Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Boron-containing compounds (BCC) are attracting attention in drug design. Certain chemical features invite the exploration of efficacious interactions on known and potential drug targets for human use.

Objective

The objective of this study is to analyze the reported crystal structure studies to determine trends resulting from the inclusion of boron atoms in potential drugs.

Methods

Published data in the Protein Data Bank (PDB) with at least one BCC were analyzed; both ligands and targets were analyzed to describe the inferred or reported biological activity and the potential application as a drug in the treatment of human diseases.

Results

Data from the PDB indicated targets for certain infectious diseases and cancers; however, potential treatments may extend to many other human pathologies as a consequence of the careful analysis of BCCs with proteins. All classes of enzymes and receptors have been crystallized with BCCs as ligands with most complexes demonstrating interactions in the regions known as relevant to protein function.

Conclusion

The number of crystallized BCC-proteins complexes is increasing, and the variability of proteins expands the possibilities of medical applications. Currently, most systems are related to cancer growth and treatment, but deeper analysis may expand BCC utility and efficacy to many other chronic and degenerative diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673364996250507091821
2025-06-04
2025-11-01
Loading full text...

Full text loading...

References

  1. GramsR.J. SantosW.L. ScoreiI.R. Abad-GarcíaA. RosenblumC.A. BitaA. CerecettoH. ViñasC. Soriano-UrsúaM.A. The rise of boron-containing compounds: Advancements in synthesis, medicinal chemistry, and emerging pharmacology.Chem. Rev.202412452441251110.1021/acs.chemrev.3c00663 38382032
    [Google Scholar]
  2. DasB.C. NandwanaN.K. DasS. NandwanaV. ShareefM.A. DasY. SaitoM. WeissL.M. AlmaguelF. HosmaneN.S. EvansT. Boron chemicals in drug discovery and development: Synthesis and medicinal perspective.Molecules2022279261510.3390/molecules27092615 35565972
    [Google Scholar]
  3. MaveyraudL. MoureyL. Protein X-ray crystallography and drug discovery.Molecules2020255103010.3390/molecules25051030 32106588
    [Google Scholar]
  4. WuK. KarapetyanE. SchlossJ. VadgamaJ. WuY. Advancements in small molecule drug design: A structural perspective.Drug Discov. Today2023281010373010.1016/j.drudis.2023.103730 37536390
    [Google Scholar]
  5. BermanH.M. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235
    [Google Scholar]
  6. DiazD.B. YudinA.K. The versatility of boron in biological target engagement.Nat. Chem.20179873174210.1038/nchem.2814 28754930
    [Google Scholar]
  7. TulinskyA. BlevinsR.A. Structure of a tetrahedral transition state complex of alpha-chymotrypsin dimer at 1.8-A resolution.J. Biol. Chem.1987262167737774310.1016/S0021‑9258(18)47630‑2 3584139
    [Google Scholar]
  8. BoneR. ShenviA.B. KettnerC.A. AgardD.A. Serine protease mechanism: Structure of an inhibitory complex of. alpha.-lytic protease and a tightly bound peptide boronic acid.Biochemistry198726247609761410.1021/bi00398a012 3122831
    [Google Scholar]
  9. BoneR. SilenJ.L. AgardD.A. Structural plasticity broadens the specificity of an engineered protease.Nature1989339622119119510.1038/339191a0 2716847
    [Google Scholar]
  10. HilalB. EldemA. OzT. PehlivanM. PirimI. Boric acid affects cell proliferation, apoptosis, and oxidative stress in ALL cells.Biol. Trace Elem. Res.2024202836143622
    [Google Scholar]
  11. VosS. ParryR.J. BurnsM.R. de JerseyJ. MartinJ.L. Structures of free and complexed forms of Escherichia coli xanthine-guanine phosphoribosyltransferase 1 Edited by R.Huber. J. Mol. Biol.1998282487588910.1006/jmbi.1998.2051 9743633
    [Google Scholar]
  12. TransueT.R. KrahnJ.M. GabelS.A. DeRoseE.F. LondonR.E. X-ray and NMR characterization of covalent complexes of trypsin, borate, and alcohols.Biochemistry200443102829283910.1021/bi035782y 15005618
    [Google Scholar]
  13. Di PisaF. PozziC. BenvenutiM. DocquierJ.D. De LucaF. ManganiS. Boric acid and acetate anion binding to subclass B3 metallo-β-lactamase BJP-1 provides clues for mechanism of action and inhibitor design.Inorg. Chim. Acta201847033134110.1016/j.ica.2017.07.030
    [Google Scholar]
  14. BeniniS. RypniewskiW.R. WilsonK.S. ManganiS. CiurliS. Molecular details of urease inhibition by boric acid: Insights into the catalytic mechanism.J. Am. Chem. Soc.2004126123714371510.1021/ja049618p 15038715
