Skip to content
2000
image of Exploring the Multitarget Therapeutic Potential of Mangostin Derivatives

Abstract

Mangostins and their derivatives exhibit broad therapeutic potential, with structural modifications enhancing their efficacy against cancer, inflammation, neurodegenerative disorders, oxidative stress, and microbial infections. Modified derivatives have demonstrated improved effectiveness in cancer treatment. They exhibit potent anti-inflammatory effects for conditions like pulmonary fibrosis and Parkinson’s disease and neuroprotective benefits through cholinesterase inhibition and protection against oxidative damage. For example, structural modifications of α-mangostin () significantly enhanced its cytotoxicity, with the 3,6-dibenzylated () derivative achieving three times greater efficacy against HL-60 cells and diacetyl () and benzoyl () derivatives and two- and four-fold improvements against HT-29 cells. The enhanced antioxidant properties of these derivatives improve radical scavenging, lipid protection, and metal ion binding. They possess antimicrobial properties against multidrug-resistant bacteria and fungi, with several derivatives exhibiting high membrane selectivity, low toxicity, and strong efficacy. Their antimalarial, antiparasitic, and antiviral activities further expand their therapeutic uses, including inhibition of viral proteases. Structural modifications of α-mangostin () show promising clinical applications, including enhanced cytotoxicity in cancer therapy with the 3,6-dibenzylated (), diacetyl (), and benzoyl () derivatives, potent anti-inflammatory activity with PDE4-targeting compound (), and effective antimicrobial properties in derivatives ( and ) against multidrug-resistant infections.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312729250514115343
2025-06-02
2025-09-10
Loading full text...

Full text loading...

References

  1. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  2. Hengrui L. Toxic medicine used in traditional Chinese medicine for cancer treatment: Are ion channels involved? J. Tradit. Chin. Med. 2022 42 6 1019 1022 10.19852/j.cnki.jtcm.20220815.005 36378062
    [Google Scholar]
  3. Xu Z. Rasteh A.M. Dong A. Wang P. Liu H. Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: A machine-learning pharmacological study. Chin. Med. 2024 19 1 141 10.1186/s13020‑024‑01018‑5 39385284
    [Google Scholar]
  4. Ou L. Zhu Z. Hao Y. Li Q. Liu H. Chen Q. Peng C. Zhang C. Zou Y. Jia J. Li H. Wang Y. Su B. Lai Y. Chen M. Chen H. Feng Z. Zhang G. Yao M. 1,3,6-Trigalloylglucose: A novel potent anti-Helicobacter pylori adhesion agent derived from aqueous extracts of Terminalia chebula Retz. Molecules 2024 29 5 1161 10.3390/molecules29051161 38474673
    [Google Scholar]
  5. Wang H. Mo S. Yang L. Wang P. Sun K. Xiong Y. Liu H. Liu X. Wu Z. Ou L. Li X. Peng X. Peng B. He H. Tian Y. Zhang R. Zhu X. Effectiveness associated with different therapies for senile osteoporosis: A network Meta-analysis. J. Tradit. Chin. Med. 2020 40 1 17 27 32227762
    [Google Scholar]
  6. Klein-Júnior L.C. Campos A. Niero R. Corrêa R. Vander Heyden Y. Filho V.C. Xanthones and cancer: From natural sources to mechanisms of action. Chem. Biodivers. 2020 17 2 e1900499 10.1002/cbdv.201900499 31794156
    [Google Scholar]
