Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Mangostins and their derivatives exhibit broad therapeutic potential, with structural modifications enhancing their efficacy against cancer, inflammation, neurodegenerative disorders, oxidative stress, and microbial infections. Modified derivatives have demonstrated improved effectiveness in cancer treatment. They exhibit potent anti-inflammatory effects for conditions like pulmonary fibrosis and Parkinson’s disease and neuroprotective benefits through cholinesterase inhibition and protection against oxidative damage. For example, structural modifications of α-mangostin () significantly enhanced its cytotoxicity, with the 3,6-dibenzylated () derivative achieving three times greater efficacy against HL-60 cells and diacetyl () and benzoyl () derivatives and two- and four-fold improvements against HT-29 cells. The enhanced antioxidant properties of these derivatives improve radical scavenging, lipid protection, and metal ion binding. They possess antimicrobial properties against multidrug-resistant bacteria and fungi, with several derivatives exhibiting high membrane selectivity, low toxicity, and strong efficacy. Their antimalarial, antiparasitic, and antiviral activities further expand their therapeutic uses, including inhibition of viral proteases. Structural modifications of α-mangostin () show promising clinical applications, including enhanced cytotoxicity in cancer therapy with the 3,6-dibenzylated (), diacetyl (), and benzoyl () derivatives, potent anti-inflammatory activity with PDE4-targeting compound (), and effective antimicrobial properties in derivatives ( and ) against multidrug-resistant infections.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312729250514115343
2025-06-02
2025-11-02
Loading full text...

Full text loading...

References

  1. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  2. HengruiL. Toxic medicine used in traditional Chinese medicine for cancer treatment: Are ion channels involved?J. Tradit. Chin. Med.20224261019102210.19852/j.cnki.jtcm.20220815.00536378062
    [Google Scholar]
  3. XuZ. RastehA.M. DongA. WangP. LiuH. Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: A machine-learning pharmacological study.Chin. Med.202419114110.1186/s13020‑024‑01018‑539385284
    [Google Scholar]
  4. OuL. ZhuZ. HaoY. LiQ. LiuH. ChenQ. PengC. ZhangC. ZouY. JiaJ. LiH. WangY. SuB. LaiY. ChenM. ChenH. FengZ. ZhangG. YaoM. 1,3,6-Trigalloylglucose: A novel potent anti-Helicobacter pylori adhesion agent derived from aqueous extracts of Terminalia chebula Retz.Molecules2024295116110.3390/molecules2905116138474673
    [Google Scholar]
  5. WangH. MoS. YangL. WangP. SunK. XiongY. LiuH. LiuX. WuZ. OuL. LiX. PengX. PengB. HeH. TianY. ZhangR. ZhuX. Effectiveness associated with different therapies for senile osteoporosis: A network Meta-analysis.J. Tradit. Chin. Med.2020401172732227762
    [Google Scholar]
  6. Klein-JúniorL.C. CamposA. NieroR. CorrêaR. Vander HeydenY. FilhoV.C. Xanthones and cancer: From natural sources to mechanisms of action.Chem. Biodivers.2020172e190049910.1002/cbdv.20190049931794156
    [Google Scholar]
  7. MastersK.S. BräseS. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis.Chem. Rev.201211273717377610.1021/cr100446h22617028
    [Google Scholar]
  8. BadialiC. PetruccelliV. BrasiliE. PasquaG. Xanthones: Biosynthesis and trafficking in plants, fungi and lichens.Plants202312469410.3390/plants1204069436840041
    [Google Scholar]
  9. JeffersonA. QuillinanA.J. ScheinmannF. SimK.Y. Studies in the xanthone series. XVIII. Isolation of γ-mangostin from Garcinia mangostana, and preparation of the natural mangostins by selective demethylation.Aust. J. Chem.19702312253910.1071/CH9702539
    [Google Scholar]
  10. NazreM. NewmanM.F. PenningtonR.T. MiddletonD.J. Taxonomic revision of garcinia section garcinia (clusiaceae).Phytotaxa20183731110.11646/phytotaxa.373.1.1
    [Google Scholar]
