Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

The purpose of this scoping review is to provide researchers with a comprehensive knowledge map and identify existing knowledge gaps.

Introduction

Glaucoma is the leading cause of irreversible blindness worldwide. ROCK inhibitors are a novel class of intraocular pressure-lowering drugs that specifically target trabecular meshwork cells. Current research on ROCK inhibitors is dispersed across multiple directions, and their precise mechanisms of action in glaucoma treatment remain incompletely understood. For these reasons, we sought to integrate the existing evidence using a scoping review approach.

Methods

Relevant articles published between 2014 and 2024 were identified and screened using keywords in the PubMed and Embase databases. Articles were analyzed based on the inclusion and exclusion criteria.

Results

The collected studies were categorized into three main themes: intraocular pressure reduction, neuroprotection, and anti-fibrosis. A total of 23 articles were included in the review. We found that studies related to intraocular pressure reduction accounted for the majority (approximately 74%), while research on neuroprotection and anti-fibrosis was relatively limited (approximately 14% each). Furthermore, among the 23 included articles, only one was a systematic review or meta-analysis.

Conclusion

ROCK inhibitors directly act on the trabecular meshwork to lower IOP and have potential neuroprotective and anti-fibrotic effects. However, these potential effects require further clinical trials to validate their efficacy in humans. In the future, more systematic reviews and meta-analyses are also needed to integrate and summarize the current primary research findings.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673366619250113103213
2025-02-07
2025-11-01
Loading full text...

Full text loading...

References

  1. ThamY.C. LiX. WongT.Y. QuigleyH.A. AungT. ChengC.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis.Ophthalmology2014121112081209010.1016/j.ophtha.2014.05.01324974815
    [Google Scholar]
  2. MantravadiA.V. VadharN. Glaucoma.Prim. Care201542343744910.1016/j.pop.2015.05.00826319348
    [Google Scholar]
  3. ShanS. WuJ. CaoJ. FengY. ZhouJ. LuoZ. SongP. RudanI. Global Health Epidemiology Research Group (GHERG) Global incidence and risk factors for glaucoma: A systematic review and meta-analysis of prospective studies.J. Glob. Health2024140425210.7189/jogh.14.0425239513294
    [Google Scholar]
  4. QuigleyH.A. BromanA.T. The number of people with glaucoma worldwide in 2010 and 2020.Br. J. Ophthalmol.200690326226710.1136/bjo.2005.08122416488940
    [Google Scholar]
  5. GharahkhaniP. HeW. Diaz TorresS. WuY. IngoldN. YuR. SeviiriM. OngJ.S. LawM.H. CraigJ.E. MackeyD.A. HewittA.W. MacGregorS. Study profile: The genetics of glaucoma study.BMJ Open2023138e06881110.1136/bmjopen‑2022‑06881137536973
    [Google Scholar]
  6. QuigleyH.A. Glaucoma.Lancet201137797741367137710.1016/S0140‑6736(10)61423‑721453963
    [Google Scholar]
  7. LeskeM.C. HeijlA. HusseinM. BengtssonB. HymanL. KomaroffE. Early Manifest Glaucoma Trial Group Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial.Arch. Ophthalmol.20031211485610.1001/archopht.121.1.4812523884
    [Google Scholar]
  8. WinklerN.S. FautschM.P. Effects of prostaglandin analogues on aqueous humor outflow pathways.J. Ocul. Pharmacol. Ther.2014302-310210910.1089/jop.2013.017924359106
    [Google Scholar]
  9. JohnsonM. ‘What controls aqueous humour outflow resistance?’.Exp. Eye Res.200682454555710.1016/j.exer.2005.10.01116386733
    [Google Scholar]
  10. GabeltB.A.T. KaufmanP.L. Changes in aqueous humor dynamics with age and glaucoma.Prog. Retin. Eye Res.200524561263710.1016/j.preteyeres.2004.10.00315919228
    [Google Scholar]
  11. LiX. NagyJ.I. LiD. AcottT.S. KelleyM.J. Gap junction connexin43 is a key element in mediating phagocytosis activity in human trabecular meshwork cells.Int. J. Physiol. Pathophysiol. Pharmacol.2020121253132211119
    [Google Scholar]
