Skip to content
2000
Volume 32, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Sarcopenia, an aseptic chronic inflammatory disease, is a complex and debilitating disease characterized by the progressive degeneration of skeletal muscle. PANoptosis, a novel proinflammatory programmed cell death pathway, has been linked to various diseases. However, the precise role of PANoptosis-related features in sarcopenia remains uncertain.

Methods

According to the intersection of differentially expressed genes (DEGs) in the sarcopenia dataset GSE167186 and the PANoptosis gene set, we classified patients into PANoptosis-related subtypes (PANRS) using consensus clustering. The DEGs of PANRS were intersected with weighted gene co-expression network analysis (WGCNA). Protein-protein interaction network and cytoHubba algorithms were employed to further identify potential genes related to PANoptosis. The most characteristic genes were selected using LASSO regression and validated by ROC curve analysis, followed by relevant immune infiltration analysis. Additionally, small-molecule drug screening was performed using Cmap. The relative expression levels of hub genes in sarcopenia were confirmed by PCR. Finally, single-cell analysis and GSEA were used to examine the distribution and function of hub genes.

Results

Thirty-five candidate genes were identified through WGCNA and PANRS. Machine learning and ROC curve analysis revealed three core genes: , , and , all of which were up-regulated in patients with sarcopenia (<0.01). Immune infiltration analysis indicated that these three diagnostic genes were linked to the activation of NK cells and macrophages. Single-cell analysis demonstrated that was mainly localized in fibroblasts, while and exhibited a uniform distribution. Enrichment analysis indicated that the three hub genes were predominantly associated with the inhibition of energy metabolism.

Conclusion

In this study, the hub genes , , and associated with PANoptosis in sarcopenia were successfully identified through a combination of bioinformatics and experimental verification methods. This establishes a foundation for new candidate diagnostic and therapeutic targets for sarcopenia.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673341863241210112605
2025-01-20
2025-11-01
Loading full text...

Full text loading...

References

  1. DamlujiA.A. AlfaraidhyM. AlHajriN. RohantN.N. KumarM. Al MaloufC. BahrainyS. Ji KwakM. BatchelorW.B. FormanD.E. RichM.W. KirkpatrickJ. KrishnaswamiA. AlexanderK.P. GerstenblithG. CawthonP. deFilippiC.R. GoyalP. Sarcopenia and cardiovascular diseases.Circulation2023147201534155310.1161/CIRCULATIONAHA.123.06407137186680
    [Google Scholar]
  2. SayerA.A. Cruz-JentoftA. Sarcopenia definition, diagnosis and treatment: Consensus is growing.Age Ageing20225110afac22010.1093/ageing/afac22036273495
    [Google Scholar]
  3. Cruz-JentoftA.J. SayerA.A. Sarcopenia.Lancet2019393101912636264610.1016/S0140‑6736(19)31138‑931171417
    [Google Scholar]
  4. GielenE. DupontJ. DejaegerM. LaurentM.R. Sarcopenia, osteoporosis and frailty.Metabolism202314515563810.1016/j.metabol.2023.15563837348597
    [Google Scholar]
  5. SakumaK. AoiW. YamaguchiA. Molecular mechanism of sarcopenia and cachexia: Recent research advances.Pflugers Arch.20174695-657359110.1007/s00424‑016‑1933‑328101649
