    [Google Scholar]
  72. ShakedI. HannaD.B. GleißnerC. MarshB. PlantsJ. TracyD. AnastosK. CohenM. GolubE.T. KarimR. LazarJ. PrasadV. TienP.C. YoungM.A. LandayA.L. KaplanR.C. LeyK. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection.Arterioscler. Thromb. Vasc. Biol.20143451085109210.1161/ATVBAHA.113.30315324651679
    [Google Scholar]
  73. ZhangC. DengY. ZhangY. BaT. NiuS. ChenY. GaoY. DaiH. CXCR3 inhibition blocks the NF-κB signaling pathway by elevating autophagy to ameliorate lipopolysaccharide-induced intestinal dysfunction in mice.Cells202312118210.3390/cells12010182
    [Google Scholar]
  74. ChungH. Gyu-miP. NaY.R. LeeY.S. ChoiH. SeokS.H. Comprehensive characterization of early-programmed tumor microenvironment by tumor-associated macrophages reveals galectin-1 as an immune modulatory target in breast cancer.Theranostics202414284386010.7150/thno.8891738169569
    [Google Scholar]
  75. HuangC.S. TangS.J. ChungL.Y. YuC.P. HoJ.Y. ChaT.L. HsiehC.C. WangH.H. SunG.H. SunK.H. Galectin-1 upregulates CXCR4 to promote tumor progression and poor outcome in kidney cancer.J. Am. Soc. Nephrol.20142571486149510.1681/ASN.201307077324511119
    [Google Scholar]
  76. Gordon-AlonsoM. HirschT. WildmannC. van der BruggenP. Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration.Nat. Commun.20178179310.1038/s41467‑017‑00925‑628986561
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367980250101053748
Loading
/content/journals/cmc/10.2174/0109298673367980250101053748
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test