  12. PeotterJ.L. PhillipsJ. TongT. DimeoK. GonzalezJ.M.Jr PetersD.M. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells.Exp. Cell Res.2016347230131110.1016/j.yexcr.2016.08.00927539661
    [Google Scholar]
  13. StamerW.D. ClarkA.F. The many faces of the trabecular meshwork cell.Exp. Eye Res.201715811212310.1016/j.exer.2016.07.00927443500
    [Google Scholar]
  14. WeinrebR.N. RobinsonM.R. DibasM. StamerW.D. Matrix metalloproteinases and glaucoma treatment.J. Ocul. Pharmacol. Ther.202036420822810.1089/jop.2019.014632233938
    [Google Scholar]
  15. LakkM. KrižajD. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells.Am. J. Physiol. Cell Physiol.20213206C1013C103010.1152/ajpcell.00599.202033788628
    [Google Scholar]
  16. FanX. BilirE.K. KingstonO.A. OldershawR.A. KearnsV.R. WilloughbyC.E. SheridanC.M. Replacement of the trabecular meshwork cells—a way ahead in IOP control?Biomolecules2021119137110.3390/biom1109137134572584
    [Google Scholar]
  17. GazzardG. KonstantakopoulouE. Garway-HeathD. AdelekeM. VickerstaffV. AmblerG. HunterR. BunceC. NathwaniN. BartonK. AdelekeM. AmblerG. BartonK. BourneR. BroadwayD. BunceC. BuszewiczM. CrabbD. DavisA. GargA. Garway-HeathD. GazzardG. HornanD. HunterR. JayaramH. JiangY. KonstantakopoulouE. LimS. LiputJ. MannersT. MontesanoG. MorrisS. NathwaniN. OmettoG. RubinG. StrouthidisN. VickerstaffV. WilsonS. WormaldR. WrightD. ZhuH. LiGHT Trial Study Group Laser in glaucoma and ocular hypertension (LiGHT) trial.Ophthalmology2023130213915110.1016/j.ophtha.2022.09.00936122660
    [Google Scholar]
  18. PereiraI.C.F. van de WijdevenR. WyssH.M. BeckersH.J.M. den ToonderJ.M.J. Conventional glaucoma implants and the new MIGS devices: A comprehensive review of current options and future directions.Eye202135123202322110.1038/s41433‑021‑01595‑x34127842
    [Google Scholar]
  19. RathiS. AndrewsC.A. GreenfieldD.S. SteinJ.D. Trends in glaucoma surgeries performed by glaucoma subspecialists versus nonsubspecialists on medicare beneficiaries from 2008 through 2016.Ophthalmology20211281303810.1016/j.ophtha.2020.06.05132598949
    [Google Scholar]
  20. MedeirosF.A. WaltersT.R. KolkoM. CooteM. BejanianM. GoodkinM.L. GuoQ. ZhangJ. RobinsonM.R. WeinrebR.N. AgarA. CooteM. BathijiaR. LiuL. RobertsT. FaschingerC. VassC. CollignonN. Alves PereiraA.C. Belfort de MattosR.Jr DantasF.J. Lopes da SilvaM.J. KanadaniF. Magacho dos Santos SilvaL. PrataT. Bach-HolmD. KolkoM. LaiJ. ThamC. BátorG. SzalczerL. VarsányiB. BlumenthalE. GeyerO. LavartovskyS. Pedut-KloizmanT. Shoham-HazonN. LujanS. AbelaB. AngR.E. LeuenbergerE.U. UyH. Yap-VelosoM.I. FryczkowskiP. JurowskiP. KalużnyB. KalużnyJ. Misiuk-HojloM. RaczynskaK. Tomczyk-DorozynskaW. WasylukJ. ZalewskiS. ZarnowskiT. FeijoóJ.G. Giménez-GómezR. GriñoE.M. LópezA.A. MirallesM.G. MorenoJ.M. PoloV. TauletE.C. ZúñigaB.P. ChenY-Y. LeeY-C. AlpernL. BerlinM.S. BrubakerJ. CaldwellD. CampA. CantorL.B. CaroniaR. CraneC.J. DayD. DuzmanE. ElfervigJ. El-HaraziS. EvansR. FisherA.C. FlynnW.J. FosterC.S. FrenkelR. GoyalR. GrossR. HartmanP.J. HaynesW.L. JerkinsG. KimJ. KimM. KwapiszeskiB. LambrightB. LarsenC. LehmannJ. LevensonJ.H. LoganD. McMillanB. MartelJ.R. MayerH. MedeirosF. MoroiS. MoyesA. MyersJ. NairnJ. NielsenS. OrtizD.P. PaauwJ. PaiV. PanarelliJ. ParkA. QaziM.A. RagusaN. RheeD.J. RothmanR. SampsonR. SeltzerS. ShrivastavaA. SimmonsS.T. SimsA. SlabaughM.A. SmetanaS. SmithO. SoS.C. StalmansI. SwarupJ. WallsheinJ. WaltersT.R. ZamanF. ZhangR. ARTEMIS 1 Study Group Phase 3, randomized, 20-month study of bimatoprost implant in open-angle glaucoma and ocular hypertension (ARTEMIS 1).Ophthalmology2020127121627164110.1016/j.ophtha.2020.06.01832544560
    [Google Scholar]
  21. ShirleyM. Bimatoprost implant: First approval.Drugs Aging202037645746210.1007/s40266‑020‑00769‑832447639
    [Google Scholar]