    [Google Scholar]
  6. CohenS. NathanJ.A. GoldbergA.L. Muscle wasting in disease: Molecular mechanisms and promising therapies.Nat. Rev. Drug Discov.2015141587410.1038/nrd446725549588
    [Google Scholar]
  7. GuoM. YaoJ. LiJ. ZhangJ. WangD. ZuoH. ZhangY. XuB. ZhongY. ShenF. LuJ. DingS. HuC. XuL. XiaoJ. MaX. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction.J. Cachexia Sarcopenia Muscle202314139140510.1002/jcsm.1314136510115
    [Google Scholar]
  8. ChenH. XiongR. ChengJ. YeJ. QiuY. HuangS. LiM. LiuZ. PangJ. ZhangX. GuoS. LiH. ZhuH. Effects and mechanisms of polyunsaturated fatty acids on age-related musculoskeletal diseases: Sarcopenia, osteoporosis, and osteoarthritis-A narrative review.Nutrients20241618313010.3390/nu1618313039339730
    [Google Scholar]
  9. YangL. WangM. MoL. YangY. CuiY. WuY. The relationship between sarcopenia and related bioindicators and changes after intensive lifestyle intervention in elderly East-China populations.BMC Musculoskelet. Disord.202425170410.1186/s12891‑024‑07835‑x39227842
    [Google Scholar]
  10. YiX. LiJ. ZhengX. XuH. LiaoD. ZhangT. WeiQ. LiH. PengJ. AiJ. Construction of PANoptosis signature: Novel target discovery for prostate cancer immunotherapy.Mol. Ther. Nucleic Acids20233337639010.1016/j.omtn.2023.07.01037547288
    [Google Scholar]
  11. JiangS. MaF. LouJ. LiJ. ShangX. LiY. WuJ. XuS. Naringenin reduces oxidative stress and necroptosis, apoptosis, and pyroptosis in random-pattern skin flaps by enhancing autophagy.Eur. J. Pharmacol.202497017645510.1016/j.ejphar.2024.17645538423240
    [Google Scholar]
  12. Asoudeh-FardA. SalehiM. IlghariD. ParsaeiA. HeydarianP. PiriH. Isolated Lactobacillus fermentum Ab.RS22 from traditional dairy products inhibits HeLa cervical cancer cell proliferation and modulates apoptosis by the PTEN-Akt pathway.Iran. J. Basic Med. Sci.202427444745210.22038/ijbms.2023.72825.1584638419886
    [Google Scholar]
  13. SunF. LiaoM. TaoZ. HuR. QinJ. TaoW. LiuW. WangY. PiG. LeiJ. BaoW. DongZ. Identification of PANoptosis-related predictors for prognosis and tumor microenvironment by multiomics analysis in glioma.J. Cancer20241592486250410.7150/jca.9420038577605
    [Google Scholar]
  14. ZhaoQ. YeY. ZhangQ. WuY. WangG. GuiZ. ZhangM. PANoptosis-related long non-coding RNA signature to predict the prognosis and immune landscapes of pancreatic adenocarcinoma.Biochem. Biophys. Rep.20243710160010.1016/j.bbrep.2023.10160038371527
    [Google Scholar]
  15. LiuZ. SunL. PengX. ZhuJ. WuC. ZhuW. HuangC. ZhuZ. PANoptosis subtypes predict prognosis and immune efficacy in gastric cancer.Apoptosis2024295-679981510.1007/s10495‑023‑01931‑438347337
    [Google Scholar]
  16. ChenH. XieX. XiaoH. LiangW. LinZ.J. LinB. LinK.Y. ChenC. GuoY. A pilot study about the role of PANoptosis-Based genes in atherosclerosis development.J. Inflamm. Res.2023166283629910.2147/JIR.S44226038149113
    [Google Scholar]
  17. WangJ. ChenS. ChenL. ZhouD. Data-driven analysis that integrates bioinformatics and machine learning uncovers PANoptosis-related diagnostic genes in early pediatric septic shock.Heliyon20241018e3785310.1016/j.heliyon.2024.e3785339315170
    [Google Scholar]