    [Google Scholar]
  15. CozierG.E. LubbeL. SturrockE.D. AcharyaK.R. ACE-domain selectivity extends beyond direct interacting residues at the active site.Biochem. J.202047771241125910.1042/BCJ20200060 32195541
    [Google Scholar]
  16. ShenZ. RatiaK. CooperL. KongD. LeeH. KwonY. LiY. AlqarniS. HuangF. DubrovskyiO. RongL. ThatcherG.R.J. XiongR. Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding cooperativity.J. Med. Chem.20226542940295510.1021/acs.jmedchem.1c01307 34665619
    [Google Scholar]
  17. WangJ.X. VilbertA.C. CuiC. MirtsE.N. WilliamsL.H. KimW. Jessie ZhangY. LuY. Increasing reduction potentials of type 1 copper center and catalytic efficiency of small laccase from Streptomyces coelicolor through secondary coordination sphere mutations.Angew. Chem. Int. Ed.20236252e20231401910.1002/anie.202314019 37926680
    [Google Scholar]
  18. ChaudharyR. SharmaS. SharmaA. Insights into the inhibitory mechanisms of boric acid on serine hydrolases from crystal structure analysis.J. Enzyme Inhib. Med. Chem.202136344510.1080/14756366.2021.1889276
    [Google Scholar]
  19. PresterA. PerbandtM. GalchenkovaM. OberthuerD. WernerN. HenkelA. MarackeJ. YefanovO. HakanpääJ. PompidorG. MeyerJ. ChapmanH. AepfelbacherM. HinrichsW. RohdeH. BetzelC. Time-resolved crystallography of boric acid binding to the active site serine of the β-lactamase CTX-M-14 and subsequent 1,2-diol esterification.Commun. Chem.20247115210.1038/s42004‑024‑01236‑w 38969718
    [Google Scholar]
  20. TanakaM. YokoyamaT. SaitoH. NishimotoM. TsudaK. SottaN. ShigematsuH. ShirouzuM. IwasakiS. ItoT. FujiwaraT. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1.Nat. Chem. Biol.202420560561410.1038/s41589‑023‑01513‑0 38123656
    [Google Scholar]
  21. JainR. SinghN. PerbandtM. BetzelC. SharmaS. KaurP. SrinivasanA. SinghtT. Cystal structure of the complex of proteinase K with alanine boronic acid at 0.38A resolution.10.2210/pdb2PWA/pdb
    [Google Scholar]
  22. BakerS.J. DingC.Z. AkamaT. ZhangY.K. HernandezV. XiaY. Therapeutic potential of boron-containing compounds.Future Med. Chem.2009171275128810.4155/fmc.09.71 21426103
    [Google Scholar]
  23. SilvaM.P. SaraivaL. PintoM. SousaM.E. Boronic acids and their derivatives in medicinal chemistry: Synthesis and biological applications.Molecules20202518432310.3390/molecules25184323 32967170
    [Google Scholar]
  24. Cordova-ChávezR.I. Trujillo-FerraraJ.G. Padilla-MartínezI.I. González-EspinosaH. Abad-GarcíaA. Farfán-GarcíaE.D. Ortega-CamarilloC. Contreras-RamosA. Soriano-UrsúaM.A. One-step synthesis, crystallography, and acute toxicity of two boron–carbohydrate adducts that induce sedation in mice.Pharmaceuticals202417678110.3390/ph17060781 38931447
    [Google Scholar]
  25. ZhangX. LiuG. NingZ. XingG. Boronic acid-based chemical sensors for saccharides.Carbohydr. Res.201745212914810.1016/j.carres.2017.10.010 29096186
    [Google Scholar]
  26. WeberP.C. LeeS.L. LewandowskiF.A. SchadtM.C. ChangC.H. KettnerC.A. Kinetic and crystallographic studies of thrombin with Ac-(D)Phe-Pro-boroArg-OH and its lysine, amidine, homolysine, and ornithine analogs.Biochemistry199534113750375710.1021/bi00011a033 7893672
    [Google Scholar]
  27. LazarovaT.I. JinL. RynkiewiczM. GorgaJ.C. BibbinsF. MeyersH.V. BabineR. StricklerJ. Synthesis and in vitro biological evaluation of aryl boronic acids as potential inhibitors of factor XIa.Bioorg. Med. Chem. Lett.200616195022502710.1016/j.bmcl.2006.07.043 16876411
    [Google Scholar]
  28. DementievA. SilvaA. YeeC. LiZ. FlavinM.T. ShamH. PartridgeJ.R. Structures of human plasma β–factor XIIa cocrystallized with potent inhibitors.Blood Adv.20182554955810.1182/bloodadvances.2018016337 29519898
    [Google Scholar]
  29. Di CostanzoL. SabioG. MoraA. RodriguezP.C. OchoaA.C. CentenoF. ChristiansonD.W. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response.Proc. Natl. Acad. Sci. USA200510237130581306310.1073/pnas.0504027102 16141327
    [Google Scholar]
  30. TondiD. CalòS. ShoichetB.K. CostiM.P. Structural study of phenyl boronic acid derivatives as AmpC β-lactamase inhibitors.Bioorg. Med. Chem. Lett.201020113416341910.1016/j.bmcl.2010.04.007 20452208
    [Google Scholar]
  31. DzhekievaL. RocaboyM. KerffF. CharlierP. SauvageE. PrattR.F. Crystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: Interpretation of a transition state analogue in terms of catalytic mechanism.Biochemistry201049306411641910.1021/bi100757c 20608745
    [Google Scholar]