  7. Masters K.S. Bräse S. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem. Rev. 2012 112 7 3717 3776 10.1021/cr100446h 22617028
    [Google Scholar]
  8. Badiali C. Petruccelli V. Brasili E. Pasqua G. Xanthones: Biosynthesis and trafficking in plants, fungi and lichens. Plants 2023 12 4 694 10.3390/plants12040694 36840041
    [Google Scholar]
  9. Jefferson A. Quillinan A.J. Scheinmann F. Sim K.Y. Studies in the xanthone series. XVIII. Isolation of γ-mangostin from Garcinia mangostana, and preparation of the natural mangostins by selective demethylation. Aust. J. Chem. 1970 23 12 2539 10.1071/CH9702539
    [Google Scholar]
  10. Nazre M. Newman M.F. Pennington R.T. Middleton D.J. Taxonomic revision of garcinia section garcinia (clusiaceae). Phytotaxa 2018 373 1 1 10.11646/phytotaxa.373.1.1
    [Google Scholar]
  11. Ovalle-Magallanes B. Eugenio-Pérez D. Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol. 2017 109 Pt 1 102 122 10.1016/j.fct.2017.08.021 28842267
    [Google Scholar]
  12. Pedraza-Chaverri J. Cárdenas-Rodríguez N. Orozco-Ibarra M. Pérez-Rojas J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008 46 10 3227 3239 10.1016/j.fct.2008.07.024 18725264
    [Google Scholar]
  13. Lew J.J.Y. Choo Y.M. Chemical synthesis and enzymatic modification of mangostins: A comprehensive review on structural modifications for drug discover. Curr. Med. Chem. 2024 32. 10.2174/0109298673312728241014025846 39492765
    [Google Scholar]
  14. Laphookhieo S. Syers J.K. Kiattansakul R. Chantrapromma K. Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem. Pharm. Bull. 2006 54 5 745 747 10.1248/cpb.54.745 16651783
    [Google Scholar]
  15. Boonnak N. Karalai C. Chantrapromma S. Ponglimanont C. Fun H.K. Kanjana-Opas A. Laphookhieo S. Bioactive prenylated xanthones and anthraquinones from Cratoxylum formosum ssp. pruniflorum. Tetrahedron 2006 62 37 8850 8859 10.1016/j.tet.2006.06.003
    [Google Scholar]
  16. See I. Ee G.C.L. Jong V.Y.M. Teh S.S. Acuña C.L.C. Mah S.H. Cytotoxic activity of phytochemicals from Garcinia mangostana L. and G. benthamiana (Planch. & Triana) Pipoly against breast cancer cells. Nat. Prod. Res. 2021 35 24 6184 6189 10.1080/14786419.2020.1836629 33094642
    [Google Scholar]
  17. Suksamrarn S. Komutiban O. Ratananukul P. Chimnoi N. Lartpornmatulee N. Suksamrarn A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm. Bull. 2006 54 3 301 305 10.1248/cpb.54.301 16508181
    [Google Scholar]
  18. Chi X.Q. Zi C.T. Li H.M. Yang L. Lv Y.F. Li J.Y. Hou B. Ren F.C. Hu J.M. Zhou J. Design, synthesis and structure–activity relationships of mangostin analogs as cytotoxic agents. RSC Advances 2018 8 72 41377 41388 10.1039/C8RA08409B 35559306
    [Google Scholar]
  19. Tai N.V. Quan P.M. Ha V.T. Luyen N.D. Chi H.K. Cuong L.H. Phong L. Chinh L.V. Synthesis of propargyl compounds and their cytotoxic activity. Russ. J. Org. Chem. 2021 57 3 462 468 10.1134/S1070428021030192
    [Google Scholar]
  20. Wang S. Zhang Q. Peng M. Xu J. Guo Y. Design, synthesis, biological evaluation, and preliminary mechanistic study of a novel mitochondrial-targeted xanthone. Molecules 2023 28 3 1016 10.3390/molecules28031016 36770683
    [Google Scholar]