  22. CamrasC.B. AlmA. WatsonP. StjernschantzJ. AasvedH. JangardP. Lund-AndersenH. FlesnerP. SöderströmM. EhingerB. HolminC. Bengtsson-StigmarE. HeijlA. GundersenK.G. AiraksinenJ. TuulonenA. HalseideR. LindblomB. RingvoldA. VeggeA. LindenC. NilssonS.E. FriströmB. AlmA. WidengardI. ThygesenJ. GreenF. ValenzuelaF. WatsonP. PottsM. SpencerI. CoakesR. ReynoldsP. MillsB. ChatterjeeA. NagasubramanianS. RoxburghS. SandersR. BaileyM. WhyteI.F. VernonS. SloperM. MurrayS. DaveyC. Hickman-CaseyJ. LongstaffS. CurrieZ. WishartP. AustinM. BirchM. ElkingtonA. LuffA. BeckL. BlackmoreM. CioffiG.A. Van BuskirkE.M. FraserJ. StewartW.C. StewartJ.A. LustgartenJ. SchumerR.A. PodosS.M. ArroyoM. NitzbergS. RitchR. AbundoG. CaroniaR. LiebmannJ. SteinbergerD. KrupinT. RosenbergL.F. RudermannJ.M. ClarksonK. WeinrebR. OchabsiR. SherwoodM. SmithM.F. StokesD.W. ZamZ.S. WilenskyJ. HillmanD. KaplanB. GatesV. NailC. ZimmermanT. FechtnerR. FentonR. FentonJ. HigginbothamE.J. JohnsonA.T. Pollack-RundleC.J. CamrasC.B. WeissE. YablonskiM.E. TannenbaumM.H. IbrahimF. OhiaE. NeeleyD. MincklerD. HeuerD. LeeP. PadeaM. KaufmanP.L. HeatleyG.A. Vanderhof-YoungM.A. WaxM. JonesA. KatzL.J. MosterM. ParkerB. RobinA.L. JuzychM. BrummettM. Latanoprost Study Groups Latanoprost, a prostaglandin analog, for glaucoma therapy. Efficacy and safety after 1 year of treatment in 198 patients.Ophthalmology1996103111916192410.1016/S0161‑6420(96)30407‑78942890
    [Google Scholar]
  23. BerrinoE. SupuranC.T. Rho-kinase inhibitors in the management of glaucoma.Expert Opin. Ther. Pat.2019291081782710.1080/13543776.2019.1670812
    [Google Scholar]
  24. Van BuskirkE.M. Changes in the facility of aqueous outflow induced by lens depression and intraocular pressure in excised human eyes.Am. J. Ophthalmol.197682573674010.1016/0002‑9394(76)90011‑8998694
    [Google Scholar]
  25. Van BuskirkE.M. Anatomic correlates of changing aqueous outflow facility in excised human eyes.Invest. Ophthalmol. Vis. Sci.19822256256327076408
    [Google Scholar]
  26. Van BuskirkE.M. Hazards of medical glaucoma therapy in the cataract patient.Ophthalmology198289323824110.1016/S0161‑6420(82)34811‑36123971
    [Google Scholar]
  27. ZimmermanT.J. WheelerT.M. Miotics: Side effects and ways to avoid them.Ophthalmology1982891768010.1016/S0161‑6420(82)34866‑67070779
    [Google Scholar]
  28. Garnock-JonesK.P. Ripasudil: First global approval.Drugs201474182211221510.1007/s40265‑014‑0333‑225414122
    [Google Scholar]
  29. CrawfordK. KaufmanP.L. Pilocarpine antagonizes prostaglandin F2 alpha-induced ocular hypotension in monkeys. Evidence for enhancement of Uveoscleral outflow by prostaglandin F2 alpha.Arch. Ophthalmol.198710581112111610.1001/archopht.1987.010600801140393477218
    [Google Scholar]
  30. AlmA. VillumsenJ. PhXA34, a new potent ocular hypotensive drug. A study on dose-response relationship and on aqueous humor dynamics in healthy volunteers.Arch. Ophthalmol.1991109111564156810.1001/archopht.1991.010801101000451755739
    [Google Scholar]
  31. ShenW. HuangB. YangJ. Ocular surface changes in prostaglandin analogue-treated patients.J. Ophthalmol.201920191710.1155/2019/979827231885896
    [Google Scholar]
  32. AftabO.M. KhanH. SanganiR. KhouriA.S. A national analysis of systemic adverse events of beta-blockers used for glaucoma therapy.Cutan. Ocul. Toxicol.202443429329810.1080/15569527.2024.240240839263973
    [Google Scholar]
  33. KuryshevaN.I. Selective α2-agonists in the treatment of glaucoma: Pharmacology, efficacy and safety.Vestn. Oftalmol.2019135214415010.17116/oftalma201913502114431215546
    [Google Scholar]
  34. ArbabiA. BaoX. ShalabyW.S. RazeghinejadR. Systemic side effects of glaucoma medications.Clin. Exp. Optom.2022105215716510.1080/08164622.2021.196433134402741
    [Google Scholar]
  35. LuL.J. TsaiJ.C. LiuJ. Novel pharmacologic candidates for treatment of primary open-angle glaucoma.Yale J. Biol. Med.201790111111828356898
    [Google Scholar]
  36. LinJB HarrisJM BaldwinG GossD MargetaMA. Ocular effects of Rho kinase (ROCK) inhibition: A systematic review.Eye (Lond.)2024111
    [Google Scholar]
  37. RaoP.V. PattabiramanP.P. KopczynskiC. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research.Exp. Eye Res.2017158233210.1016/j.exer.2016.08.02327593914
    [Google Scholar]
  38. RientoK. RidleyA.J. ROCKs: Multifunctional kinases in cell behaviour.Nat. Rev. Mol. Cell Biol.20034644645610.1038/nrm112812778124