  18. XuJ. ZhuM. LuoP. GongY. Machine learning screening and validation of PANoptosis-Related gene signatures in sepsis.J. Inflamm. Res.2024174765478010.2147/JIR.S46180939051056
    [Google Scholar]
  19. SongY. LouB. WangH. ZhangG. XiaY. BanR. ZhaoX. SunH. WangJ. LinJ. GuoT. ZhouJ. XiaZ. Screening and validation of atherosclerosis PAN-apoptotic immune-related genes based on single-cell sequencing.Front. Immunol.202415129729810.3389/fimmu.2024.129729838736872
    [Google Scholar]
  20. ShiR. LiangR. WangF. WangL. ZidaiW. ZhangJ. MinL. DuX. SunS. XiaoC. LiC. LiangX. ChenA.F. YangW. Identification and experimental validation of PYCARD as a crucial PANoptosis-related gene for immune response and inflammation in COPD.Apoptosis20242911-122091210710.1007/s10495‑024‑01961‑638652339
    [Google Scholar]
  21. CailleauxP.E. DéchelotteP. CoëffierM. Novel dietary strategies to manage sarcopenia.Curr. Opin. Clin. Nutr. Metab. Care202427323424310.1097/MCO.000000000000102338391396
    [Google Scholar]
  22. UtsumiM. InagakiM. KitadaK. TokunagaN. YunokiK. SakuraiY. OkabayashiH. HamanoR. MiyasouH. TsunemitsuY. OtsukaS. Predictive values of sarcopenia and systemic inflammation-based markers in advanced hepatocellular carcinoma after hepatectomy.Asian J. Surg.20244773039304710.1016/j.asjsur.2024.02.00438388270
    [Google Scholar]
  23. MunekawaC. OkamuraT. MajimaS. RiverB. KawaiS. KobayashiA. NakajimaH. KitagawaN. OkadaH. SenmaruT. UshigomeE. NakanishiN. HamaguchiM. FukuiM. Daidzein inhibits muscle atrophy by suppressing inflammatory cytokine- and muscle atrophy-related gene expression.Nutrients20241618308410.3390/nu1618308439339684
    [Google Scholar]
  24. ChenZ. SunJ. ShiT. SongC. WuC. WuZ. LinJ. Causal roles of circulating cytokines in sarcopenia-related traits: A Mendelian randomization study.Front. Endocrinol.202415137098510.3389/fendo.2024.137098539345889
    [Google Scholar]
  25. XueD. LiN. YangJ. MenK. LiL. JiangH. ZhaoX. ZhangS. Sarcopenia predicts immune-related adverse events due to anti-PD-1/PD-L1 therapy in patients with advanced lung cancer.Front. Oncol.202414145002010.3389/fonc.2024.145002039376979
    [Google Scholar]
  26. YangL. LiuD. JiangS. LiH. ChenL. WuY. EssienA.E. OpokuM. NaranmandakhS. LiuS. RuQ. LiY. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets.Biomed. Pharmacother.202417711691710.1016/j.biopha.2024.11691738908209
    [Google Scholar]
  27. WuJ. LinS. ChenW. LianG. WuW. ChenA. SagorM.I.H. LuoL. WangH. XieL. TNF-α contributes to sarcopenia through caspase-8/caspase-3/GSDME-mediated pyroptosis.Cell Death Discov.2023917610.1038/s41420‑023‑01365‑636823174
    [Google Scholar]
  28. MarzettiE. CalvaniR. BernabeiR. LeeuwenburghC. Apoptosis in skeletal myocytes: A potential target for interventions against sarcopenia and physical frailty - A mini-review.Gerontology20125829910610.1159/00033006421952604
    [Google Scholar]
  29. TowerJ. Programmed cell death in aging.Ageing Res. Rev.201523A9010010.1016/j.arr.2015.04.002
    [Google Scholar]
  30. YanL. FanE. TanB. Characteristics of ovarian cancer immune cell invasion and bioinformatics to predict the effect of immunotherapy.Horm. Metab. Res.202456319720510.1055/a‑2231‑847538242159
    [Google Scholar]