  32. WoonE.C.Y. ZervosenA. SauvageE. SimmonsK.J. ŽivecM. InglisS.R. FishwickC.W.G. GobecS. CharlierP. LuxenA. SchofieldC.J. Structure guided development of potent reversibly binding penicillin binding protein inhibitors.ACS Med. Chem. Lett.20112321922310.1021/ml100260x 24900305
    [Google Scholar]
  33. KeW. BethelC.R. Papp-WallaceK.M. PagadalaS.R.R. NottinghamM. FernandezD. BuynakJ.D. BonomoR.A. van den AkkerF. Crystal structures of KPC-2 β-lactamase in complex with 3-nitrophenyl boronic acid and the penam sulfone PSR-3-226.Antimicrob. Agents Chemother.20125652713271810.1128/AAC.06099‑11 22330909
    [Google Scholar]
  34. NguyenN.Q. KrishnanN.P. RojasL.J. PratiF. CaselliE. RomagnoliC. BonomoR.A. van den AkkerF. Crystal structures of KPC-2 and SHV-1 β-lactamases in complex with the boronic acid transition state analog S02030.Antimicrob. Agents Chemother.20166031760176610.1128/AAC.02643‑15 26729491
    [Google Scholar]
  35. PerbandtM. WernerN. PresterA. RohdeH. AepfelbacherM. HinrichsW. BetzelC. Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors.Sci. Rep.2022121551010.1038/s41598‑022‑09392‑6 35365689
    [Google Scholar]
  36. AlsenaniT.A. RodríguezM.M. GhiglioneB. TaracilaM.A. MojicaM.F. RojasL.J. HujerA.M. GutkindG. BethelC.R. RatherP.N. IntrovigneM.L. PratiF. CaselliE. PowerP. van den AkkerF. BonomoR.A. Boronic acid transition state inhibitors as potent inactivators of KPC and CTX-M β-lactamases: Biochemical and structural analyses.Antimicrob. Agents Chemother.2023671e00930e2210.1128/aac.00930‑22 36602311
    [Google Scholar]
  37. PowersR.A. JuneC.M. FernandoM.C. FishE.R. MaurerO.L. BaumannR.M. BeardsleyT.J. TaracilaM.A. RudinS.D. HujerK.M. HujerA.M. SantiN. VillamilV. IntrovigneM.L. PratiF. CaselliE. BonomoR.A. WallarB.J. Synthesis of a novel boronic acid transition state inhibitor, MB076: A heterocyclic triazole effectively inhibits Acinetobacter -derived cephalosporinase variants with an expanded-substrate spectrum.J. Med. Chem.202366138510852510.1021/acs.jmedchem.3c00144 37358467
    [Google Scholar]
  38. MackA.R. KumarV. TaracilaM.A. MojicaM.F. O’SheaM. SchinabeckW. SilverG. HujerA.M. Papp-WallaceK.M. ChenS. HaiderS. CaselliE. PratiF. van den AkkerF. BonomoR.A. Natural protein engineering in the Ω-loop: The role of Y221 in ceftazidime and ceftolozane resistance in Pseudomonas -derived cephalosporinase.Antimicrob. Agents Chemother.20236711e00791e2310.1128/aac.00791‑23 37850746
    [Google Scholar]
  39. YangS.W. PanJ. RootY. ScapinG. XiaoL. SuJ. Serendipitous discovery of aryl boronic acids as β-lactamase inhibitors.Bioorg. Med. Chem. Lett.202030212679510.1016/j.bmcl.2019.126795 31759850
    [Google Scholar]
  40. CaoT.P. YiH. DhanasinghI. GhoshS. ChoiJ.M. LeeK.H. RyuS. KimH.S. LeeS.H. Non-catalytic-region mutations conferring transition of class A β-Lactamases Into ESBLs.Front. Mol. Biosci.2020759899810.3389/fmolb.2020.598998 33335913
    [Google Scholar]
  41. SharmaA.N. GrandinettiL. JohnsonE.R. St MauriceM. BearneS.L. Potent inhibition of mandelate racemase by boronic acids: Boron as a mimic of a carbon acid center.Biochemistry202059333026303710.1021/acs.biochem.0c00478 32786399
    [Google Scholar]
  42. HeckerS.J. ReddyK.R. LomovskayaO. GriffithD.C. Rubio-AparicioD. NelsonK. TsivkovskiR. SunD. SabetM. TaraziZ. ParkinsonJ. TotrovM. BoyerS.H. GlinkaT.W. PembertonO.A. ChenY. DudleyM.N. Discovery of cyclic boronic Acid QPX7728, an ultrabroad-spectrum inhibitor of Serine and Metallo-β-lactamases.J. Med. Chem.202063147491750710.1021/acs.jmedchem.9b01976 32150407
    [Google Scholar]
  43. CaselliE. FiniF. IntrovigneM.L. StucchiM. TaracilaM.A. FishE.R. SmolenK.A. RatherP.N. PowersR.A. WallarB.J. BonomoR.A. PratiF. 1,2,3-Triazolylmethaneboronate: A structure activity relationship study of a Class of β-Lactamase inhibitors against Acinetobacter baumannii Cephalosporinase.ACS Infect. Dis.2020671965197510.1021/acsinfecdis.0c00254 32502340
    [Google Scholar]
  44. Alves FrançaB. FalkeS. RohdeH. BetzelC. Molecular insights into the dynamic modulation of bacterial ClpP function and oligomerization by peptidomimetic boronate compounds.Sci. Rep.2024141257210.1038/s41598‑024‑51787‑0 38296985
    [Google Scholar]
  45. KurzS.G. HazraS. BethelC.R. RomagnoliC. CaselliE. PratiF. BlanchardJ.S. BonomoR.A. Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with novel boronic acid transition-state inhibitors (BATSIs).ACS Infect. Dis.20151623424210.1021/acsinfecdis.5b00003 27622739
    [Google Scholar]
  46. GuptaP. ThomasS.E. ZaidanS.A. PasillasM.A. Cory-WrightJ. Sebastián-PérezV. BurgessA. CattermoleE. MeghirC. AbellC. CoyneA.G. JacobsW.R. BlundellT.L. TiwariS. MendesV. A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis.Comput. Struct. Biotechnol. J.2021193491350610.1016/j.csbj.2021.06.006 34194673
