Skip to content
2000
image of LGALS3BP: A Potential Prognostic Biomarker Influencing Antitumor Immunity in Triple-negative Breast Cancer

Abstract

Objective

LGALS3BP exhibits differential expression in various types of tumors. This study aimed to analyze its potential diagnostic and prognostic value in Triple-negative Breast Cancer (TNBC).

Methods

We conducted a comprehensive analysis of LGALS3BP's differential expression and its association with patient survival outcomes using data from public databases. To further validate these findings, Immunohistochemistry (IHC) experiments were performed to confirm the differential expression of LGALS3BP protein in TNBC. Additionally, we also investigated the relationship among LGALS3BP, tumor immune infiltration, and drug sensitivity.

Results

Results indicated LGALS3BP to be significantly upregulated in TNBC, with its high expression correlating with improved survival outcomes. Furthermore, LGALS3BP expression correlated with immune cell infiltration. Notably, high LGALS3BP expression may confer a greater likelihood of benefiting from immunotherapy.

Conclusion

LGALS3BP may serve as a diagnostic and prognostic biomarker for TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367980250101053748
2025-01-20
2025-09-08
Loading full text...

Full text loading...

References

  1. Zhu S. Wu Y. Song B. Yi M. Yan Y. Mei Q. Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J. Hematol. Oncol. 2023 16 1 100 10.1186/s13045‑023‑01497‑3 37641116
    [Google Scholar]
  2. Loibl S. Poortmans P. Morrow M. Denkert C. Curigliano G. Breast cancer. Lancet 2021 397 10286 1750 1769 10.1016/S0140‑6736(20)32381‑3 33812473
    [Google Scholar]
  3. Lee J.Y. Lee J.W. Chung M.S. Choi J.G. Sim S.H. Kim H.J. Kim J.E. Lee K.E. Park Y.H. Kang M.J. Ahn M.S. Chae Y.S. Park J.H. Kim J.H. Kim G.M. Byun J.H. Park K.U. Kim J.W. Jung S.P. Lee J.H. An J.S. Jang B. Yoon D. Kim J. Hong J. Koo H. Cho K.R. Kim C.Y. Sa J.K. Park K.H. Age- and ethnic-driven molecular and clinical disparity of East Asian breast cancers. BMC Med. 2024 22 1 422 10.1186/s12916‑024‑03638‑y 39334392
    [Google Scholar]
  4. Dent R. Trudeau M. Pritchard K.I. Hanna W.M. Kahn H.K. Sawka C.A. Lickley L.A. Rawlinson E. Sun P. Narod S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007 13 15 4429 4434 10.1158/1078‑0432.CCR‑06‑3045 17671126
    [Google Scholar]
  5. Gucalp A. Traina T.A. Triple-negative breast cancer: Adjuvant therapeutic options. Chemother. Res. Pract. 2011 2011 1 696208 22312556
    [Google Scholar]
  6. Lin N.U. Vanderplas A. Hughes M.E. Theriault R.L. Edge S.B. Wong Y.N. Blayney D.W. Niland J.C. Winer E.P. Weeks J.C. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 2012 118 22 5463 5472 10.1002/cncr.27581 22544643
    [Google Scholar]
  7. Bianchini G. De Angelis C. Licata L. Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022 19 2 91 113 10.1038/s41571‑021‑00565‑2 34754128
    [Google Scholar]
  8. Bardia A. Hurvitz S.A. Tolaney S.M. Loirat D. Punie K. Oliveira M. Brufsky A. Sardesai S.D. Kalinsky K. Zelnak A.B. Weaver R. Traina T. Dalenc F. Aftimos P. Lynce F. Diab S. Cortés J. O’Shaughnessy J. Diéras V. Ferrario C. Schmid P. Carey L.A. Gianni L. Piccart M.J. Loibl S. Goldenberg D.M. Hong Q. Olivo M.S. Itri L.M. Rugo H.S. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 2021 384 16 1529 1541 10.1056/NEJMoa2028485 33882206
    [Google Scholar]