  31. DengZ. LiuJ. YuY.V. JinY.N. Machine learning-based identification of an immunotherapy-related signature to enhance outcomes and immunotherapy responses in melanoma.Front. Immunol.202415145110310.3389/fimmu.2024.145110339355255
    [Google Scholar]
  32. GaoX. SuY. ShanS. QianW. ZhangZ. Identification of immune-related hub genes in spinal cord injury.Eur. J. Med. Res.202429148310.1186/s40001‑024‑02075‑039367463
    [Google Scholar]
  33. ZhaoH. TangN. XuL. LiJ. PiJ. ChuQ. Bioinformatics-based analysis and verification of chromatin regulators and the mechanism of immune infiltration associated with myocardial infarction.Curr. Med. Chem.202532118820910.2174/010929867326508923111705434839354722
    [Google Scholar]
  34. ChenL.K. WooJ. AssantachaiP. AuyeungT.W. ChouM.Y. IijimaK. JangH.C. KangL. KimM. KimS. KojimaT. KuzuyaM. LeeJ.S.W. LeeS.Y. LeeW.J. LeeY. LiangC.K. LimJ.Y. LimW.S. PengL.N. SugimotoK. TanakaT. WonC.W. YamadaM. ZhangT. AkishitaM. AraiH. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment.J. Am. Med. Dir. Assoc.2020213300307.e210.1016/j.jamda.2019.12.01232033882
    [Google Scholar]
  35. WuZ. YuW. LuoJ. ShenG. CuiZ. NiW. WangH. Comprehensive transcriptomic analysis unveils macrophage-associated genes for establishing an abdominal aortic aneurysm diagnostic model and molecular therapeutic framework.Eur. J. Med. Res.202429132310.1186/s40001‑024‑01900‑w38867262
    [Google Scholar]
  36. SongJ. XuZ. FanQ. SunY. LinX. The PANoptosis-related signature indicates the prognosis and tumor immune infiltration features of gliomas.Front. Mol. Neurosci.202316119871310.3389/fnmol.2023.119871337501725
    [Google Scholar]
  37. PanL. XieW. FuX. LuW. JinH. LaiJ. ZhangA. YuY. LiY. XiaoW. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines.Exp. Gerontol.202115411154410.1016/j.exger.2021.11154434478826
    [Google Scholar]
  38. PundirP. LiuR. VasavdaC. SerhanN. LimjunyawongN. YeeR. ZhanY. DongX. WuX. ZhangY. SnyderS.H. GaudenzioN. VidalJ.E. DongX. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity.Cell Host Microbe2019261114122.e810.1016/j.chom.2019.06.00331278040
    [Google Scholar]
  39. De SpiegeleerA. DescampsA. WynendaeleE. NaumovskiP. CrombezL. PlanasM. FeliuL. KnappeD. MoulyV. BigotA. BielzaR. HoffmannR. Van Den NoortgateN. ElewautD. De SpiegeleerB. Streptococcal quorum sensing peptide CSP-7 contributes to muscle inflammation and wasting.Biochim. Biophys. Acta Mol. Basis Dis.20241870416709410.1016/j.bbadis.2024.16709438428683
    [Google Scholar]
  40. GroenenA.G. MatveyenkoA. MatienzoN. HalmosB. ZhangH. WesterterpM. Reyes-SofferG. Apolipoprotein(a) production and clearance are associated with plasma IL-6 and IL-18 levels, dependent on ethnicity.Atherosclerosis202439111747410.1016/j.atherosclerosis.2024.11747438428286
    [Google Scholar]
  41. GengS. LiuS.B. HeW. PanX. SunY. XueT. HanS. LouJ. ChangY. ZhengJ. ShiX. LiY. SongY.H. Deletion of TECRL promotes skeletal muscle repair by up-regulating EGR2.Proc. Natl. Acad. Sci. USA202412121e231749512110.1073/pnas.231749512138753506
    [Google Scholar]
  42. LiS.Y. LuZ.H. LeungJ.C.S. KwokT.C.Y. Association of dietary protein intake, inflammation with muscle mass, physical performance and incident sarcopenia in Chinese community-dwelling older adults.J. Nutr. Health Aging202428410016310.1016/j.jnha.2024.10016338350300
    [Google Scholar]