    [Google Scholar]
  47. ThomasS.E. WhitehouseA.J. BrownK. BurbaudS. BelardinelliJ.M. SangenJ. LahiriR. LibardoM.D.J. GuptaP. MalhotraS. BoshoffH.I.M. JacksonM. AbellC. CoyneA.G. BlundellT.L. FlotoR.A. MendesV. Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification.Nucleic Acids Res.202048148099811210.1093/nar/gkaa539 32602532
    [Google Scholar]
  48. CendronL. QuotadamoA. MasoL. BellioP. MontanariM. CelenzaG. VenturelliA. CostiM.P. TondiD. X-ray crystallography deciphers the activity of broad-spectrum boronic Acid β-Lactamase inhibitors.ACS Med. Chem. Lett.201910465065510.1021/acsmedchemlett.8b00607 30996812
    [Google Scholar]
  49. HaiY. ChristiansonD.W. Crystal structures of Leishmania mexicana arginase complexed with α,α-disubstituted boronic amino-acid inhibitors.Acta Crystallogr. F Struct. Biol. Commun.201672430030610.1107/S2053230X16003630 27050264
    [Google Scholar]
  50. NagleA. BiggartA. BeC. SrinivasH. HeinA. CaridhaD. SciottiR.J. PybusB. Kreishman-DeitrickM. BursulayaB. LaiY.H. GaoM.Y. LiangF. MathisonC.J.N. LiuX. YehV. SmithJ. LerarioI. XieY. ChianelliD. GibneyM. BermanA. ChenY.L. JiricekJ. DavisL.C. LiuX. BallardJ. KhareS. EggimannF.K. LuneauA. GroesslT. ShapiroM. RichmondW. JohnsonK. RudewiczP.J. RaoS.P.S. ThompsonC. TuntlandT. SpraggonG. GlynneR.J. SupekF. WiesmannC. MolteniV. Discovery and characterization of clinical candidate LXE408 as a Kinetoplastid-selective proteasome inhibitor for the treatment of Leishmaniases.J. Med. Chem.20206319107731078110.1021/acs.jmedchem.0c00499 32667203
    [Google Scholar]
  51. DowlingD.P. IliesM. OlszewskiK.L. PortugalS. MotaM.M. LlinásM. ChristiansonD.W. Crystal structure of arginase from Plasmodium falciparum and implications for L-arginine depletion in malarial infection.Biochemistry201049265600560810.1021/bi100390z 20527960
    [Google Scholar]
  52. XieS.C. MetcalfeR.D. MizutaniH. PuhalovichT. HanssenE. MortonC.J. DuY. DogovskiC. HuangS.C. CiavarriJ. HalesP. GriffinR.J. CohenL.H. ChuangB.C. WittlinS. DeniI. YeoT. WardK.E. BarryD.C. LiuB. GillettD.L. Crespo-FernandezB.F. OttilieS. MittalN. ChurchyardA. FergusonD. AguiarA.C.C. GuidoR.V.C. BaumJ. HansonK.K. WinzelerE.A. GamoF.J. FidockD.A. BaudD. ParkerM.W. BrandS. DickL.R. GriffinM.D.W. GouldA.E. TilleyL. Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome.Proc. Natl. Acad. Sci. USA202111839e210721311810.1073/pnas.2107213118 34548400
    [Google Scholar]
  53. MaynardA. CrosbyR.M. EllisB. HamatakeR. HongZ. JohnsB.A. KahlerK.M. KobleC. LeiversA. LeiversM.R. MathisA. PeatA.J. PouliotJ.J. RobertsC.D. SamanoV. SchmidtR.M. SmithG.K. SpaltensteinA. StewartE.L. ThommesP. TurnerE.M. VoitenleitnerC. WalkerJ.T. WaittG. WeatherheadJ. WeaverK. WilliamsS. WrightL. XiongZ.Z. HaighD. ShotwellJ.B. Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent RNA polymerase.J. Med. Chem.20145751902191310.1021/jm400317w 23672667
    [Google Scholar]
  54. ChongP.Y. ShotwellJ.B. MillerJ. PriceD.J. MaynardA. VoitenleitnerC. MathisA. WilliamsS. PouliotJ.J. CreechK. WangF. FangJ. ZhangH. TaiV.W.F. TurnerE. KahlerK.M. CrosbyR. PeatA.J. Design of N-benzoxaborole benzofuran GSK8175-optimization of human pharmacokinetics inspired by metabolites of a failed clinical HCV inhibitor.J. Med. Chem.20196273254326710.1021/acs.jmedchem.8b01719 30763090
    [Google Scholar]
  55. GrahamB.J. WindsorI.W. RainesR.T. Inhibition of HIV-1 protease by a boronic acid with high oxidative stability.ACS Med. Chem. Lett.202314217117510.1021/acsmedchemlett.2c00464 36793428
    [Google Scholar]
  56. BraunN.J. HuberS. SchmackeL.C. HeineA. SteinmetzerT. Boroleucine‐derived covalent inhibitors of the ZIKV protease.ChemMedChem2023183e20220033610.1002/cmdc.202200336 36325810
    [Google Scholar]
  57. HollingsworthL.R. SharifH. GriswoldA.R. FontanaP. MintserisJ. DagbayK.B. PauloJ.A. GygiS.P. BachovchinD.A. WuH. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation.Nature2021592785677878310.1038/s41586‑021‑03350‑4 33731932
    [Google Scholar]
  58. SharifH. HollingsworthL.R. GriswoldA.R. HsiaoJ.C. WangQ. BachovchinD.A. WuH. Dipeptidyl peptidase 9 sets a threshold for CARD8 inflammasome formation by sequestering its active C-terminal fragment.Immunity202154713921404.e1010.1016/j.immuni.2021.04.024 34019797
    [Google Scholar]