  11. Ovalle-MagallanesB. Eugenio-PérezD. Pedraza-ChaverriJ. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update.Food Chem. Toxicol.2017109Pt 110212210.1016/j.fct.2017.08.02128842267
    [Google Scholar]
  12. Pedraza-ChaverriJ. Cárdenas-RodríguezN. Orozco-IbarraM. Pérez-RojasJ.M. Medicinal properties of mangosteen (Garcinia mangostana).Food Chem. Toxicol.200846103227323910.1016/j.fct.2008.07.02418725264
    [Google Scholar]
  13. LewJ.J.Y. ChooY.M. Chemical synthesis and enzymatic modification of mangostins: A comprehensive review on structural modifications for drug discover.Curr. Med. Chem.202432.10.2174/010929867331272824101402584639492765
    [Google Scholar]
  14. LaphookhieoS. SyersJ.K. KiattansakulR. ChantraprommaK. Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense.Chem. Pharm. Bull.200654574574710.1248/cpb.54.74516651783
    [Google Scholar]
  15. BoonnakN. KaralaiC. ChantraprommaS. PonglimanontC. FunH.K. Kanjana-OpasA. LaphookhieoS. Bioactive prenylated xanthones and anthraquinones from Cratoxylum formosum ssp. pruniflorum.Tetrahedron200662378850885910.1016/j.tet.2006.06.003
    [Google Scholar]
  16. SeeI. EeG.C.L. JongV.Y.M. TehS.S. AcuñaC.L.C. MahS.H. Cytotoxic activity of phytochemicals from Garcinia mangostana L. and G. benthamiana (Planch. & Triana) Pipoly against breast cancer cells.Nat. Prod. Res.202135246184618910.1080/14786419.2020.183662933094642
    [Google Scholar]
  17. SuksamrarnS. KomutibanO. RatananukulP. ChimnoiN. LartpornmatuleeN. SuksamrarnA. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana.Chem. Pharm. Bull.200654330130510.1248/cpb.54.30116508181
    [Google Scholar]
  18. ChiX.Q. ZiC.T. LiH.M. YangL. LvY.F. LiJ.Y. HouB. RenF.C. HuJ.M. ZhouJ. Design, synthesis and structure–activity relationships of mangostin analogs as cytotoxic agents.RSC Advances2018872413774138810.1039/C8RA08409B35559306
    [Google Scholar]
  19. TaiN.V. QuanP.M. HaV.T. LuyenN.D. ChiH.K. CuongL.H. PhongL. ChinhL.V. Synthesis of propargyl compounds and their cytotoxic activity.Russ. J. Org. Chem.202157346246810.1134/S1070428021030192
    [Google Scholar]
  20. WangS. ZhangQ. PengM. XuJ. GuoY. Design, synthesis, biological evaluation, and preliminary mechanistic study of a novel mitochondrial-targeted xanthone.Molecules2023283101610.3390/molecules2803101636770683
    [Google Scholar]
  21. KimS.M. HanJ.M. LeT.T. SohngJ.K. JungH.J. Anticancer and antiangiogenic activities of novel α-mangostin glycosides in human hepatocellular carcinoma cells via downregulation of c-Met and HIF-1α.Int. J. Mol. Sci.20202111404310.3390/ijms2111404332516967
    [Google Scholar]
  22. RenY. MatthewS. LantvitD.D. NinhT.N. ChaiH. FuchsJ.R. SoejartoD.D. de BlancoE.J.C. SwansonS.M. KinghornA.D. Cytotoxic and NF-κB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semisynthetic analogues.J. Nat. Prod.20117451117112510.1021/np200051j21428375
    [Google Scholar]
  23. TranV.A. Thi VoT.T. NguyenM.N.T. Duy DatN. DoanV.D. NguyenT.Q. VuQ.H. LeV.T. TongT.D. Novel α-mangostin derivatives from mangosteen (Garcinia mangostana L.) peel extract with antioxidant and anticancer potential.J. Chem.2021202111210.1155/2021/9985604
    [Google Scholar]
  24. MarkowiczJ. UramŁ. SobichJ. MangiardiL. MajP. RodeW. Antitumor and anti-nematode activities of α- mangostin.Eur. J. Pharmacol.201986317267810.1016/j.ejphar.2019.17267831542481
    [Google Scholar]
  25. PyaeN.Y.L. MaiuthedA. PhongsopitanunW. OuengwanaratB. SukmaW. SrimongkolpithakN. PengonJ. RattanajakR. KamchonwongpaisanS. EiZ.Z. ChunhachaP. WilasluckP. DeetanyaP. WangkanontK. HengphasatpornK. ShigetaY. RungrotmongkolT. ChamniS. N-Containing α-Mangostin analogs via smiles rearrangement as the promising cytotoxic, antitrypanosomal, and SARS-CoV-2 main protease inhibitory agents.Molecules2023283110410.3390/molecules2803110436770770
    [Google Scholar]
  26. NunnaS. HuangY.P. RasaM. KrepelovaA. AnnunziataF. AdamL. KäppelS. HsuM.H. NeriF. Characterization of novel α-mangostin and paeonol derivatives with cancer-selective cytotoxicity.Mol. Cancer Ther.202221225727010.1158/1535‑7163.MCT‑20‑078734789561