  43. OcanseyD.K.W. QianF. CaiP. OcanseyS. AmoahS. QianY. MaoF. Current evidence and therapeutic implication of PANoptosis in cancer.Theranostics202414264066110.7150/thno.9181438169587
    [Google Scholar]
  44. ChenY. ShenJ. LingC. LiangZ. HuangS. LinW. QinY. MengL. LuoY. Exploring the role of CD8+ T cells in clear renal cell carcinoma metastasis.FEBS Open Bio20241471205121710.1002/2211‑5463.1381938872260
    [Google Scholar]
  45. OhS. LeeJ. OhJ. YuG. RyuH. KimD. LeeS. Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis.Cell. Mol. Immunol.202320121513152610.1038/s41423‑023‑01107‑938008850
    [Google Scholar]
  46. YinP. ChenM. RaoM. LinY. ZhangM. XuR. HuX. ChenR. ChaiW. HuangX. YuH. YaoY. ZhaoY. LiY. ZhangL. TangP. Deciphering immune landscape remodeling unravels the underlying mechanism for synchronized muscle and bone aging.Adv. Sci. (Weinh.)2024115230408410.1002/advs.20230408438088531
    [Google Scholar]
  47. QiK. DouY. LiC. LiuY. SongC. LiX. WangK. QiaoR. LiX. YangF. HanX. CircGUCY2C regulates cofilin 1 by sponging miR-425-3p to promote the proliferation of porcine skeletal muscle satellite cells.Arch. Tierzucht202366428529810.5194/aab‑66‑285‑202338039333
    [Google Scholar]
  48. BoscoM.C. Macrophage polarization: Reaching across the aisle?J. Allergy Clin. Immunol.201914341348135010.1016/j.jaci.2018.12.99530639344
    [Google Scholar]
  49. ShenZ.L. ChenW.H. LiuZ. YuD.Y. ChenW.Z. ZangW.F. ZhangP. YanX.L. YuZ. A novel insight into the key gene signature associated with the immune landscape in the progression of sarcopenia.Exp. Gerontol.202317911224410.1016/j.exger.2023.11224437343810
    [Google Scholar]
  50. EnomotoY. MatsushimaS. ShibataK. AoshimaY. YagiH. MeguroS. KawasakiH. KosugiI. FujisawaT. EnomotoN. InuiN. NakamuraY. SudaT. IwashitaT. LTBP2 is secreted from lung myofibroblasts and is a potential biomarker for idiopathic pulmonary fibrosis.Clin. Sci.2018132141565158010.1042/CS2018043530006483
    [Google Scholar]
  51. WangM. WangM. ZhaoJ. XuH. XiY. YangH. Dengzhan Shengmai capsule attenuates cardiac fibrosis in post-myocardial infarction rats by regulating LTBP2 and TGF-β1/Smad3 pathway.Phytomedicine202311615484910.1016/j.phymed.2023.15484937163903
    [Google Scholar]
  52. MaZ. HuX. DingH.F. ZhangM. HuoY. DongZ. Single-nucleus transcriptional profiling of chronic kidney disease after cisplatin nephrotoxicity.Am. J. Pathol.2022192461362810.1016/j.ajpath.2021.12.01235092726
    [Google Scholar]
  53. PangX.F. LinX. DuJ.J. ZengD.Y. LTBP2 knockdown by siRNA reverses myocardial oxidative stress injury, fibrosis and remodelling during dilated cardiomyopathy.Acta Physiol.20202283e1337710.1111/apha.1337731512380
    [Google Scholar]
  54. HenrotP. BlervaqueL. DupinI. ZysmanM. EstevesP. GouziF. HayotM. PomièsP. BergerP. Cellular interplay in skeletal muscle regeneration and wasting: Insights from animal models.J. Cachexia Sarcopenia Muscle202314274575710.1002/jcsm.1310336811134
    [Google Scholar]
  55. LiangX. ZhangL. JiQ. WangB. WeiD. ChengD. miR-421 promotes apoptosis and suppresses metastasis of osteosarcoma cells via targeting LTBP2.J. Cell. Biochem.20191207109781098710.1002/jcb.2814430924175
    [Google Scholar]