  9. Cortes J. Rugo H.S. Cescon D.W. Im S.A. Yusof M.M. Gallardo C. Lipatov O. Barrios C.H. Perez-Garcia J. Iwata H. Masuda N. Torregroza Otero M. Gokmen E. Loi S. Guo Z. Zhou X. Karantza V. Pan W. Schmid P. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N. Engl. J. Med. 2022 387 3 217 226 10.1056/NEJMoa2202809 35857659
    [Google Scholar]
  10. Liedtke C. Mazouni C. Hess K.R. André F. Tordai A. Mejia J.A. Symmans W.F. Gonzalez-Angulo A.M. Hennessy B. Green M. Cristofanilli M. Hortobagyi G.N. Pusztai L. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008 26 8 1275 1281 10.1200/JCO.2007.14.4147 18250347
    [Google Scholar]
  11. Kassam F. Enright K. Dent R. Dranitsaris G. Myers J. Flynn C. Fralick M. Kumar R. Clemons M. Survival outcomes for patients with metastatic triple-negative breast cancer: Implications for clinical practice and trial design. Clin. Breast Cancer 2009 9 1 29 33 10.3816/CBC.2009.n.005 19299237
    [Google Scholar]
  12. Larkin J. Chiarion-Sileni V. Gonzalez R. Grob J.J. Rutkowski P. Lao C.D. Cowey C.L. Schadendorf D. Wagstaff J. Dummer R. Ferrucci P.F. Smylie M. Hogg D. Hill A. Márquez-Rodas I. Haanen J. Guidoboni M. Maio M. Schöffski P. Carlino M.S. Lebbé C. McArthur G. Ascierto P.A. Daniels G.A. Long G.V. Bastholt L. Rizzo J.I. Balogh A. Moshyk A. Hodi F.S. Wolchok J.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019 381 16 1535 1546 10.1056/NEJMoa1910836 31562797
    [Google Scholar]
  13. Swisher S.K. Wu Y. Castaneda C.A. Lyons G.R. Yang F. Tapia C. Wang X. Casavilca S.A.A. Bassett R. Castillo M. Sahin A. Mittendorf E.A. Interobserver agreement between pathologists assessing tumor-infiltrating lymphocytes (TILs) in breast cancer using methodology proposed by the international TILs working group. Ann. Surg. Oncol. 2016 23 7 2242 2248 10.1245/s10434‑016‑5173‑8 26965699
    [Google Scholar]
  14. Mao Y. Qu Q. Chen X. Huang O. Wu J. Shen K. The prognostic value of tumor-infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis. PLoS One 2016 11 4 e0152500 10.1371/journal.pone.0152500 27073890
    [Google Scholar]
  15. Zhu Y. Zhang H. Pan C. He G. Cui X. Yu X. Zhang X. Wu D. Yang J. Wu X. Luo H. Liu X. Integrated tumor genomic and immune microenvironment analysis identifies predictive biomarkers associated with the efficacy of neoadjuvant therapy for triple-negative breast cancer. Cancer Med. 2023 12 5 5846 5858 10.1002/cam4.5372 36271505
    [Google Scholar]
  16. White M.J.V. Roife D. Gomer R.H. Galectin-3 binding protein secreted by breast cancer cells inhibits monocyte-derived fibrocyte differentiation. J. Immunol. 2015 195 4 1858 1867 10.4049/jimmunol.1500365 26136428
    [Google Scholar]
  17. Schmid P. Cortes J. Pusztai L. McArthur H. Kümmel S. Bergh J. Denkert C. Park Y.H. Hui R. Harbeck N. Takahashi M. Foukakis T. Fasching P.A. Cardoso F. Untch M. Jia L. Karantza V. Zhao J. Aktan G. Dent R. O’Shaughnessy J. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020 382 9 810 821 10.1056/NEJMoa1910549 32101663
    [Google Scholar]
  18. Schmid P. Adams S. Rugo H.S. Schneeweiss A. Barrios C.H. Iwata H. Diéras V. Hegg R. Im S.A. Shaw Wright G. Henschel V. Molinero L. Chui S.Y. Funke R. Husain A. Winer E.P. Loi S. Emens L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018 379 22 2108 2121 10.1056/NEJMoa1809615 30345906
    [Google Scholar]
  19. Nakhjavani M. Shigdar S. Future of PD-1/PD-L1 axis modulation for the treatment of triple-negative breast cancer. Pharmacol. Res. 2022 175 106019 10.1016/j.phrs.2021.106019 34861397
    [Google Scholar]