    [Google Scholar]
  27. WuJ.J. MaT. WangZ.M. XuW.J. YangX.L. LuoJ.G. KongL.Y. WangX.B. Polycyclic xanthones via pH-switched biotransformation of α-mangostin catalysed by horseradish peroxidase exhibited cytotoxicity against hepatoblastoma cells in vitro.J. Funct. Foods20172820521410.1016/j.jff.2016.11.022
    [Google Scholar]
  28. YangY. DengY. ZhangG. XuX. XiongX. YuS. PengF. TianX. YeW. ChenH. YuB. LiuZ. HeX. HuangZ. α-mangostin derivatives ameliorated mouse DSS-induced chronic colitis via regulating Th17/Treg balance.Mol. Immunol.202416611011810.1016/j.molimm.2023.11.01338280829
    [Google Scholar]
  29. LiangJ. HuangY.Y. ZhouQ. GaoY. LiZ. WuD. YuS. GuoL. ChenZ. HuangL. LiangS.H. HeX. WuR. LuoH.B. Discovery and optimization of α-mangostin derivatives as novel PDE4 inhibitors for the treatment of vascular dementia.J. Med. Chem.20206363370338010.1021/acs.jmedchem.0c0006032115956
    [Google Scholar]
  30. HuX. LiuC. WangK. ZhaoL. QiuY. ChenH. HuJ. XuJ. Multifunctional anti-Alzheimer’s disease effects of natural xanthone derivatives: A primary structure-activity evaluation.Front Chem.20221084220810.3389/fchem.2022.84220835646819
    [Google Scholar]
  31. KhawK.Y. KumarP. YusofS.R. RamanathanS. MurugaiyahV. Probing simple structural modification of α- mangostin on its cholinesterase inhibition and cytotoxicity.Arch. Pharm.202035311200015610.1002/ardp.20200015632716578
    [Google Scholar]
  32. WangS. LiQ. JingM. AlbaE. YangX. SabatéR. HanY. PiR. LanW. YangX. ChenJ. Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease.Neurochem. Res.20164171806181710.1007/s11064‑016‑1896‑y27038926
    [Google Scholar]
  33. ChenY. BianY. WangJ.W. GongT.T. YingY.M. MaL.F. ShanW.G. XieX.Q. ZhanZ.J. Effects of α- mangostin derivatives on the Alzheimer’s disease model of rats and their mechanism: A combination of experimental study and computational systems pharmacology analysis.ACS Omega20205179846986310.1021/acsomega.0c0005732391472
    [Google Scholar]
  34. MahabusarakamW. ProudfootJ. TaylorW. CroftK. Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin.Free Radic. Res.200033564365910.1080/1071576000030116111200095
    [Google Scholar]
  35. BuravlevE.V. ShevchenkoO.G. KutchinA.V. Synthesis and membrane-protective activity of novel derivatives of α-mangostin at the C-4 position.Bioorg. Med. Chem. Lett.201525482682910.1016/j.bmcl.2014.12.07525592715
    [Google Scholar]
  36. AuranwiwatC. TrisuwanK. SaiaiA. PyneS.G. RitthiwigromT. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa.Fitoterapia20149817918310.1016/j.fitote.2014.08.00325110196
    [Google Scholar]
  37. MeepagalaK.M. SchraderK.K. Antibacterial activity of constituents from mangosteen Garcinia mangostana fruit pericarp against several channel catfish pathogens.J. Aquat. Anim. Health201830317918410.1002/aah.1002129635710
    [Google Scholar]
  38. KohJ.J. QiuS. ZouH. LakshminarayananR. LiJ. ZhouX. TangC. SaraswathiP. VermaC. TanD.T.H. TanA.L. LiuS. BeuermanR.W. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting.Biochim. Biophys. Acta Biomembr.20131828283484410.1016/j.bbamem.2012.09.00422982495
    [Google Scholar]
  39. ZouH. KohJ.J. LiJ. QiuS. AungT.T. LinH. LakshminarayananR. DaiX. TangC. LimF.H. ZhouL. TanA.L. VermaC. TanD.T.H. ChanH.S.O. SaraswathiP. CaoD. LiuS. BeuermanR.W. Design and synthesis of amphiphilic xanthone-based, membrane- targeting antimicrobials with improved membrane selectivity.J. Med. Chem.20135662359237310.1021/jm301683j23441632
    [Google Scholar]
  40. LuY. GuanT. WangS. ZhouC. WangM. WangX. ZhangK. HanX. LinJ. TangQ. WangC. ZhouW. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms.Bioorg. Med. Chem.20238311723210.1016/j.bmc.2023.11723236940608
    [Google Scholar]
  41. RugaR. KingkaewK. TamsampaoloetK. ChavasiriW. Enhancing antibacterial activity against Propionibacterium acnes and Staphylococcus aureus by combination of tetracycline with selected compounds.Chem. Lett.201847121538154110.1246/cl.180696