  56. WangD. ZhangY. CuiL. YangQ. WangJ. Elevated latent transforming growth factor beta binding protein 2 in endometriosis promotes endometrial stromal cell invasion and proliferation via the NF-κB signaling pathway.Mol. Cell. Endocrinol.202255011164710.1016/j.mce.2022.11164735429597
    [Google Scholar]
  57. ZhangL. TanJ. LiuY. LuoM. Curcumin relieves arecoline-induced oral submucous fibrosis via inhibiting the LTBP2/NF-κB axis.Oral Dis.20243042314232410.1111/odi.1465637382472
    [Google Scholar]
  58. ChoiY. LeeY. KimJ.S. ZhangP. KimJ. USP39-mediated non-proteolytic control of ETS2 suppresses nuclear localization and activity.Biomolecules20231310147510.3390/biom1310147537892157
    [Google Scholar]
  59. Vázquez-CabreraG. ŠkandíkM. RoncierN. Real OualitF. Cruz De Los SantosM. BaleviciuteA. CherayM. JosephB. ID2-ETS2 axis regulates the transcriptional acquisition of pro-tumoral microglia phenotype in glioma.Cell Death Dis.202415751210.1038/s41419‑024‑06903‑339019900
    [Google Scholar]
  60. StankeyC.T. BourgesC. HaagL.M. Turner-StokesT. PiedadeA.P. Palmer-JonesC. PapaI. Silva dos SantosM. ZhangQ. CameronA.J. LegriniA. ZhangT. WoodC.S. NewF.N. RandzavolaL.O. SpeidelL. BrownA.C. HallA. SaffiotiF. ParkesE.C. EdwardsW. DireskeneliH. GraysonP.C. JiangL. MerkelP.A. Saruhan-DireskeneliG. SawalhaA.H. TombettiE. QuagliaA. ThorburnD. KnightJ.C. RochfordA.P. MurrayC.D. DivakarP. GreenM. NyeE. MacRaeJ.I. JamiesonN.B. SkoglundP. CaderM.Z. WallaceC. ThomasD.C. LeeJ.C. A disease-associated gene desert directs macrophage inflammation through ETS2.Nature2024630801644745610.1038/s41586‑024‑07501‑138839969
    [Google Scholar]
  61. Bou SleimanM. JhaP. HoutkooperR. WilliamsR.W. WangX. AuwerxJ. The gene-regulatory footprint of aging highlights conserved central regulators.Cell Rep.2020321310820310.1016/j.celrep.2020.10820332997995
    [Google Scholar]
  62. ZhangQ. LeiX. WangF. HeX. LiuL. HouY. LiuY. JinF. ChenC. LiB. ERK1-mediated immunomodulation of mesenchymal stem cells ameliorates inflammatory disorders.iScience2023261010786810.1016/j.isci.2023.10786837790278
    [Google Scholar]
  63. MaX. JiangZ. LiN. JiangW. GaoP. YangM. YuX. WangG. ZhangY. ETS2 suppresses inflammatory cytokines through MAPK/NF-κB signaling and directly binds to the IL-6 promoter in macrophages.Aging20191122106101062510.18632/aging.10248031785145
    [Google Scholar]
  64. ChenS. ZhuX. OuW. KangL. SituJ. LiaoZ. HuangL. QiW. NiS. ETS2 overexpression ameliorates cartilage injury in osteoarthritis by the ETS2/miR-155/STAT1/DNMT1 feedback loop pathway.Biochim. Biophys. Acta. Gene Regul. Mech.20231866419496510.1016/j.bbagrm.2023.19496537524226
    [Google Scholar]
  65. ParkE.J. KimM.J. LeeW. ParkS.Y. ETS2 is involved in transcriptional regulation of C1qTNF-related protein 5 in muscle cells.Mol. Biol. Rep.201239109445945110.1007/s11033‑012‑1809‑322740135
    [Google Scholar]
  66. XuF. SunH. FangR. ZhangL. ShiH. WangX. FuX. LiX. ShiX. WuY. YeK. ZhangW. YeL. The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth.Acta Pharmacol. Sin.202243242944510.1038/s41401‑021‑00631‑633824459
    [Google Scholar]
  67. LiuX. ZhangC. ZhangZ. ZhangZ. JiW. CaoS. CaiX. LeiD. PanX. E26 transformation-specific transcription factor ETS2 as an oncogene promotes the progression of hypopharyngeal cancer.Cancer Biother. Radiopharm.201732932733410.1089/cbr.2017.229629111780