    [Google Scholar]
  39. WangJ. WangH. DangY. Rho-kinase inhibitors as emerging targets for glaucoma therapy.Ophthalmol. Ther.20231262943295710.1007/s40123‑023‑00820‑y37837578
    [Google Scholar]
  40. WangJ. LiuX. ZhongY. Rho/Rho-associated kinase pathway in glaucoma.Int. J. Oncol.20134351357136710.3892/ijo.2013.210024042317
    [Google Scholar]
  41. HoW.T. ChangJ.S. ChenT.C. WangJ.K. ChangS.W. YangM.H. JouT.S. WangI.J. Inhibition of Rho-associated protein kinase activity enhances oxidative phosphorylation to support corneal endothelial cell migration.FASEB J.2022367e2239710.1096/fj.202101442RR35661268
    [Google Scholar]
  42. BuffaultJ. LabbéA. HamardP. Brignole-BaudouinF. BaudouinC. The trabecular meshwork: Structure, function and clinical implications. A review of the literature.J. Fr. Ophtalmol.2020437e217e23010.1016/j.jfo.2020.05.00232561029
    [Google Scholar]
  43. TannaA.P. JohnsonM. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension.Ophthalmology2018125111741175610.1016/j.ophtha.2018.04.04030007591
    [Google Scholar]
  44. TianB. KaufmanP.L. VolbergT. GabeltB.T. GeigerB. H-7 disrupts the actin cytoskeleton and increases outflow facility.Arch. Ophthalmol.1998116563364310.1001/archopht.116.5.6339596500
    [Google Scholar]
  45. PetersonJ.A. TianB. BershadskyA.D. VolbergT. GangnonR.E. SpectorI. GeigerB. KaufmanP.L. Latrunculin-A increases outflow facility in the monkey.Invest. Ophthalmol. Vis. Sci.199940593194110102290
    [Google Scholar]
  46. PetersonJ.A. TianB. GeigerB. KaufmanP.L. Effect of latrunculin-B on outflow facility in monkeys.Exp. Eye Res.200070330731310.1006/exer.1999.079710712817
    [Google Scholar]
  47. TianB. GeigerB. EpsteinD.L. KaufmanP.L. Cytoskeletal involvement in the regulation of aqueous humor outflow.Invest. Ophthalmol. Vis. Sci.200041361962310711672
    [Google Scholar]
  48. HonjoM. TaniharaH. Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma.Jpn. J. Ophthalmol.201862210912610.1007/s10384‑018‑0566‑929445943
    [Google Scholar]
  49. DangY. WangC. ShahP. WaxmanS. LoewenR.T. LoewenN.A. RKI-1447, a Rho kinase inhibitor, causes ocular hypotension, actin stress fiber disruption, and increased phagocytosis.Graefes Arch. Clin. Exp. Ophthalmol.2019257110110910.1007/s00417‑018‑4175‑630456419
    [Google Scholar]
  50. ZhaoJ. ZhouD. GuoJ. RenZ. ZhouL. WangS. XuB. WangR. Effect of fasudil hydrochloride, a protein kinase inhibitor, on cerebral vasospasm and delayed cerebral ischemic symptoms after aneurysmal subarachnoid hemorrhage.Neurol. Med. Chir.200646942142810.2176/nmc.46.42116998274
    [Google Scholar]
  51. TaniharaH. InoueT. YamamotoT. KuwayamaY. AbeH. AraieM. K-115 Clinical Study Group Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension.Am. J. Ophthalmol.20131564731736.e210.1016/j.ajo.2013.05.01623831221
    [Google Scholar]
  52. WeiL. SurmaM. ShiS. Lambert-CheathamN. ShiJ. Novel insights into the roles of rho kinase in cancer.Arch. Immunol. Ther. Exp.201664425927810.1007/s00005‑015‑0382‑626725045
    [Google Scholar]
  53. KochJ.C. TöngesL. BarskiE. MichelU. BährM. LingorP. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS.Cell Death Dis.201455e122510.1038/cddis.2014.19124832597
    [Google Scholar]
  54. LiuJ. GaoH. WangX. The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system.Neural Regen. Res.201510111892189610.4103/1673‑5374.17032526807132
    [Google Scholar]
  55. YasudaY. WangL. ChitanoP. SeowC.Y. Rho-kinase inhibition of active force and passive tension in airway smooth muscle: A strategy for treating airway hyperresponsiveness in asthma.Biology202413211510.3390/biology1302011538392332
    [Google Scholar]
  56. LiY. GaoG. HanY. XiaoB. ShenL. YangX. LiuY. MuY. ZhangN. NiuC. WangY. Rho kinase inhibitor Y-27632 downregulates IL-1β expression in mice with experimental autoimmune myocarditis.Sci. Rep.2024141976310.1038/s41598‑024‑60239‑838684719
    [Google Scholar]
  57. HuangY. XiaoS. JiangQ. Role of Rho kinase signal pathway in inflammatory bowel disease.Int. J. Clin. Exp. Med.2015833089309726064197