    [Google Scholar]
  42. SuksamrarnS. SuwannapochN. PhakhodeeW. ThanuhiranlertJ. RatananukulP. ChimnoiN. SuksamrarnA. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm. Bull.200351785785910.1248/cpb.51.85712843596
    [Google Scholar]
  43. ArunrattiyakornP. SuwannasaiN. AreeT. KanokmedhakulS. ItoH. KanzakiH. Biotransformation of α-mangostin by Colletotrichum sp. MT02 and Phomopsis euphorbiae K12.J. Mol. Catal. B Enzym.201410217417910.1016/j.molcatb.2014.02.010
    [Google Scholar]
  44. SudtaP. JiarawapiP. SuksamrarnA. HongmaneeP. SuksamrarnS. Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analogs.Chem. Pharm. Bull.201361219420310.1248/cpb.c12‑0087423150066
    [Google Scholar]
  45. LinS. SinW.L.W. KohJ.J. LimF. WangL. CaoD. BeuermanR.W. RenL. LiuS. Semisynthesis and biological evaluation of xanthone amphiphilics as selective, highly potent antifungal agents to combat fungal resistance.J. Med. Chem.20176024101351015010.1021/acs.jmedchem.7b0134829155590
    [Google Scholar]
  46. LylesJ. NegrinA. KhanS. HeK. KennellyE. In vitro antiplasmodial activity of benzophenones and xanthones from edible fruits of Garcinia species.Planta Med.2014808-967668110.1055/s‑0034‑136858524963617
    [Google Scholar]
  47. AzebazeA.G.B. MeyerM. ValentinA. NguemfoE.L. FomumZ.T. NkengfackA.E. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C.Chem. Pharm. Bull.200654111111310.1248/cpb.54.11116394561
    [Google Scholar]
  48. AzebazeA.G.B. DongmoA.B. MeyerM. OuahouoB.M.W. ValentinA. NguemfoE.L. NkengfackA.E. VierlingW. Antimalarial and vasorelaxant constituents of the leaves of Allanblackia monticola (Guttiferae).Ann. Trop. Med. Parasitol.20071011233010.1179/136485907X15702217244407
    [Google Scholar]
  49. MahabusarakamW. KuahaK. WilairatP. TaylorW. Prenylated xanthones as potential antiplasmodial substances.Planta Med.2006721091291610.1055/s‑2006‑94719016902859
    [Google Scholar]
  50. ZelefackF. GuiletD. FabreN. BayetC. ChevalleyS. NgouelaS. LentaB.N. ValentinA. TsamoE. Dijoux-FrancaM.G. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod.200972595495710.1021/np800595319296616
    [Google Scholar]
  51. LentaB. KamdemL. NgouelaS. TantangmoF. DevkotaK. BoyomF. RosenthalP. TsamoE. Antiplasmodial constituents from the fruit pericarp of Pentadesma butyracea.Planta Med.201177437737910.1055/s‑0030‑125038420927694
    [Google Scholar]
  52. ChaijaroenkulW. MubarakiM.A. WardS.A. Na-BangchangK. Metabolite footprinting of Plasmodium falciparum following exposure to Garcinia mangostana Linn. crude extract.Exp. Parasitol.2014145808610.1016/j.exppara.2014.07.01325102435
    [Google Scholar]
  53. UpeguiY. RobledoS.M. RomeroJ.F.G. QuiñonesW. ArchboldR. TorresF. EscobarG. NariñoB. EcheverriF. In vivo antimalarial activity of α-mangostin and the new xanthone δ-Mangostin.Phytother. Res.20152981195120110.1002/ptr.536225943035
    [Google Scholar]
  54. KeiserJ. VargasM. WinterR. Anthelminthic properties of mangostin and mangostin diacetate.Parasitol. Int.201261236937110.1016/j.parint.2012.01.00422265670
    [Google Scholar]
  55. RyuH.W. Curtis-LongM.J. JungS. JinY.M. ChoJ.K. RyuY.B. LeeW.S. ParkK.H. Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana.Bioorg. Med. Chem.201018176258626410.1016/j.bmc.2010.07.03320696581
    [Google Scholar]
  56. HanA.-R. WooH.S. KimD.W. RyuH.-W. JinC.-H. α-Mangostin derivatives produced by γ-irradiation and their inhibitory activities against influenza virus neuraminidase.Nat. Prod. Commun.20241991934578X24 128318410.1177/1934578X241283184
    [Google Scholar]
  57. TarasukM. SongprakhonP. ChieochansinT. ChoomeeK. Na-BangchangK. YenchitsomanusP. Alpha-mangostin inhibits viral replication and suppresses nuclear factor kappa B (NF-κB)-mediated inflammation in dengue virus infection.Sci. Rep.20221211608810.1038/s41598‑022‑20284‑736168031
    [Google Scholar]
  58. YongpitakwattanaP. MorchangA. PanyaA. SawasdeeN. YenchitsomanusP. Alpha-mangostin inhibits dengue virus production and pro-inflammatory cytokine/chemokine expression in dendritic cells.Arch. Virol.202116661623163210.1007/s00705‑021‑05017‑x33782775