  21. Kim S.M. Han J.M. Le T.T. Sohng J.K. Jung H.J. Anticancer and antiangiogenic activities of novel α-mangostin glycosides in human hepatocellular carcinoma cells via downregulation of c-Met and HIF-1α. Int. J. Mol. Sci. 2020 21 11 4043 10.3390/ijms21114043 32516967
    [Google Scholar]
  22. Ren Y. Matthew S. Lantvit D.D. Ninh T.N. Chai H. Fuchs J.R. Soejarto D.D. de Blanco E.J.C. Swanson S.M. Kinghorn A.D. Cytotoxic and NF-κB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semisynthetic analogues. J. Nat. Prod. 2011 74 5 1117 1125 10.1021/np200051j 21428375
    [Google Scholar]
  23. Tran V.A. Thi Vo T.T. Nguyen M.N.T. Duy Dat N. Doan V.D. Nguyen T.Q. Vu Q.H. Le V.T. Tong T.D. Novel α-mangostin derivatives from mangosteen (Garcinia mangostana L.) peel extract with antioxidant and anticancer potential. J. Chem. 2021 2021 1 12 10.1155/2021/9985604
    [Google Scholar]
  24. Markowicz J. Uram Ł. Sobich J. Mangiardi L. Maj P. Rode W. Antitumor and anti-nematode activities of α- mangostin. Eur. J. Pharmacol. 2019 863 172678 10.1016/j.ejphar.2019.172678 31542481
    [Google Scholar]
  25. Pyae N.Y.L. Maiuthed A. Phongsopitanun W. Ouengwanarat B. Sukma W. Srimongkolpithak N. Pengon J. Rattanajak R. Kamchonwongpaisan S. Ei Z.Z. Chunhacha P. Wilasluck P. Deetanya P. Wangkanont K. Hengphasatporn K. Shigeta Y. Rungrotmongkol T. Chamni S. N-Containing α-Mangostin analogs via smiles rearrangement as the promising cytotoxic, antitrypanosomal, and SARS-CoV-2 main protease inhibitory agents. Molecules 2023 28 3 1104 10.3390/molecules28031104 36770770
    [Google Scholar]
  26. Nunna S. Huang Y.P. Rasa M. Krepelova A. Annunziata F. Adam L. Käppel S. Hsu M.H. Neri F. Characterization of novel α-mangostin and paeonol derivatives with cancer-selective cytotoxicity. Mol. Cancer Ther. 2022 21 2 257 270 10.1158/1535‑7163.MCT‑20‑0787 34789561
    [Google Scholar]
  27. Wu J.J. Ma T. Wang Z.M. Xu W.J. Yang X.L. Luo J.G. Kong L.Y. Wang X.B. Polycyclic xanthones via pH-switched biotransformation of α-mangostin catalysed by horseradish peroxidase exhibited cytotoxicity against hepatoblastoma cells in vitro. J. Funct. Foods 2017 28 205 214 10.1016/j.jff.2016.11.022
    [Google Scholar]
  28. Yang Y. Deng Y. Zhang G. Xu X. Xiong X. Yu S. Peng F. Tian X. Ye W. Chen H. Yu B. Liu Z. He X. Huang Z. α-mangostin derivatives ameliorated mouse DSS-induced chronic colitis via regulating Th17/Treg balance. Mol. Immunol. 2024 166 110 118 10.1016/j.molimm.2023.11.013 38280829
    [Google Scholar]
  29. Liang J. Huang Y.Y. Zhou Q. Gao Y. Li Z. Wu D. Yu S. Guo L. Chen Z. Huang L. Liang S.H. He X. Wu R. Luo H.B. Discovery and optimization of α-mangostin derivatives as novel PDE4 inhibitors for the treatment of vascular dementia. J. Med. Chem. 2020 63 6 3370 3380 10.1021/acs.jmedchem.0c00060 32115956
    [Google Scholar]
  30. Hu X. Liu C. Wang K. Zhao L. Qiu Y. Chen H. Hu J. Xu J. Multifunctional anti-Alzheimer’s disease effects of natural xanthone derivatives: A primary structure-activity evaluation. Front Chem. 2022 10 842208 10.3389/fchem.2022.842208 35646819
    [Google Scholar]
  31. Khaw K.Y. Kumar P. Yusof S.R. Ramanathan S. Murugaiyah V. Probing simple structural modification of α- mangostin on its cholinesterase inhibition and cytotoxicity. Arch. Pharm. 2020 353 11 2000156 10.1002/ardp.202000156 32716578
    [Google Scholar]