    [Google Scholar]
  58. BatraM. GuptaS. NairA.B. DhanawatM. SandalS. MorsyM.A. Netarsudil: A new ophthalmic drug in the treatment of chronic primary open angle glaucoma and ocular hypertension.Eur. J. Ophthalmol.20213152237224410.1177/1120672121100878333843288
    [Google Scholar]
  59. SahaB.C. KumariR. KushumeshR. AmbastaA. SinhaB.P. Status of Rho kinase inhibitors in glaucoma therapeutics-an overview.Int. Ophthalmol.202242128129410.1007/s10792‑021‑02002‑w34453229
    [Google Scholar]
  60. Van de VeldeS. Van BergenT. SijnaveD. HollandersK. CastermansK. DefertO. LeysenD. VandewalleE. MoonsL. StalmansI. AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia.Invest. Ophthalmol. Vis. Sci.20145521006101610.1167/iovs.13‑1315724474276
    [Google Scholar]
  61. YamamotoK. MaruyamaK. HimoriN. OmodakaK. YokoyamaY. ShigaY. MorinR. NakazawaT. The novel Rho kinase (ROCK) inhibitor K-115: A new candidate drug for neuroprotective treatment in glaucoma.Invest. Ophthalmol. Vis. Sci.201455117126713610.1167/iovs.13‑1384225277230
    [Google Scholar]
  62. Van de VeldeS. Van BergenT. VandewalleE. KindtN. CastermansK. MoonsL. StalmansI. Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery.Prog. Brain Res.201522028329710.1016/bs.pbr.2015.04.01426497796
    [Google Scholar]
  63. TorisC.B. McLaughlinM.A. DworakD.P. FanS. HavensS. ZhanG.L. HoranN. PrasannaG. Effects of Rho kinase inhibitors on intraocular pressure and aqueous humor dynamics in non human primates and rabbits.J. Ocul. Pharmacol. Ther.201632635536410.1089/jop.2015.011627266531
    [Google Scholar]
  64. AbbhiV. SainiL. MishraS. SethiG. KumarA.P. PiplaniP. Design and synthesis of benzimidazole-based Rho kinase inhibitors for the treatment of glaucoma.Bioorg. Med. Chem.201725216071608510.1016/j.bmc.2017.09.04529033348
    [Google Scholar]
  65. LinC.W. ShermanB. MooreL.A. LaethemC.L. LuD.W. PattabiramanP.P. RaoP.V. deLongM.A. KopczynskiC.C. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma.J. Ocul. Pharmacol. Ther.2018341-2405110.1089/jop.2017.002328609185
    [Google Scholar]
  66. PithaI. OglesbyE. ChowA. KimballE. PeaseM.E. SchaubJ. QuigleyH. Rho-kinase inhibition reduces myofibroblast differentiation and proliferation of scleral fibroblasts induced by transforming growth factor β and experimental glaucoma.Transl. Vis. Sci. Technol.201876610.1167/tvst.7.6.630479877
    [Google Scholar]
  67. HsuC.R. ChenY.H. LiuC.P. ChenC.H. HuangK.K. HuangJ.W. LinM.N. LinC.L. ChenW.R. HsuY.L. LeeT. ChouS.H. TuC.M. HwangC.S. HuangY.C. LuD.W. A highly selective rho-kinase inhibitor (ITRI-E-212) potentially treats glaucoma upon topical administration with low incidence of ocular hyperemia.Invest. Ophthalmol. Vis. Sci.201960262463310.1167/iovs.18‑2525230735565
    [Google Scholar]
  68. IbrahimD.G. KoJ.A. IwataW. OkumichiH. KiuchiY. An in vitro study of scarring formation mediated by human Tenon fibroblasts: Effect of Y-27632, a Rho kinase inhibitor.Cell Biochem. Funct.201937211312410.1002/cbf.338230773659
    [Google Scholar]
  69. RenR. HumphreyA.A. KopczynskiC. GongH. Rho kinase inhibitor AR-12286 reverses steroid-induced changes in mouse eyes.Invest. Ophthalmol. Vis. Sci.2020617272036734964
    [Google Scholar]
  70. LiG. LeeC. ReadA.T. WangK. HaJ. KuhnM. NavarroI. CuiJ. YoungK. GorijavoluR. SulchekT. KopczynskiC. FarsiuS. SamplesJ. ChallaP. EthierC.R. StamerW.D. Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis.eLife2021101033783352
    [Google Scholar]
  71. Clement FreibergJ. von SpreckelsenA. KolkoM. Azuara-BlancoA. VirgiliG. Rho kinase inhibitor for primary open-angle glaucoma and ocular hypertension.Cochrane Database Syst. Rev.202266CD01381735686679
    [Google Scholar]
  72. HaA. KimY.K. JeoungJ.W. SatyalS. KimJ. KimS. ParkK.H. Sovesudil (locally acting rho kinase inhibitor) for the treatment of normal-tension glaucoma: The randomized phase II study.Acta Ophthalmol.20221002e470e47710.1111/aos.1494934318607
    [Google Scholar]