    [Google Scholar]
  59. PandaK. AlagarasuK. PatilP. AgrawalM. MoreA. KumarN.V. MainkarP.S. ParasharD. CherianS. In vitro antiviral activity of α-mangostin against dengue virus serotype-2 (DENV-2).Molecules20212610301610.3390/molecules2610301634069351
    [Google Scholar]
  60. Cardozo-MuñozJ. Cuca-SuárezL.E. Prieto-RodríguezJ.A. Lopez-VallejoF. Patiño-LadinoO.J. Multitarget action of Xanthones from Garcinia mangostana against α-Amylase, α-glucosidase and pancreatic lipase.Molecules20222710328310.3390/molecules2710328335630761
    [Google Scholar]
  61. JiangH.Z. QuanX.F. TianW.X. HuJ.M. WangP.C. HuangS.Z. ChengZ.Q. LiangW.J. ZhouJ. MaX.F. ZhaoY.X. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana.Bioorg. Med. Chem. Lett.201020206045604710.1016/j.bmcl.2010.08.06120817450
    [Google Scholar]
  62. DaudS. KarunakaranT. SanthanamR. NagaratnamS.R. JongV.Y.M. EeG.C.L. Cytotoxicity and nitric oxide inhibitory activities of Xanthones isolated from Calophyllum hosei Ridl.Nat. Prod. Res.202135246067607210.1080/14786419.2020.181927332901512
    [Google Scholar]
  63. SaenkhamA. JaratrungtaweeA. SiriwattanasathienY. BoonsriP. ChainokK. SuksamrarnA. Namsa-aidM. PattanaprateebP. SuksamrarnS. Highly potent cholinesterase inhibition of geranylated Xanthones from Garcinia fusca and molecular docking studies.Fitoterapia202014610463710.1016/j.fitote.2020.10463732470371
    [Google Scholar]
  64. na PattalungP. ThongtheeraparpW. WiriyachitraP. TaylorW. Xanthones of Garcinia cowa.Planta Med.199460436536810.1055/s‑2006‑9595027938273
    [Google Scholar]
  65. RaksatA. PhukhatmuenP. YangJ. ManeeratW. CharoensupR. AndersenR.J. WangY.A. PyneS.G. LaphookhieoS. Phloroglucinol benzophenones and Xanthones from the leaves of Garcinia cowa and their nitric oxide production and α-glucosidase inhibitory activities.J. Nat. Prod.202083116416810.1021/acs.jnatprod.9b0084931860303
    [Google Scholar]
  66. KarunakaranT. EeG.C.L. IsmailI.S. NorS.M.M. ZamakshshariN.H. Acetyl- and O -alkyl- derivatives of β- mangostin from Garcinia mangostana and their anti-inflammatory activities.Nat. Prod. Res.201832121390139410.1080/14786419.2017.135066628715912
    [Google Scholar]
  67. JaisinY. RatanachamnongP. KuanpraditC. KhumpumW. SuksamrarnS. Protective effects of γ-mangostin on 6-OHDA-induced toxicity in SH-SY5Y cells.Neurosci. Lett.201866522923510.1016/j.neulet.2017.11.05929195909
    [Google Scholar]
  68. LinS. WadeJ.D. LiuS. De Novo design of flavonoid-based mimetics of cationic antimicrobial peptides: Discovery, development, and applications.Acc. Chem. Res.202154110411910.1021/acs.accounts.0c0055033346639
    [Google Scholar]
  69. DharmaratneH.R.W. SakagamiY. PiyasenaK.G.P. ThevanesamV. Antibacterial activity of Xanthones from Garcinia mangostana (L.) and their structure–activity relationship studies.Nat. Prod. Res.2013271093894110.1080/14786419.2012.67834822494050
    [Google Scholar]
  70. GopalakrishnanG. BanumathiB. SureshG. Evaluation of the antifungal activity of natural Xanthones from Garcinia mangostana and their synthetic derivatives.J. Nat. Prod.199760551952410.1021/np970165u9213587
    [Google Scholar]
  71. YanK. RawleD.J. LeT.T. SuhrbierA. Simple rapid in vitro screening method for SARS-CoV-2 anti-virals that identifies potential cytomorbidity-associated false positives.Virol. J.202118112310.1186/s12985‑021‑01587‑z34107996
    [Google Scholar]
  72. BuravlevE.V. ShevchenkoO.G. AnisimovA.A. SuponitskyK.Y. Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity.Eur. J. Med. Chem.2018152102010.1016/j.ejmech.2018.04.02229684706
    [Google Scholar]
  73. WangA. LiuQ. YeY. WangY. LinL. Identification of hepatoprotective Xanthones from the pericarps of Garcinia mangostana, guided with tert -butyl hydroperoxide induced oxidative injury in HL-7702 cells.Food Funct.2015693013302110.1039/C5FO00573F26189454
    [Google Scholar]