  20. Liu Y. Hu Y. Xue J. Li J. Yi J. Bu J. Zhang Z. Qiu P. Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol. Cancer 2023 22 1 145 10.1186/s12943‑023‑01850‑7 37660039
    [Google Scholar]
  21. Bareche Y. Buisseret L. Gruosso T. Girard E. Venet D. Dupont F. Desmedt C. Larsimont D. Park M. Rothé F. Stagg J. Sotiriou C. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: Towards an optimized treatment approach. J. Natl. Cancer Inst. 2020 112 7 708 719 10.1093/jnci/djz208 31665482
    [Google Scholar]
  22. Stowell S.R. Ju T. Cummings R.D. Protein glycosylation in cancer. Annu. Rev. Pathol. 2015 10 1 473 510 10.1146/annurev‑pathol‑012414‑040438 25621663
    [Google Scholar]
  23. Peixoto A. Relvas-Santos M. Azevedo R. Santos L.L. Ferreira J.A. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front. Oncol. 2019 9 380 10.3389/fonc.2019.00380 31157165
    [Google Scholar]
  24. Capone E. Iacobelli S. Sala G. Role of galectin 3 binding protein in cancer progression: A potential novel therapeutic target. J. Transl. Med. 2021 19 1 405 10.1186/s12967‑021‑03085‑w 34565385
    [Google Scholar]
  25. Hong C.S. Park M.R. Sun E.G. Choi W. Hwang J.E. Bae W.K. Rhee J.H. Cho S.H. Chung I.J. Gal-3BP negatively regulates NF-κB signaling by inhibiting the activation of TAK1. Front. Immunol. 2019 10 1760 10.3389/fimmu.2019.01760 31402917
    [Google Scholar]
  26. Fogeron M.L. Müller H. Schade S. Dreher F. Lehmann V. Kühnel A. Scholz A.K. Kashofer K. Zerck A. Fauler B. Lurz R. Herwig R. Zatloukal K. Lehrach H. Gobom J. Nordhoff E. Lange B.M.H. LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells. Nat. Commun. 2013 4 1 1531 10.1038/ncomms2517 23443559
    [Google Scholar]
  27. Li L. Qin S. Tan H. Zhou J. LGALS3BP is a novel and potential biomarker in clear cell renal cell carcinoma. Aging (Albany NY) 2024 16 4 4033 4051 10.18632/aging.205578 38393692
    [Google Scholar]
  28. Piccolo E. Tinari N. D’Addario D. Rossi C. Iacobelli V. La Sorda R. Lattanzio R. D’Egidio M. Di Risio A. Piantelli M. Natali P.G. Iacobelli S. Prognostic relevance of LGALS3BP in human colorectal carcinoma. J. Transl. Med. 2015 13 1 248 10.1186/s12967‑015‑0606‑x 26219351
    [Google Scholar]
  29. Woo J.K. Jang J.E. Kang J.H. Seong J.K. Yoon Y.S. Kim H.C. Lee S.J. Oh S.H. Lectin, galactoside-binding soluble 3 binding protein promotes 17-N-allylamino-17-demethoxygeldanamycin resistance through PI3K/Akt pathway in lung cancer cell line. Mol. Cancer Ther. 2017 16 7 1355 1365 10.1158/1535‑7163.MCT‑16‑0574 28336809
    [Google Scholar]
  30. Zhou Y.F. Xiao Y. Jin X. Di G.H. Jiang Y.Z. Shao Z.M. Integrated analysis reveals prognostic value of HLA-I LOH in triple-negative breast cancer. J. Immunother. Cancer 2021 9 10 e003371 10.1136/jitc‑2021‑003371 34615706
    [Google Scholar]
  31. Komatsu M. Yoshimaru T. Matsuo T. Kiyotani K. Miyoshi Y. Tanahashi T. Rokutan K. Yamaguchi R. Saito A. Imoto S. Miyano S. Nakamura Y. Sasa M. Shimada M. Katagiri T. Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. Int. J. Oncol. 2013 42 2 478 506 10.3892/ijo.2012.1744 23254957
    [Google Scholar]
  32. Ning R. Pan S. Xiao D. Zheng Y. Zhang J. ANO10 is a potential prognostic biomarker and correlates with immune infiltration in breast cancer. Am. J. Cancer Res. 2023 13 5 1845 1862 37293146
    [Google Scholar]
  33. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  34. Spektor A.M. Gutjahr E. Lang M. Glatting F.M. Hackert T. Pausch T. Tjaden C. Schreckenberger M. Haberkorn U. Röhrich M. Immunohistochemical FAP expression reflects 68 Ga-FAPI PET imaging properties of low- and high-grade intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinoma. J. Nucl. Med. 2024 65 1 52 58 10.2967/jnumed.123.266393 38167622