  73. KianianR. HulbertS.W. LawS.K. GiaconiJ. Effectiveness of topical ρ-kinase inhibitors in veterans with severe glaucoma on maximally tolerated medical therapy.Optom. Vis. Sci.202299862663110.1097/OPX.000000000000192535848984
    [Google Scholar]
  74. MizunoY. OkadaN. OnoeH. TokumoK. OkumichiH. HirookaK. KiuchiY. Effect of the rho-kinase inhibitor ripasudil in needling with mitomycin C for the failure of filtering bleb after trabeculectomy: A cross-sectional study.BMC Ophthalmol.202222143310.1186/s12886‑022‑02680‑936376831
    [Google Scholar]
  75. YangZ. WuJ. WuK. LuoJ. LiC. ZhangJ. ZhaoM. MeiT. LiuX. ShangB. ZhangY. ZhaoL. HuangZ. Identification of nitric oxide-donating ripasudil derivatives with intraocular pressure lowering and retinal ganglion cell protection activities.J. Med. Chem.20226517117451175810.1021/acs.jmedchem.2c0060036007247
    [Google Scholar]
  76. MathurM.C. RatnamP.V. SaikumarS.J. JohnM. RavishankarS. DineshM.B. ChandilP. PahujaK. CherlikarV. WadhwaniS. BendaleP. HazariA. MishraR. DeshmukhS. AchlerkarR.R. ShahD.T. HingoraniC. ShahK. TopiwalaP. JaniS. RanaV.G. MajumdarN.K. ChakrabartiD. DeyR. HalderD. ChoudhuryS. KumarA. DasS. NandaA.K. KumarV.B. DubeyR. KamdarG.A. PandeyA. KishanpuriaS. SrivastavaR.M. SinghP. VermaS.K. SharmaN. GuptaR. Netarsudil monotherapy as the initial treatment for open-angle glaucoma and ocular hypertension in Indian patients: A real-world evaluation of efficacy and safety.Indian J. Ophthalmol.20237162500250310.4103/IJO.IJO_25_2337322670
    [Google Scholar]
  77. PhamA.T. BradleyC. CaseyC. JampelH.D. RamuluP.Y. YohannanJ. Effectiveness of netarsudil versus brimonidine in eyes already being treated with glaucoma medications at a single academic tertiary care practice: A comparative study.Curr. Ther. Res. Clin. Exp.20239810068910.1016/j.curtheres.2022.10068936582193
    [Google Scholar]
  78. RenR. HumphreyA.A. KopczynskiC. GongH. Rho kinase inhibitor AR-12286 reverses steroid-induced changes in intraocular pressure, effective filtration areas, and morphology in mouse eyes.Invest. Ophthalmol. Vis. Sci.2023642710.1167/iovs.64.2.736734964
    [Google Scholar]
  79. ReboussinÉ. BastelicaP. BenmessabihI. CordovillaA. DelarasseC. Réaux-Le GoazigoA. Brignole-BaudouinF. OlmièreC. BaudouinC. BuffaultJ. Mélik ParsadaniantzS. Evaluation of Rho kinase inhibitor effects on neuroprotection and neuroinflammation in an ex- vivo retinal explant model.Acta Neuropathol. Commun.202412115010.1186/s40478‑024‑01859‑z39300576
    [Google Scholar]
  80. MuhlisahA. HirookaK. NurtaniaA. OnoeH. OkumichiH. NittaE. BabaT. TanitoM. MatsuokaY. NakakuraS. KiuchiY. Effect of ripasudil after trabeculectomy with mitomycin C: A multicentre, randomised, prospective clinical study.BMJ Open Ophthalmol.202491e00144910.1136/bmjophth‑2023‑00144938960415
    [Google Scholar]
  81. LiC. ZhuM. LiuS. ZhangJ. YeH. ZhangC. JiD. TangH. ZhangY. WuJ. HuangZ. Development of nitric oxide-donating netarsudil derivatives as a synergistic therapy for glaucoma with reduced ocular irritation.J. Med. Chem.20246718163111632710.1021/acs.jmedchem.4c0119939163586
    [Google Scholar]
  82. JabeenA. SharmaA.K. SharmaH.R. Additive intraocular pressure lowering effects of ripasudil in patients with primary open angle glaucoma and ocular hypertension.JK Science.20242611215
    [Google Scholar]
  83. KamiyaT. OmaeT. NakabayashiS. TakahashiK. TannerA. YoshidaA. Effect of Rho kinase inhibitor ripasudil (K-115) on isolated porcine retinal arterioles.J. Ocul. Pharmacol. Ther.202137210411110.1089/jop.2020.008233351704
    [Google Scholar]
  84. Al-HumimatG. MarashdehI. DaradkehD. KoonerK. Investigational Rho kinase inhibitors for the treatment of glaucoma.J. Exp. Pharmacol.20211319721210.2147/JEP.S25929733664600
    [Google Scholar]
  85. BaguéT. SinghA. GhoshR. YooH. KellyC. deLongM.A. KopczynskiC.C. HerbergS. Effects of netarsudil-family rho kinase inhibitors on human trabecular meshwork cell contractility and actin remodeling using a bioengineered ecm hydrogel.Frontiers in Ophthalmology2022294839710.3389/fopht.2022.94839738983571
    [Google Scholar]