  74. ChavanT. MuthA. The diverse bioactivity of α-mangostin and its therapeutic implications.Future Med. Chem.202113191679169410.4155/fmc‑2021‑014634410182
    [Google Scholar]
  75. ChenG. LiY. WangW. DengL. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: A review.Expert Opin. Ther. Pat.201828541542710.1080/13543776.2018.145582929558225
    [Google Scholar]
  76. AlamM. RashidS. FatimaK. AdnanM. ShafieA. AkhtarM.S. GanieA.H. EldinS.M. IslamA. KhanI. HassanM.I. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits.Biomed. Pharmacother.202316311471010.1016/j.biopha.2023.11471037141737
    [Google Scholar]
  77. IbrahimM.Y. HashimN.M. MariodA.A. MohanS. AbdullaM.A. AbdelwahabS.I. ArbabI.A. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties.Arab. J. Chem.20169331732910.1016/j.arabjc.2014.02.011
    [Google Scholar]
  78. PintoD. de SouzaG. Pitasse-SantosP. VelezA. Decote-RicardoD. dos SantosD. Freire-de-LimaL. Freire-de-LimaC. de LimaM. The potential of the natural Xanthone α-mangostine in the development of new anti-infective agents: A review.Quim. Nova202246110.21577/0100‑4042.20170954
    [Google Scholar]
  79. ZhangK.-J. GuQ.-L. YangK. MingX.-J. WangJ.-X. Anticarcinogenic effects of α-Mangostin: A review.Planta Med.2017833-0418820210.1055/s‑0042‑11965127824406
    [Google Scholar]
  80. NaumanM.C. JohnsonJ.J. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected Xanthones.Pharmacol. Res.202217510603210.1016/j.phrs.2021.10603234896543
    [Google Scholar]
  81. YangA. LiuC. WuJ. KouX. ShenR. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease.Eur. J. Pharmacol.202189717395010.1016/j.ejphar.2021.17395033607107
    [Google Scholar]
  82. JohnO. MushunjeA. SurugauN. GuadR. The metabolic and molecular mechanisms of α-mangostin in cardiometabolic disorders (Review).Int. J. Mol. Med.202250312010.3892/ijmm.2022.517635904170
    [Google Scholar]
  83. BuravlevE.V. Synthesis of new derivatives of α-mangostin (microreview).Chem. Heterocycl. Compd.201955111038104010.1007/s10593‑019‑02573‑8
    [Google Scholar]
  84. SaraswathyS.U.P. LalithaL.C.P. RahimS. GopinathC. HaleemaS. SarojiniAmmaS. Aboul-EneinH.Y. A review on synthetic and pharmacological potential of compounds isolated from Garcinia mangostana Linn.Phytomed. Plus20222210025310.1016/j.phyplu.2022.100253
    [Google Scholar]
  85. WangM.H. ZhangK.J. GuQ.L. BiX.L. WangJ.X. Pharmacology of mangostins and their derivatives: A comprehensive review.Chin. J. Nat. Med.2017152819310.1016/S1875‑5364(17)30024‑928284429
    [Google Scholar]
  86. HeL. ZhuC. SuZ. Two new γ-mangostin glycosides through microbial transformation by cunninghamella blakesleana.Chem. Nat. Compd.202157228528810.1007/s10600‑021‑03338‑6
    [Google Scholar]
  87. HeL. ZhuC. YuanY. XuZ. QiuS. Specific glycosylated metabolites of α-mangostin by Cunninghamella blakesleana.Phytochem. Lett.2014917517810.1016/j.phytol.2014.06.009
    [Google Scholar]
  88. LeT.T. TrangN.T. PhamV.T.T. QuangD.N. Phuong HoaL.T. Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions.R. Soc. Open Sci.202310823067610.1098/rsos.23067637593716
    [Google Scholar]
  89. HaL.D. HansenP.E. VangO. DuusF. PhamH.D. NguyenL.H.D. Cytotoxic geranylated Xanthones and O-alkylated derivatives of alpha-mangostin.Chem. Pharm. Bull.200957883083410.1248/cpb.57.83019652408
    [Google Scholar]
  90. FeiX. JoM. LeeB. HanS.B. LeeK. JungJ.K. SeoS.Y. KwakY.S. Synthesis of Xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents.Bioorg. Med. Chem. Lett.20142492062206510.1016/j.bmcl.2014.03.04724717154
    [Google Scholar]
  91. MardianingrumR. HarionoM. RuswantoR. YusufM. MuchtaridiM. Synthesis, anticancer activity, structure–activity relationship, and molecular modeling studies of α-mangostin derivatives as hERα inhibitor.J. Chem. Inf. Model.202262215305531610.1021/acs.jcim.1c0092634854302
    [Google Scholar]
  92. KimH.J. FeiX. ChoS.C. ChoiB.Y. AhnH.C. LeeK. SeoS.Y. KeumY.S. Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.Bioorg. Med. Chem. Lett.201525235625563110.1016/j.bmcl.2015.10.03426508549