  59. HausmannJ. KamtekarS. ChristodoulouE. DayJ.E. WuT. FulkersonZ. AlbersH.M.H.G. van MeeterenL.A. HoubenA.J.S. van ZeijlL. JansenS. AndriesM. HallT. PeggL.E. BensonT.E. KasiemM. HarlosK. KooiC.W.V. SmythS.S. OvaaH. BollenM. MorrisA.J. MoolenaarW.H. PerrakisA. Structural basis of substrate discrimination and integrin binding by autotaxin.Nat. Struct. Mol. Biol.201118219820410.1038/nsmb.1980 21240271
    [Google Scholar]
  60. SchraderJ. HennebergF. MataR.A. TittmannK. SchneiderT.R. StarkH. BourenkovG. ChariA. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design.Science2016353629959459810.1126/science.aaf8993 27493187
    [Google Scholar]
  61. HuberE.M. HeinemeyerW. de BruinG. OverkleeftH.S. GrollM. A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit β5i.EMBO J.201635232602261310.15252/embj.201695222 27789522
    [Google Scholar]
  62. ParamoreA. FrantzS. Bortezomib.Nat. Rev. Drug Discov.20032861161210.1038/nrd1159 12908468
    [Google Scholar]
  63. QuachD. TangG. AnantharajanJ. BaburajendranN. PoulsenA. WeeJ.L.K. RetnaP. LiR. LiuB. TeeD.H.Y. KwekP.Z. JoyJ.K. YangW.Q. ZhangC.J. FooK. KellerT.H. YaoS.Q. Strategic design of catalytic lysine‐targeting reversible covalent BCR‐ABL inhibitors**.Angew. Chem. Int. Ed.20216031171311713710.1002/anie.202105383 34008286
    [Google Scholar]
  64. ShinM. WatsonE.R. SongA.S. MindreboJ.T. NovickS.J. GriffinP.R. WisemanR.L. LanderG.C. Structures of the human LONP1 protease reveal regulatory steps involved in protease activation.Nat. Commun.2021121323910.1038/s41467‑021‑23495‑0 34050165
    [Google Scholar]
  65. KingsleyL.J. HeX. McNeillM. NelsonJ. NikulinV. MaZ. LuW. ZhouV.W. ManuiaM. KreuschA. GaoM.Y. WitmerD. VaillancourtM.T. LuM. GreenblattS. LeeC. VashishtA. BenderS. SpraggonG. MichellysP.Y. JiaY. HalingJ.R. LelaisG. Structure-based design of selective LONP1 inhibitors for probing in vitro biology.J. Med. Chem.20216484857486910.1021/acs.jmedchem.0c02152 33821636
    [Google Scholar]
  66. GustchinaA. LiM. AndrianovaA.G. KudzhaevA.M. LountosG.T. SekulaB. CherryS. TropeaJ.E. SmirnovI.V. WlodawerA. RotanovaT.V. Unique structural fold of LonBA protease from Bacillus subtilis, a member of a newly identified subfamily of lon proteases.Int. J. Mol. Sci.202223191142510.3390/ijms231911425 36232729
    [Google Scholar]
  67. SandersonM.P. Friese-HamimM. Walter-BauschG. BuschM. GausS. MusilD. RohdichF. ZanelliU. Downey-KopyscinskiS.L. MitsiadesC.S. SchadtO. KleinM. EsdarC. M3258 is a selective inhibitor of the immunoproteasome subunit LMP7 (β5i) delivering efficacy in multiple myeloma models.Mol. Cancer Ther.20212081378138710.1158/1535‑7163.MCT‑21‑0005 34045234
    [Google Scholar]
  68. AraiY. ShitamaH. YamagishiM. OnoS. KashimaA. HiraizumiM. TsudaN. KatayamaK. TanakaK. KodaY. KatoS. SakataK. NurekiO. MiyazakiH. Optimization of α-amido boronic acids via cryo-electron microscopy analysis: Discovery of a novel highly selective immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual inhibitor.Bioorg. Med. Chem.202410911779010.1016/j.bmc.2024.117790 38906067
    [Google Scholar]
  69. VolpeM.R. VelillaJ.A. Daniel-IvadM. YaoJ.J. StornettaA. VillaltaP.W. HuangH.C. BachovchinD.A. BalboS. GaudetR. BalskusE.P. A small molecule inhibitor prevents gut bacterial genotoxin production.Nat. Chem. Biol.202319215916710.1038/s41589‑022‑01147‑8 36253549
    [Google Scholar]
  70. DemetriadesM. LeungI.K.H. ChowdhuryR. ChanM.C. McDonoughM.A. YeohK.K. TianY.M. ClaridgeT.D.W. RatcliffeP.J. WoonE.C.Y. SchofieldC.J. Dynamic combinatorial chemistry employing boronic acids/boronate esters leads to potent oxygenase inhibitors.Angew. Chem. Int. Ed.201251276672667510.1002/anie.201202000 22639232
    [Google Scholar]
  71. RowleyA.M. YaoG. AndrewsL. BedermannA. BiddulphR. BinghamR. BradyJ.J. BuxtonR. CecconieT. CooperR. CsakaiA. GaoE.N. Grenier-DaviesM.C. LawlerM. LianY. MacinaJ. MacpheeC. MarcaurelleL. MartinJ. McCormickP. PindoriaR. RauchM. RocqueW. ShenY. ShewchukL.M. SquireM. StebbedsW. TearW. WangX. WardP. XiaoS. Discovery and SAR study of boronic acid-based selective PDE3B inhibitors from a novel DNA-encoded library.J. Med. Chem.20246732049206510.1021/acs.jmedchem.3c01562 38284310
    [Google Scholar]
  72. MüllerJ. KirschnerR.A. GeyerA. KlebeG. Conceptional design of self-assembling bisubstrate-like inhibitors of protein kinase a resulting in a boronic acid glutamate linkage.ACS Omega20194177578410.1021/acsomega.8b02364
    [Google Scholar]
  73. HarrisonS.T. PoslusneyM.S. MulhearnJ.J. ZhaoZ. KettN.R. SchubertJ.W. MelamedJ.Y. AllisonT.J. PatelS.B. SandersJ.M. SharmaS. SmithR.F. HallD.L. RobinsonR.G. SachsN.A. HutsonP.H. WolkenbergS.E. BarrowJ.C. Synthesis and evaluation of heterocyclic catechol mimics as inhibitors of Catechol-O-methyltransferase (COMT).ACS Med. Chem. Lett.20156331832310.1021/ml500502d 25815153