  86. ShanS.W. DoC.W. LamT.C. LiH.L. StamerW.D. ToC.H. Thrombospondin-1 mediates Rho-kinase inhibitor-induced increase in outflow-facility.J. Cell. Physiol.2021236128226823810.1002/jcp.3049234180057
    [Google Scholar]
  87. OtaC. IdaY. OhguroH. HikageF. ROCK inhibitors beneficially alter the spatial configuration of TGFβ2-treated 3D organoids from a human trabecular meshwork (HTM).Sci. Rep.20201012029210.1038/s41598‑020‑77302‑933219246
    [Google Scholar]
  88. KimJ.W. Comparative study of the effects of trabecular meshwork outflow drugs on the permeability and nitric oxide production in trabecular meshwork cells.Korean J. Ophthalmol.201731545245910.3341/kjo.2017.002028914001
    [Google Scholar]
  89. JethvaJ. BhagatP. PrajapatiK. TankG. Safety, efficacy, and patient selection of ripasudil in patients with uncontrolled glaucoma with maximum conventional medical therapy.Indian J. Ophthalmol.20227062020202310.4103/ijo.IJO_3145_2135647972
    [Google Scholar]
  90. TaniharaH. KakudaT. SanoT. KannoT. KuriharaY. Long-term intraocular pressure-lowering effects and adverse events of ripasudil in patients with glaucoma or ocular hypertension over 24 months.Adv. Ther.20223941659167710.1007/s12325‑021‑02023‑y35150417
    [Google Scholar]
  91. ScuteriD. PocobelliG. SakuradaY. RussoR. ToninP. NicoteraP. BagettaG. CorasanitiM.T. NucciC. Effect of genotype on individual response to the pharmacological treatment of glaucoma: A systematic review and meta-analysis.Biol. Direct20231816610.1186/s13062‑023‑00423‑437833756
    [Google Scholar]
  92. TaniharaH. YamamotoT. AiharaM. KawakitaK. KojimaS. KanazawaM. NojimaT. SuganamiH. K-232 Clinical Study Group Ripasudil–brimonidine fixed-dose combination vs. ripasudil or brimonidine: Two phase 3 randomized clinical trials.Am. J. Ophthalmol.2023248354410.1016/j.ajo.2022.11.01736410471
    [Google Scholar]
  93. ChenY.H. LinW.Y. HuangY.C. HoW.Y. FuC.W. TuC.M. HwangC.S. HungC.L. LinM.C. ChengF. WangY.J. ChenC.H. ChouS.H. SheM.P. YangC.Y. ChengH.L. LiuC.P. LuD.W. The intraocular pressure lowering effect of a dual kinase inhibitor (ITRI-E-(S)4046) in ocular hypertensive animal models.Invest. Ophthalmol. Vis. Sci.202162131210.1167/iovs.62.13.1234661609
    [Google Scholar]
  94. HsuC.C. LinF.P. TsengH.C. HoP.K. ChenY.H. ChenY.G. LuD.W. ChenY.H. ChouJ.L. ChenH.C. HuangY.C. Activation of the ROCK/MYLK pathway affects complex molecular and morphological changes of the trabecular meshwork associated with ocular hypertension.Invest. Ophthalmol. Vis. Sci.202465101710.1167/iovs.65.10.1739115865
    [Google Scholar]
  95. HarasymowyczP. RoyerC. CuiA.X. BarbeauM. Jobin-GervaisK. MathurinK. LachaineJ. BeaucheminC. Short-term efficacy of latanoprostene bunod for the treatment of open-angle glaucoma and ocular hypertension: A systematic literature review and a network meta-analysis.Br. J. Ophthalmol.2022106564064710.1136/bjophthalmol‑2020‑31726233397657
    [Google Scholar]
  96. MincioneF. NocentiniA. SupuranC.T. Advances in the discovery of novel agents for the treatment of glaucoma.Expert Opin. Drug Discov.202116101209122510.1080/17460441.2021.192238433914670
    [Google Scholar]
  97. LiG. NottebaumA.F. BrigellM. NavarroI.D. IpeU. MishraS. Gomez-CaraballoM. SchmittH. SoldoB. PakolaS. WithersB. PetersK.G. VestweberD. StamerW.D. A small molecule inhibitor of VE-PTP activates Tie2 in Schlemm’s canal increasing outflow facility and reducing intraocular pressure.Invest. Ophthalmol. Vis. Sci.202061141210.1167/iovs.61.14.1233315051
    [Google Scholar]
  98. MartinP. CohenA. UddinS. EpelbaumL. JosiahS. Randomized, double-masked, placebo-controlled dose escalation study of TAK-639 topical ophthalmic solution in subjects with ocular hypertension or primary open-angle glaucoma.Clin. Ophthalmol.20201488589610.2147/OPTH.S24293232256046
    [Google Scholar]
  99. ElhusseinyA.M. ArefA.A. Sustained release therapies with the prostaglandin analogues intracameral implants.Ophthalmol. Ther.20241371833183910.1007/s40123‑024‑00965‑438761359
    [Google Scholar]
  100. KesavN.P. ErtelM.K. SeiboldL.K. KahookM.Y. KahookM.Y. Sustained-release drug delivery systems for the treatment of glaucoma.Int. J. Ophthalmol.202114114815910.18240/ijo.2021.01.2133469497