    [Google Scholar]
  35. Kuji S. Endo A. Kubota M. Uekawa A. Kawakami F. Mikami Y. Koike J. Suzuki N. Immunosensitivity and specificity of insulinoma-associated protein 1 (INSM1) for neuroendocrine neoplasms of the uterine cervix. J. Gynecol. Oncol. 2023 34 1 e1 10.3802/jgo.2023.34.e1 36245222
    [Google Scholar]
  36. Guo Z. Zhang X. Zhu H. Zhong N. Luo X. Zhang Y. Tu F. Zhong J. Wang X. He J. Huang L. TELO2 induced progression of colorectal cancer by binding with RICTOR through mTORC2. Oncol. Rep. 2020 45 2 523 534 10.3892/or.2020.7890 33416177
    [Google Scholar]
  37. Qu J. Li J. Zhang Y. He R. Liu X. Gong K. Duan L. Luo W. Hu Z. Wang G. Xia C. Luo D. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway. Cell Biosci. 2021 11 1 163 10.1186/s13578‑021‑00677‑3 34419144
    [Google Scholar]
  38. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  39. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  40. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  41. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  42. Yoshihara K. Shahmoradgoli M. Martínez E. Vegesna R. Kim H. Torres-Garcia W. Treviño V. Shen H. Laird P.W. Levine D.A. Carter S.L. Getz G. Stemke-Hale K. Mills G.B. Verhaak R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013 4 1 2612 10.1038/ncomms3612 24113773
    [Google Scholar]
  43. Li T. Fu J. Zeng Z. Cohen D. Li J. Chen Q. Li B. Liu X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020 48 W1 W509 W514 10.1093/nar/gkaa407 32442275
    [Google Scholar]
  44. Geeleher P. Cox N. Huang R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014 9 9 e107468 10.1371/journal.pone.0107468 25229481
    [Google Scholar]
  45. Xu Q. Chen S. Hu Y. Huang W. Landscape of immune microenvironment under immune cell infiltration pattern in breast cancer. Front. Immunol. 2021 12 711433 10.3389/fimmu.2021.711433 34512634
    [Google Scholar]
  46. Stampolidis P. Ullrich A. Iacobelli S. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, promotes oncogenic cellular events impeded by antibody intervention. Oncogene 2015 34 1 39 52 10.1038/onc.2013.548 24362527
    [Google Scholar]
  47. Piccolo E. Tinari N. Semeraro D. Traini S. Fichera I. Cumashi A. La Sorda R. Spinella F. Bagnato A. Lattanzio R. D’Egidio M. Di Risio A. Stampolidis P. Piantelli M. Natoli C. Ullrich A. Iacobelli S. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J. Mol. Med. 2013 91 1 83 94 10.1007/s00109‑012‑0936‑6 22864925
    [Google Scholar]
  48. Ozaki Y. Kontani K. Hanaoka J. Chano T. Teramoto K. Tezuka N. Sawai S. Fujino S. Yoshiki T. Okabe H. Ohkubo I. Expression and immunogenicity of a tumor-associated antigen, 90K/Mac-2 binding protein, in lung carcinoma. Cancer 2002 95 9 1954 1962 10.1002/cncr.10899 12404290
    [Google Scholar]
  49. Natoli C. Garufi C. Tinari N. D’Egidio M. Lesti G. Gaspari L.A. Visini R. Iacobelli S. Dynamic test with recombinant interferon-alpha-2b: Effect on 90K and other tumour-associated antigens in cancer patients without evidence of disease. Br. J. Cancer 1993 67 3 564 567 10.1038/bjc.1993.103 8439505
    [Google Scholar]
  50. Greco C. Vona R. Cosimelli M. Matarrese P. Straface E. Scordati P. Giannarelli D. Casale V. Assisi D. Mottolese M. Moles A. Malorni W. Cell surface overexpression of galectin-3 and the presence of its ligand 90k in the blood plasma as determinants in colon neoplastic lesions. Glycobiology 2004 14 9 783 792 10.1093/glycob/cwh092 15140826