    [Google Scholar]
  74. RasheedS. HudaN. FisherS.Z. FalkeS. GulS. AhmadM.S. ChoudharyM.I. Identification, crystallization, and first X-ray structure analyses of phenyl boronic acid-based inhibitors of human carbonic anhydrase-II.Int. J. Biol. Macromol.2024267Pt 113126810.1016/j.ijbiomac.2024.131268 38580011
    [Google Scholar]
  75. SmithT.P. WindsorI.W. ForestK.T. RainesR.T. Stilbene boronic acids form a covalent bond with human transthyretin and inhibit its aggregation.J. Med. Chem.201760187820783410.1021/acs.jmedchem.7b00952 28920684
    [Google Scholar]
  76. SommerC.A. EichingerA. SkerraA. A tetrahedral boronic acid diester formed by an unnatural amino acid in the ligand pocket of an engineered lipocalin.ChemBioChem202021446947210.1002/cbic.201900405 31390134
    [Google Scholar]
  77. SunX. ChapinB.M. MetolaP. CollinsB. WangB. JamesT.D. AnslynE.V. The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids.Nat. Chem.201911976877810.1038/s41557‑019‑0314‑x 31444486
    [Google Scholar]
  78. EllisG.A. PalteM.J. RainesR.T. Boronate-mediated biologic delivery.J. Am. Chem. Soc.201213483631363410.1021/ja210719s 22303837
    [Google Scholar]
  79. SkordalakesE. ElgendyS. GoodwinC.A. GreenD. ScullyM.F. KakkarV.V. FreyssinetJ.M. DodsonG. DeadmanJ.J. Bifunctional peptide boronate inhibitors of thrombin: crystallographic analysis of inhibition enhanced by linkage to an exosite 1 binding peptide.Biochemistry19983741144201442710.1021/bi980225a 9772168
    [Google Scholar]
  80. NessS. MartinR. KindlerA.M. PaetzelM. GoldM. JensenS.E. JonesJ.B. StrynadkaN.C.J. Structure-based design guides the improved efficacy of deacylation transition state analogue inhibitors of TEM-1 beta-Lactamase.Biochemistry200039185312532110.1021/bi992505b 10820001
    [Google Scholar]
  81. HuG. LinG. WangM. DickL. XuR.M. NathanC. LiH. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate.Mol. Microbiol.20065951417142810.1111/j.1365‑2958.2005.05036.x 16468986
    [Google Scholar]
  82. Contreras-MartelC. AmorosoA. WoonE.C.Y. ZervosenA. InglisS. MartinsA. VerlaineO. RydzikA.M. JobV. LuxenA. JorisB. SchofieldC.J. DessenA. Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA).ACS Chem. Biol.20116994395110.1021/cb2001846 21732689
    [Google Scholar]
  83. HernandezV. CrépinT. PalenciaA. CusackS. AkamaT. BakerS.J. BuW. FengL. FreundY.R. LiuL. MeewanM. MohanM. MaoW. RockF.L. SextonH. SheoranA. ZhangY. ZhangY.K. ZhouY. NiemanJ.A. AnugulaM.R. KeramaneE.M. SavarirajK. ReddyD.S. SharmaR. SubediR. SinghR. O’LearyA. SimonN.L. De MarshP.L. MushtaqS. WarnerM. LivermoreD.M. AlleyM.R.K. PlattnerJ.J. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria.Antimicrob. Agents Chemother.20135731394140310.1128/AAC.02058‑12 23295920
    [Google Scholar]
  84. HuQ.H. LiuR.J. FangZ.P. ZhangJ. DingY.Y. TanM. WangM. PanW. ZhouH.C. WangE.D. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase.Sci. Rep.201331247510.1038/srep02475 23959225
    [Google Scholar]
  85. CahillS.T. CainR. WangD.Y. LohansC.T. WarehamD.W. OswinH.P. MohammedJ. SpencerJ. FishwickC.W.G. McDonoughM.A. SchofieldC.J. BremJ. Cyclic boronates inhibit all classes of β-Lactamases.Antimicrob. Agents Chemother.2017614e02260e1610.1128/AAC.02260‑16 28115348
    [Google Scholar]
  86. CalvopiñaK. HinchliffeP. BremJ. HeesomK.J. JohnsonS. CainR. LohansC.T. FishwickC.W.G. SchofieldC.J. SpencerJ. AvisonM.B. Structural/mechanistic insights into the efficacy of nonclassical β‐lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates.Mol. Microbiol.2017106349250410.1111/mmi.13831 28876489
    [Google Scholar]
  87. EdwardrajaS. EichingerA. TheobaldI. SommerC.A. ReichertA.J. SkerraA. Rational design of an anticalin-type sugar-binding protein using a genetically encoded boronate side chain.ACS Synth. Biol.20176122241224710.1021/acssynbio.7b00199 28937743
    [Google Scholar]
  88. TookeC.L. HinchliffeP. KrajncA. MulhollandA.J. BremJ. SchofieldC.J. SpencerJ. Cyclic boronates as versatile scaffolds for KPC-2 β-lactamase inhibition.RSC Medicinal Chemistry202011449149610.1039/C9MD00557A 33479650
    [Google Scholar]
  89. ParkovaA. LucicA. KrajncA. BremJ. CalvopiñaK. LangleyG.W. McDonoughM.A. TrapencierisP. SchofieldC.J. Broad spectrum β-Lactamase inhibition by a thioether substituted bicyclic boronate.ACS Infect. Dis.2020661398140410.1021/acsinfecdis.9b00330 31841636
    [Google Scholar]