    [Google Scholar]
  93. JiangK. GaoB. YuJ. JiangL. NiuA. JiaY. MengT. ZhouL. WangJ. Design, synthesis, and biological evaluation of 1,3,6,7-tetrahydroxyxanthone derivatives as phosphoglycerate mutase 1 inhibitors.Bioorg. Med. Chem. Lett.20213612782010.1016/j.bmcl.2021.12782033513389
    [Google Scholar]
  94. SuphavanichK. MaitaradP. HannongbuaS. SudtaP. SuksamrarnS. TantirungrotechaiY. LimtrakulJ. CoMFA and CoMSIA studies on a new series of Xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line.Monatsh. Chem.2009140327328010.1007/s00706‑008‑0014‑5
    [Google Scholar]
  95. ShibataM.A. HamaokaH. MorimotoJ. KanayamaT. MaemuraK. ItoY. IinumaM. KondoY. Synthetic α- mangostin dilaurate strongly suppresses wide-spectrum organ metastasis in a mouse model of mammary cancer.Cancer Sci.201810951660167110.1111/cas.1359029601143
    [Google Scholar]
  96. MarkowiczJ. UramŁ. WołowiecS. RodeW. Biotin transport-targeting polysaccharide-modified PAMAM G3 dendrimer as system delivering α-mangostin into cancer cells and C. elegans worms.Int. J. Mol. Sci.202122231292510.3390/ijms22231292534884739
    [Google Scholar]
  97. MarkowiczJ. WołowiecS. RodeW. UramŁ. Synthesis and properties of α-mangostin and vadimezan conjugates with glucoheptoamidated and biotinylated 3rd generation poly(amidoamine) dendrimer, and conjugation effect on their anticancer and anti-nematode activities.Pharmaceutics202214360610.3390/pharmaceutics1403060635335982
    [Google Scholar]
  98. ChenJ.Y. ZhuQ. CaiC.Z. LuoH.B. LuJ.H. α-mangostin derivative 4e as a PDE4 inhibitor promote proteasomal degradation of alpha-synuclein in Parkinson’s disease models through PKA activation.Phytomedicine202210115412510.1016/j.phymed.2022.15412535525236
    [Google Scholar]
  99. HuangY.Y. DengJ. TianY.J. LiangJ. XieX. HuangY. ZhuJ. ZhuZ. ZhouQ. HeX. LuoH.B. Mangostanin derivatives as novel and orally active phosphodiesterase 4 inhibitors for the treatment of idiopathic pulmonary fibrosis with improved safety.J. Med. Chem.20216418137361375110.1021/acs.jmedchem.1c0108534520193
    [Google Scholar]
  100. LiuH. WangQ. HuangY. DengJ. XieX. ZhuJ. YuanY. HeY.M. HuangY.Y. LuoH.B. HeX. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of inflammatory bowel diseases.Eur. J. Med. Chem.202224211463110.1016/j.ejmech.2022.11463135985255
    [Google Scholar]
  101. KhawK.Y. ChoiS.B. TanS.C. WahabH.A. ChanK.L. MurugaiyahV. Prenylated Xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.Phytomedicine201421111303130910.1016/j.phymed.2014.06.01725172794
    [Google Scholar]
  102. ChenY.L. ChenY.C. XiongL.A. HuangQ.Y. GongT.T. ChenY. MaL.F. FangL. ZhanZ.J. Discovery of phenylcarbamoyl xanthone derivatives as potent neuroprotective agents for treating ischemic stroke.Eur. J. Med. Chem.202325111525110.1016/j.ejmech.2023.11525136921528
    [Google Scholar]
  103. ChiX.Q. HouB. YangL. ZiC.T. LvY.F. LiJ.Y. RenF.C. YuanM.Y. HuJ.M. ZhouJ. Design, synthesis and cholinesterase inhibitory activity of α -mangostin derivatives.Nat. Prod. Res.202034101380138810.1080/14786419.2018.151092530456989
    [Google Scholar]
  104. BuravlevE.V. ShevchenkoO.G. Novel mannich bases of α-mangostin bearing methoxyphenyl moieties with antioxidant and membrane-protective activity.ChemistrySelect2022736e20220247410.1002/slct.202202474
    [Google Scholar]
  105. LiJ. BeuermanR.W. VermaC.S. Molecular insights into the membrane affinities of model hydrophobes.ACS Omega2018332498250710.1021/acsomega.7b0175930023836
    [Google Scholar]
  106. KohJ.J. ZouH. LinS. LinH. SohR.T. LimF.H. KohW.L. LiJ. LakshminarayananR. VermaC. TanD.T.H. CaoD. BeuermanR.W. LiuS. Nonpeptidic amphiphilic Xanthone derivatives: Structure–activity relationship and membrane-targeting properties.J. Med. Chem.201659117119310.1021/acs.jmedchem.5b0150026681070
    [Google Scholar]
  107. KohJ.J. LinS. AungT.T. LimF. ZouH. BaiY. LiJ. LinH. PangL.M. KohW.L. SallehS.M. LakshminarayananR. ZhouL. QiuS. PervushinK. VermaC. TanD.T.H. CaoD. LiuS. BeuermanR.W. Amino acid modified Xanthone derivatives: Novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections.J. Med. Chem.201558273975210.1021/jm501285x25474410