    [Google Scholar]
  68. ShengK. WuY. LinH. FangM. XueC. LinX. LinX. Transcriptional regulation of siglec-15 by ETS-1 and ETS-2 in hepatocellular carcinoma cells.Int. J. Mol. Sci.202324179210.3390/ijms2401079236614238
    [Google Scholar]
  69. KleinR.H. KnoepflerP.S. Knockout tales: The versatile roles of histone H3.3 in development and disease.Epigenetics Chromatin20231613810.1186/s13072‑023‑00512‑837814296
    [Google Scholar]
  70. AyoubiH.A. MahjoubiF. MirzaeiR. Investigation of the human H3.3B (H3F3B) gene expression as a novel marker in patients with colorectal cancer.J. Gastrointest. Oncol.201781646910.21037/jgo.2016.12.1228280610
    [Google Scholar]
  71. PengX. WeiF. HuX. Long noncoding RNA DLGAP1-AS1 promotes cell proliferation in hepatocellular carcinoma via sequestering miR-486-5p.J. Cell. Biochem.202012121953196210.1002/jcb.2943031633236
    [Google Scholar]
  72. HauserB. ZhaoY. PangX. LingZ. MyersE. WangP. CalifanoJ. GuX. Functions of MiRNA-128 on the regulation of head and neck squamous cell carcinoma growth and apoptosis.PLoS One2015103e011632110.1371/journal.pone.011632125764126
    [Google Scholar]
  73. ZhangX. CheY. MaoL. LiD. DengJ. GuoY. ZhaoQ. ZhangX. WangL. GaoX. ChenY. ZhangT. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation.Genomics2023115511068510.1016/j.ygeno.2023.11068537454936
    [Google Scholar]
  74. JiangH. PangH. WuP. CaoZ. LiZ. YangX. LncRNA SNHG5 promotes chondrocyte proliferation and inhibits apoptosis in osteoarthritis by regulating miR-10a-5p/H3F3B axis.Connect. Tissue Res.202162660561410.1080/03008207.2020.182570132967481
    [Google Scholar]
  75. LiY. DongB. Exploring liquid-liquid phase separation-related diagnostic biomarkers in osteoarthritis based on machine learning algorithms and experiment.Immunobiology2024229515282510.1016/j.imbio.2024.15282538997894
    [Google Scholar]
  76. SuJ. EkmanC. OskolkovN. LahtiL. StrömK. BrazmaA. GroopL. RungJ. HanssonO. A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging.Skelet. Muscle2015513510.1186/s13395‑015‑0059‑126457177
    [Google Scholar]
  77. YamamotoY. TakahashiR. KineharaM. YanoK. KuramotoT. ShimamotoA. TaharaH. Downregulation of histone H3.3 induces p53-dependent cellular senescence in human diploid fibroblasts.Genes202415554310.3390/genes1505054338790171
    [Google Scholar]
  78. MarzettiE. LeeuwenburghC. Skeletal muscle apoptosis, sarcopenia and frailty at old age.Exp. Gerontol.200641121234123810.1016/j.exger.2006.08.01117052879
    [Google Scholar]
  79. García-PratL. Sousa-VictorP. Muñoz-CánovesP. Functional dysregulation of stem cells during aging: A focus on skeletal muscle stem cells.FEBS J.2013280174051406210.1111/febs.1222123452120
    [Google Scholar]
  80. LiC. YuK. Shyh-ChangN. LiG. JiangL. YuS. XuL. LiuR. GuoZ. XieH. LiR. YingJ. LiK. LiD. Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention.J. Cachexia Sarcopenia Muscle201910358660010.1002/jcsm.1241730969486
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673341863241210112605
Loading
/content/journals/cmc/10.2174/0109298673341863241210112605
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarker; drug prediction; machine learning; metabolism; PANoptosis; Sarcopenia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test