  90. LangP.A. ParkovaA. LeissingT.M. CalvopiñaK. CainR. KrajncA. PanduwawalaT.D. PhilippeJ. FishwickC.W.G. TrapencierisP. PageM.G.P. SchofieldC.J. BremJ. Bicyclic boronates as potent inhibitors of AmpC, the class C β-Lactamase from Escherichia coli.Biomolecules202010689910.3390/biom10060899 32545682
    [Google Scholar]
  91. GandhiS. BakerR.P. ChoS. StanchevS. StrisovskyK. UrbanS. Designed parasite-selective rhomboid inhibitors block invasion and clear blood-stage malaria.Cell Chem. Biol.2020271114101424.e610.1016/j.chembiol.2020.08.011 32888502
    [Google Scholar]
  92. JuY. HeL. ZhouY. YangT. SunK. SongR. YangY. LiC. SangZ. BaoR. LuoY. Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo.J. Med. Chem.20206363104311910.1021/acs.jmedchem.9b01746 32031798
    [Google Scholar]
  93. PembertonO.A. TsivkovskiR. TotrovM. LomovskayaO. Structural BasisC.Y. Structural basis and binding kinetics of vaborbactam in class A β-Lactamase inhibition.Antimicrob. Agents Chemother.2020641010.1128/AAC.00398‑20 32778546
    [Google Scholar]
  94. NewmanH. KrajncA. BelliniD. EyermannC.J. BoyleG.A. PatersonN.G. McAuleyK.E. LesniakR. GangarM. von DelftF. BremJ. ChibaleK. SchofieldC.J. DowsonC.G. High-throughput crystallography reveals boron-containing inhibitors of a penicillin-binding protein with di- and tricovalent binding modes.J. Med. Chem.20216415113791139410.1021/acs.jmedchem.1c00717 34337941
    [Google Scholar]
  95. DouglasC.D. GrandinettiL. EastonN.M. KuehmO.P. HaydenJ.A. HamiltonM.C. St MauriceM. BearneS.L. Slow-onset, potent inhibition of mandelate racemase by 2-Formylphenylboronic Acid. An unexpected adduct clasps the catalytic machinery.Biochemistry2021602508251810.1021/acs.biochem.1c00374 34339165
    [Google Scholar]
  96. Raja ReddyK. TotrovM. LomovskayaO. GriffithD.C. TaraziZ. CliftonM.C. HeckerS.J. Broad-spectrum cyclic boronate β-lactamase inhibitors featuring an intramolecular prodrug for oral bioavailability.Bioorg. Med. Chem.20226211672210.1016/j.bmc.2022.116722 35358864
    [Google Scholar]
  97. NguyenV.T. BirhanuB.T. Miguel-RuanoV. KimC. BatuecasM. YangJ. El-ArabyA.M. Jiménez-FaracoE. SchroederV.A. AlbaA. RanaN. SaderS. ThomasC.A. FeltzerR. LeeM. FisherJ.F. HermosoJ.A. ChangM. MobasheryS. Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus.Nat. Chem. Biol.20241810.1038/s41589‑024‑01688‑0 39060390
    [Google Scholar]
  98. HoffmannG. LukarskaM. ClareR.H. MastersE.K.G. JohnstonK.L. FordL. TurnerJ.D. WardS.A. TaylorM.J. JensenM.R. PalenciaA. Targeting a microbiota Wolbachian aminoacyl-tRNA synthetase to block its pathogenic host.Sci. Adv.20241028eado145310.1126/sciadv.ado1453 38985862
    [Google Scholar]
  99. SeiradakeE. MaoW. HernandezV. BakerS.J. PlattnerJ.J. AlleyM.R.K. CusackS. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles.J. Mol. Biol.2009390219620710.1016/j.jmb.2009.04.073 19426743
    [Google Scholar]
  100. PalenciaA. CrépinT. VuM.T. LincecumT.L. MartinisS.A. CusackS. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.Nat. Struct. Mol. Biol.201219767768410.1038/nsmb.2317 22683997
    [Google Scholar]
  101. PalenciaA. LiuR.J. LukarskaM. GutJ. BougdourA. TouquetB. WangE.D. LiX. AlleyM.R.K. FreundY.R. RosenthalP.J. HakimiM.A. CusackS. Cryptosporidium and toxoplasma parasites are inhibited by a benzoxaborole targeting Leucyl-tRNA synthetase.Antimicrob. Agents Chemother.201660105817582710.1128/AAC.00873‑16 27431220
    [Google Scholar]
  102. LiX. ZhangY.K. LiuY. DingC.Z. LiQ. ZhouY. PlattnerJ.J. BakerS.J. QianX. FanD. LiaoL. NiZ.J. WhiteG.V. MordauntJ.E. LazaridesL.X. SlaterM.J. JarvestR.L. ThommesP. EllisM. EdgeC.M. HubbardJ.A. SomersD. RowlandP. NassauP. McDowellB. SkarzynskiT.J. KazmierskiW.M. GrimesR.M. WrightL.L. SmithG.K. ZouW. WrightJ. PennicottL.E. Synthesis and evaluation of novel α-amino cyclic boronates as inhibitors of HCV NS3 protease.Bioorg. Med. Chem. Lett.201020123550355610.1016/j.bmcl.2010.04.129 20493689
    [Google Scholar]
  103. AkamaT. DongC. VirtucioC. SullivanD. ZhouY. ZhangY.K. RockF. FreundY. LiuL. BuW. WuA. FanX.Q. JarnaginK. Linking phenotype to kinase: Identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors.J. Pharmacol. Exp. Ther.2013347361562510.1124/jpet.113.207662 24049062
    [Google Scholar]
  104. AlterioV. CadoniR. EspositoD. VulloD. FioreA.D. MontiS.M. CaporaleA. RuvoM. SechiM. DumyP. SupuranC.T. SimoneG.D. WinumJ.Y. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition.Chem. Commun.20165280119831198610.1039/C6CC06399C 27722534
    [Google Scholar]