    [Google Scholar]
  101. BacharachJ. TathamA. FergusonG. BelalcázarS. ThiemeH. GoodkinM.L. ChenM.Y. GuoQ. LiuJ. RobinsonM.R. BejanianM. WirtaD.L. AlezzandriniA. BercovichG. DeromedisP. Furno SolaF. GentileC. LernerS. LupinacciA. ZeoliteC. BirtC. CrichtonA. GagneS. GiuntaM. HarasymowyczP. JinapriyaD. NicolelaM. NixonD. SaurelP. YanD. YuenD. ArangoS. BelalcázarS. MartinezA. Parra RestrepoJ.C. KordaV. KadlecovaJ. SvacinovaJ. KhairyH. El IbiaryH. El SanabaryZ. BellK. GreslechnerR. KochJ. LorenzK. Oberacher-VeltenI. SchmicklerS. SchuartC. ThiemeH. BandelloF. CaginiC. FigusM. MastropasquaL. RossettiL. UvaM.G. ThayanithiS. WellsA. HusainR. KohV. LimD. TinA. GousP. VenterL. KeeC. KookM. ParkK-H. EraslanM. KayikciogluO. YildirimN. BourneR. ChoudharyA. CordeiroF. DuboisV. KirwanJ. LimS. MartinK. NithyA. PrabhuA. TathamA. AmirA. BacharachJ. BarnebeyH. BeckA. BergstromL. BorisuthN. BranchJ.D. BriggsJ. BylsmaS. ChangP. ChristieW. CotterF. DepenbuschM. GoldbergD.F. GreinerJ. GuptaS. GutmarkR. HanY. HeersinkS. KahookM. KhouriA. KimJ. KushnickH. LinC. LuchsJ. MaharajA. MansbergerS.L. MaresF. Miller-EllisE. ModiS. PaulM. PithaI. SaltzmannR. SatoM. SavestskyM. SegalB. SegalZ. SerleJ. SherwoodM. SinghI. SmithS.E. SongJ. SorensonR. TenkmanL. TekwaniN. TubbsC. TysonF. VizzeriG. VoldS. VuQ. WarrenK.S. WirtaD. ARTEMIS 2 Study Group Phase 3, randomized, 20-month study of the efficacy and safety of bimatoprost implant in patients with open-angle glaucoma and ocular hypertension (ARTEMIS 2).Drugs202181172017203310.1007/s40265‑021‑01624‑934724172
    [Google Scholar]
  102. Al-QaysiZ.K. BeadhamI.G. SchwikkardS.L. BearJ.C. Al-KinaniA.A. AlanyR.G. Sustained release ocular drug delivery systems for glaucoma therapy.Expert Opin. Drug Deliv.202320790591910.1080/17425247.2023.221905337249548
    [Google Scholar]
  103. WeinrebR.N. ChristieW.C. MedeirosF.A. CravenE.R. KimK. NguyenA. BejanianM. WirtaD.L. Single administration of bimatoprost implant.Ophthalmol. Glaucoma20236659960810.1016/j.ogla.2023.06.00737343625
    [Google Scholar]
  104. MietznerR. KadeC. FroemelF. PaulyD. StamerW.D. OhlmannA. WegenerJ. FuchshoferR. BreunigM. Fasudil loaded PLGA microspheres as potential intravitreal depot formulation for glaucoma therapy.Pharmaceutics202012870610.3390/pharmaceutics1208070632727014
    [Google Scholar]
  105. OsiB. Al-KinaniA.A. Al-QaysiZ.K. KhoderM. AlanyR.G. Exploring the ocular absorption pathway of fasudil hydrochloride towards developing a nanoparticulate formulation with improved performance.Pharmaceutics202416111210.3390/pharmaceutics1601011238258122
    [Google Scholar]
  106. KhallafA.M. El-MoslemanyR.M. AhmedM.F. MorsiM.H. KhalafallahN.M. Exploring a novel fasudil-phospholipid complex formulated as liposomal thermosensitive in situ gel for glaucoma.Int. J. Nanomedicine20221716318110.2147/IJN.S34297535046652
    [Google Scholar]
  107. DesaiN. RanaD. SalaveS. GuptaR. PatelP. KarunakaranB. SharmaA. GiriJ. BenivalD. KommineniN. Chitosan: A potential biopolymer in drug delivery and biomedical applications.Pharmaceutics2023154131310.3390/pharmaceutics1504131337111795
    [Google Scholar]
  108. OsiB. KhoderM. Al-KinaniA.A. AlanyR.G. Pharmaceutical, biomedical and ophthalmic applications of biodegradable polymers (BDPs): Literature and patent review.Pharm. Dev. Technol.202227334135610.1080/10837450.2022.205506335297285
    [Google Scholar]
  109. SonajeK. ChuangE.Y. LinK.J. YenT.C. SuF.Y. TsengM.T. SungH.W. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: Microscopic, ultrastructural, and computed-tomographic observations.Mol. Pharm.2012951271127910.1021/mp200572t22462641
    [Google Scholar]
  110. MohammedM. SyedaJ. WasanK. WasanE. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery.Pharmaceutics2017945310.3390/pharmaceutics904005329156634
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673366619250113103213
Loading
/content/journals/cmc/10.2174/0109298673366619250113103213
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test