    [Google Scholar]
  108. LinS. ZhuC. LiH. ChenY. LiuS. Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic γ-mangostin derivative LS02 against Gram-positive bacteria with destructive effect on bacterial membrane.Biochim. Biophys. Acta Biomembr.20201862918335310.1016/j.bbamem.2020.18335332407778
    [Google Scholar]
  109. NiR. MohamadinM.I. JongV.Y.M. Synthesis, characterisation and antimicrobial properties of copper(II) complex of heterocyclic ligands.Malays. J. Anal. Sci.201721511511155
    [Google Scholar]
  110. BoonnakN. ChantraprommaS. SathirakulK. KaewpiboonC. Modified tetra-oxygenated Xanthones analogues as anti-MRSA and P. aeruginosa agent and their synergism with vancomycin.Bioorg. Med. Chem. Lett.2020302012749410.1016/j.bmcl.2020.12749432795625
    [Google Scholar]
  111. KohJ.J. LinS. BaiY. SinW.W.L. AungT.T. LiJ. ChandraV. PervushinK. BeuermanR.W. LiuS. Antimicrobial activity profiles of Amphiphilic Xanthone derivatives are a function of their molecular oligomerization.Biochim. Biophys. Acta Biomembr.20181860112281229810.1016/j.bbamem.2018.05.00629782818
    [Google Scholar]
  112. ArunrattiyakornP. SuksamrarnS. SuwannasaiN. KanzakiH. Microbial metabolism of α-mangostin isolated from Garcinia mangostana L.Phytochemistry201172873073410.1016/j.phytochem.2011.02.00721377704
    [Google Scholar]
  113. KohJ.J. ZouH. MukherjeeD. LinS. LimF. TanJ.K. TanD.Z. StockerB.L. TimmerM.S.M. CorkranH.M. LakshminarayananR. TanD.T.H. CaoD. BeuermanR.W. DickT. LiuS. Amphiphilic Xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties.Eur. J. Med. Chem.201612368470310.1016/j.ejmech.2016.07.06827517813
    [Google Scholar]
  114. MukherjeeD. ZouH. LiuS. BeuermanR. DickT. Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development.Future Microbiol.201611564365010.2217/fmb‑2015‑001527158932
    [Google Scholar]
  115. AungT.T. YamJ.K.H. LinS. SallehS.M. GivskovM. LiuS. LwinN.C. YangL. BeuermanR.W. Biofilms of pathogenic nontuberculous mycobacteria targeted by new therapeutic approaches.Antimicrob. Agents Chemother.2016601243510.1128/AAC.01509‑1526459903
    [Google Scholar]
  116. ChupromJ. SangkanuS. MitsuwanW. BoonhokR. MahabusarakamW. SinghL.R. DumkliangE. JitrangsriK. PaulA.K. SurinkaewS. WilairatanaP. PereiraM.L. RahmatullahM. WiartC. OliveiraS.M.R. NissapatornV. Anti- Acanthamoeba activity of a semi-synthetic mangostin derivative and its ability in removal of Acanthamoeba triangularis WU19001 on contact lens.PeerJ202210e1446810.7717/peerj.1446836523474
    [Google Scholar]
  117. NishiyamaS. NishihamaY. OgaminoT. Lei ShiW. ChaB-Y. YonezawaT. TeruyaT. NagaiK. SuenagaK. WooJ-T. Synthetic studies of mangostin derivatives with an inhibitory activity on PDGF-induced human aortic smooth cells proliferation.Heterocycles200977275910.3987/COM‑08‑S(F)65
    [Google Scholar]
  118. ZhaoY. YuW. LiuJ. WangH. DuR. YanZ. Protective effect of α-mangostin derivatives on hypoxia/reoxygenation-induced apoptosis in H9C2 cells and their mechanism.Phytochem. Lett.20224717417910.1016/j.phytol.2021.12.006
    [Google Scholar]
  119. PaiB.R. NatarajanS. SugunaH. KameswaranL. ShankaranarayanD. GopalakrishnanC. Synthesis and pharmacology of Mangostin-3,6-di-O-glucoside.J. Nat. Prod.197942436136510.1021/np50004a002
    [Google Scholar]
  120. LiJ. LiuS. KohJ.J. ZouH. LakshminarayananR. BaiY. PervushinK. ZhouL. VermaC. BeuermanR.W. A novel fragment based strategy for membrane active antimicrobials against MRSA.Biochim. Biophys. Acta Biomembr.2015184841023103110.1016/j.bbamem.2015.01.00125582665
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312729250514115343
Loading
/content/journals/cmc/10.2174/0109298673312729250514115343
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammation; anticancer; antimicrobial; Mangostins; neuroprotective; xanthones
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test