    [Google Scholar]
  51. Correale M. Giannuzzi V. Iacovazzi P.A. Valenza M.A. Lanzillotta S. Abbate I. Quaranta M. Caruso M.L. Elba S. Manghisi O.G. Serum 90K/MAC-2BP glycoprotein levels in hepatocellular carcinoma and cirrhosis. Anticancer Res. 1999 19 4C 3469 3472 10629637
    [Google Scholar]
  52. Iacobelli S. Sismondi P. Giai M. D’Egidio M. Tinari N. Amatetti C. Di Stefano P. Natoli C. Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br. J. Cancer 1994 69 1 172 176 10.1038/bjc.1994.29 8286203
    [Google Scholar]
  53. Iacovazzi P.A. Trisolini A. Barletta D. Elba S. Manghisi O.G. Correale M. Serum 90K/MAC-2BP glycoprotein in patients with liver cirrhosis and hepatocellular carcinoma: A comparison with alpha-fetoprotein. Clin. Chem. Lab. Med. 2001 39 10 961 965 10.1515/CCLM.2001.155 11758611
    [Google Scholar]
  54. Vergilis I.J. Szarek M. Ferrone S. Reynolds S.R. Presence and prognostic significance of melanoma-associated antigens CYT-MAA and HMW-MAA in serum of patients with melanoma. J. Invest. Dermatol. 2005 125 3 526 531 10.1111/j.0022‑202X.2005.23798.x 16117794
    [Google Scholar]
  55. Strizzi L. Muraro R. Vianale G. Natoli C. Talone L. Catalano A. Mutti L. Tassi G. Procopio A. Expression of glycoprotein 90K in human malignant pleural mesothelioma: Correlation with patient survival. J. Pathol. 2002 197 2 218 223 10.1002/path.1125 12015746
    [Google Scholar]
  56. Zambelli D. Zuntini M. Nardi F. Manara M.C. Serra M. Landuzzi L. Lollini P.L. Ferrari S. Alberghini M. Llombart-Bosch A. Piccolo E. Iacobelli S. Picci P. Scotlandi K. Biological indicators of prognosis in Ewing’s sarcoma: An emerging role for lectin galactoside-binding soluble 3 binding protein (LGALS3BP). Int. J. Cancer 2010 126 1 41 52 10.1002/ijc.24670 19544526
    [Google Scholar]
  57. Ullrich A. Sures I. D’Egidio M. Jallal B. Powell T.J. Herbst R. Dreps A. Azam M. Rubinstein M. Natoli C. The secreted tumor-associated antigen 90K is a potent immune stimulator. J. Biol. Chem. 1994 269 28 18401 18407 10.1016/S0021‑9258(17)32322‑0 8034587
    [Google Scholar]
  58. Jallal B. Powell J. Zachwieja J. Brakebusch C. Germain L. Jacobs J. Iacobelli S. Ullrich A. Suppression of tumor growth in vivo by local and systemic 90K level increase. Cancer Res. 1995 55 15 3223 3227 7542166
    [Google Scholar]
  59. Bethmann D. Feng Z. Fox B.A. Immunoprofiling as a predictor of patient’s response to cancer therapy-promises and challenges. Curr. Opin. Immunol. 2017 45 60 72 10.1016/j.coi.2017.01.005 28222333
    [Google Scholar]
  60. Li S. Zhang N. Zhang H. Yang Z. Cheng Q. Wei K. Zhou M. Huang C. Deciphering the role of LGALS2: Insights into tertiary lymphoid structure-associated dendritic cell activation and immunotherapeutic potential in breast cancer patients. Mol. Cancer 2024 23 1 216 10.1186/s12943‑024‑02126‑4 39350165
    [Google Scholar]
  61. Yakubovich E. Cook D.P. Rodriguez G.M. Vanderhyden B.C. Mesenchymal ovarian cancer cells promote CD8+ T cell exhaustion through the LGALS3-LAG3 axis. NPJ Syst. Biol. Appl. 2023 9 1 61 10.1038/s41540‑023‑00322‑4 38086828
    [Google Scholar]
  62. He X. Wang B. Deng W. Cao J. Tan Z. Li X. Guan F. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage. Cell Commun. Signal. 2024 22 1 73 10.1186/s12964‑023‑01432‑6 38279161
    [Google Scholar]