  105. LangellaE. AlterioV. D’AmbrosioK. CadoniR. WinumJ.Y. SupuranC.T. MontiS.M. De SimoneG. Di FioreA. Exploring benzoxaborole derivatives as carbonic anhydrase inhibitors: A structural and computational analysis reveals their conformational variability as a tool to increase enzyme selectivity.J. Enzyme Inhib. Med. Chem.20193411498150510.1080/14756366.2019.1653291 31423863
    [Google Scholar]
  106. NocentiniA. BonardiA. BazzicalupiC. AlterioV. EspositoD. MontiS.M. SmietanaM. De SimoneG. SupuranC.T. GratteriP. WinumJ.Y. 6-Substituted triazolyl benzoxaboroles as selective carbonic anhydrase inhibitors: In silico design, synthesis, and X-ray crystallography.J. Med. Chem.202366128118812910.1021/acs.jmedchem.3c00433 37283561
    [Google Scholar]
  107. OteroR. SeoaneS. SigüeiroR. BelorusovaA.Y. MaestroM.A. Pérez-FernándezR. RochelN. MouriñoA. Carborane-based design of a potent vitamin D receptor agonist.Chem. Sci.2016721033103710.1039/C5SC03084F 28808527
    [Google Scholar]
  108. MaderP. PecinaA. CíglerP. LepšíkM. ŠíchaV. HobzaP. GrünerB. FanfrlíkJ. BryndaJ. ŘezáčováP. Carborane-based carbonic anhydrase inhibitors: Insight into CAII/CAIX specificity from a high-resolution crystal structure, modeling, and quantum chemical calculations.BioMed Res. Int.201420141910.1155/2014/389869 25309911
    [Google Scholar]
  109. DvořanováJ. KuglerM. HolubJ. ŠíchaV. DasV. NekvindaJ. El AnwarS. HavránekM. PospíšilováK. FábryM. KrálV. MedvedíkováM. MatějkováS. LiškováB. GurskáS. DžubákP. BryndaJ. HajdúchM. GrünerB. ŘezáčováP. Sulfonamido carboranes as highly selective inhibitors of cancer-specific carbonic anhydrase IX.Eur. J. Med. Chem.202020011246010.1016/j.ejmech.2020.112460 32505851
    [Google Scholar]
  110. NekvindaJ. KuglerM. HolubJ. El AnwarS. BryndaJ. PospíšilováK. RůžičkováZ. ŘezáčováP. GrünerB. Direct introduction of an alkylsulfonamido group on C‐sites of Isomeric Dicarba-closo-dodecaboranes: The influence of stereochemistry on inhibitory activity against the cancer‐associated carbonic anhydrase IX Isoenzyme.Chemistry20202669165411655310.1002/chem.202002809 32757220
    [Google Scholar]
  111. KuglerM. HolubJ. BryndaJ. PospíšilováK. AnwarS.E. BavolD. HavránekM. KrálV. FábryM. GrünerB. ŘezáčováP. The structural basis for the selectivity of sulfonamido dicarbaboranes toward cancer-associated carbonic anhydrase IX.J. Enzyme Inhib. Med. Chem.20203511800181010.1080/14756366.2020.1816996 32962427
    [Google Scholar]
  112. FanfrlíkJ. BryndaJ. KuglerM. LepšíkM. PospíšilováK. HolubJ. HnykD. NekvindaJ. GrünerB. ŘezáčováP.B–H. ⋯π and C–H⋯π interactions in protein–ligand complexes: Carbonic anhydrase II inhibition by carborane sulfonamides.Phys. Chem. Chem. Phys.20232531728173310.1039/D2CP04673C 36594655
    [Google Scholar]
  113. KumarV. van den AkkerF. Antimicrob Agents Chemother.J. Med. Chem.202367e0079123e007912310.1128/aac.00791‑23
    [Google Scholar]
  114. SigurdardóttirS. SilvaS.F. TiukovaI. AlalamH. KingR.D. GrøtliM. ErikssonL.A. SunnerhagenP. An automated positive selection screen in yeast provides support for boron-containing compounds as inhibitors of SARS-CoV-2 main protease.Microbiol. Spectr.20241210e01249e2410.1128/spectrum.01249‑24 39162260
    [Google Scholar]
  115. SongS. GaoP. SunL. KangD. KongstedJ. PoongavanamV. ZhanP. LiuX. Recent developments in the medicinal chemistry of single boron atom-containing compounds.Acta Pharm. Sin. B202111103035305910.1016/j.apsb.2021.01.010 34729302
    [Google Scholar]
  116. Soriano-UrsúaM.A. Cordova-ChávezR.I. Farfan-GarcíaE.D. KabalkaG. Boron-containing compounds as labels, drugs, and theranostic agents for diabetes and its complications.World J. Diabetes20241561060106910.4239/wjd.v15.i6.1060 38983826
    [Google Scholar]
  117. CacciatoreI. TurkezH. Di RienzoA. CiullaM. MardinogluA. Di StefanoA. Boron-based hybrids as novel scaffolds for the development of drugs with neuroprotective properties.RSC Medicinal Chemistry202112111944194910.1039/D1MD00177A 34825189
    [Google Scholar]
  118. MarfaviA. KavianpourP. RendinaL.M. Carboranes in drug discovery, chemical biology and molecular imaging.Nat. Rev. Chem.20226748650410.1038/s41570‑022‑00400‑x 37117309
    [Google Scholar]
  119. LongwitzL. Leveson-GowerR.B. RozeboomH.J. ThunnissenA.M.W.H. RoelfesG. Boron catalysis in a designer enzyme.Nature2024629801382482910.1038/s41586‑024‑07391‑3 38720081
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673364996250507091821
Loading
/content/journals/cmc/10.2174/0109298673364996250507091821
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): antibiotics; anticancer; Boron; boron chemistry; crystal; ligand-protein complexes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test