  63. Stephan A. Suhrmann J.H. Skowron M.A. Che Y. Poschmann G. Petzsch P. Kresbach C. Wruck W. Pongratanakul P. Adjaye J. Stühler K. Köhrer K. Schüller U. Nettersheim D. Molecular and epigenetic ex vivo profiling of testis cancer-associated fibroblasts and their interaction with germ cell tumor cells and macrophages. Matrix Biol. 2024 132 10 23 10.1016/j.matbio.2024.06.001 38851302
    [Google Scholar]
  64. DeNardo D.G. Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019 19 6 369 382 10.1038/s41577‑019‑0127‑6 30718830
    [Google Scholar]
  65. Ahmed I. Ismail N. M1 and M2 macrophages polarization via mTORC1 influences innate immunity and outcome of Ehrlichia infection. J. Cell. Immunol. 2020 2 3 108 115 32719831
    [Google Scholar]
  66. Kashfi K. Kannikal J. Nath N. Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells 2021 10 11 3194 10.3390/cells10113194 34831416
    [Google Scholar]
  67. Zhou Y. Que K.T. Zhang Z. Yi Z.J. Zhao P.X. You Y. Gong J.P. Liu Z.J. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 2018 7 8 4012 4022 10.1002/cam4.1670 29989329
    [Google Scholar]
  68. Wang J. Yang L. Mao X. Li Z. Lin X. Jiang C. Streptococcus salivarius -mediated CD8 + T cell stimulation required antigen presentation by macrophages in oral squamous cell carcinoma. Exp. Cell Res. 2018 366 2 121 126 10.1016/j.yexcr.2018.03.007 29530474
    [Google Scholar]
  69. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Taghadosi M. Esmaeili S.A. Mardani F. Seifi B. Mohammadi A. Afshari J.T. Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  70. Li M. Sun X. Zhao J. Xia L. Li J. Xu M. Wang B. Guo H. Yu C. Gao Y. Wu H. Kong X. Xia Q. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell. Mol. Immunol. 2020 17 7 753 764 10.1038/s41423‑019‑0279‑0 31481754
    [Google Scholar]
  71. Ye Y. Xu Y. Lai Y. He W. Li Y. Wang R. Luo X. Chen R. Chen T. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J. Cell. Biochem. 2018 119 3 2951 2963 10.1002/jcb.26509 29131381
    [Google Scholar]
  72. Shaked I. Hanna D.B. Gleißner C. Marsh B. Plants J. Tracy D. Anastos K. Cohen M. Golub E.T. Karim R. Lazar J. Prasad V. Tien P.C. Young M.A. Landay A.L. Kaplan R.C. Ley K. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection. Arterioscler. Thromb. Vasc. Biol. 2014 34 5 1085 1092 10.1161/ATVBAHA.113.303153 24651679
    [Google Scholar]
  73. Zhang C. Deng Y. Zhang Y. Ba T. Niu S. Chen Y. Gao Y. Dai H. CXCR3 inhibition blocks the NF-κB signaling pathway by elevating autophagy to ameliorate lipopolysaccharide-induced intestinal dysfunction in mice. Cells 2023 12 1 182 10.3390/cells12010182
    [Google Scholar]
  74. Chung H. Gyu-mi P. Na Y.R. Lee Y.S. Choi H. Seok S.H. Comprehensive characterization of early-programmed tumor microenvironment by tumor-associated macrophages reveals galectin-1 as an immune modulatory target in breast cancer. Theranostics 2024 14 2 843 860 10.7150/thno.88917 38169569
    [Google Scholar]
  75. Huang C.S. Tang S.J. Chung L.Y. Yu C.P. Ho J.Y. Cha T.L. Hsieh C.C. Wang H.H. Sun G.H. Sun K.H. Galectin-1 upregulates CXCR4 to promote tumor progression and poor outcome in kidney cancer. J. Am. Soc. Nephrol. 2014 25 7 1486 1495 10.1681/ASN.2013070773 24511119
    [Google Scholar]
  76. Gordon-Alonso M. Hirsch T. Wildmann C. van der Bruggen P. Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nat. Commun. 2017 8 1 793 10.1038/s41467‑017‑00925‑6 28986561
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367980250101053748
Loading
/content/journals/cmc/10.2174/0109298673367980250101053748
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test