  32. Wang S. Li Q. Jing M. Alba E. Yang X. Sabaté R. Han Y. Pi R. Lan W. Yang X. Chen J. Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease. Neurochem. Res. 2016 41 7 1806 1817 10.1007/s11064‑016‑1896‑y 27038926
    [Google Scholar]
  33. Chen Y. Bian Y. Wang J.W. Gong T.T. Ying Y.M. Ma L.F. Shan W.G. Xie X.Q. Zhan Z.J. Effects of α- mangostin derivatives on the Alzheimer’s disease model of rats and their mechanism: A combination of experimental study and computational systems pharmacology analysis. ACS Omega 2020 5 17 9846 9863 10.1021/acsomega.0c00057 32391472
    [Google Scholar]
  34. Mahabusarakam W. Proudfoot J. Taylor W. Croft K. Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radic. Res. 2000 33 5 643 659 10.1080/10715760000301161 11200095
    [Google Scholar]
  35. Buravlev E.V. Shevchenko O.G. Kutchin A.V. Synthesis and membrane-protective activity of novel derivatives of α-mangostin at the C-4 position. Bioorg. Med. Chem. Lett. 2015 25 4 826 829 10.1016/j.bmcl.2014.12.075 25592715
    [Google Scholar]
  36. Auranwiwat C. Trisuwan K. Saiai A. Pyne S.G. Ritthiwigrom T. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa. Fitoterapia 2014 98 179 183 10.1016/j.fitote.2014.08.003 25110196
    [Google Scholar]
  37. Meepagala K.M. Schrader K.K. Antibacterial activity of constituents from mangosteen Garcinia mangostana fruit pericarp against several channel catfish pathogens. J. Aquat. Anim. Health 2018 30 3 179 184 10.1002/aah.10021 29635710
    [Google Scholar]
  38. Koh J.J. Qiu S. Zou H. Lakshminarayanan R. Li J. Zhou X. Tang C. Saraswathi P. Verma C. Tan D.T.H. Tan A.L. Liu S. Beuerman R.W. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta Biomembr. 2013 1828 2 834 844 10.1016/j.bbamem.2012.09.004 22982495
    [Google Scholar]
  39. Zou H. Koh J.J. Li J. Qiu S. Aung T.T. Lin H. Lakshminarayanan R. Dai X. Tang C. Lim F.H. Zhou L. Tan A.L. Verma C. Tan D.T.H. Chan H.S.O. Saraswathi P. Cao D. Liu S. Beuerman R.W. Design and synthesis of amphiphilic xanthone-based, membrane- targeting antimicrobials with improved membrane selectivity. J. Med. Chem. 2013 56 6 2359 2373 10.1021/jm301683j 23441632
    [Google Scholar]
  40. Lu Y. Guan T. Wang S. Zhou C. Wang M. Wang X. Zhang K. Han X. Lin J. Tang Q. Wang C. Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg. Med. Chem. 2023 83 117232 10.1016/j.bmc.2023.117232 36940608
    [Google Scholar]
  41. Ruga R. Kingkaew K. Tamsampaoloet K. Chavasiri W. Enhancing antibacterial activity against Propionibacterium acnes and Staphylococcus aureus by combination of tetracycline with selected compounds. Chem. Lett. 2018 47 12 1538 1541 10.1246/cl.180696
    [Google Scholar]
  42. Suksamrarn S. Suwannapoch N. Phakhodee W. Thanuhiranlert J. Ratananukul P. Chimnoi N. Suksamrarn A. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm. Bull. 2003 51 7 857 859 10.1248/cpb.51.857 12843596
    [Google Scholar]
  43. Arunrattiyakorn P. Suwannasai N. Aree T. Kanokmedhakul S. Ito H. Kanzaki H. Biotransformation of α-mangostin by Colletotrichum sp. MT02 and Phomopsis euphorbiae K12. J. Mol. Catal. B Enzym. 2014 102 174 179 10.1016/j.molcatb.2014.02.010
    [Google Scholar]
  44. Sudta P. Jiarawapi P. Suksamrarn A. Hongmanee P. Suksamrarn S. Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analogs. Chem. Pharm. Bull. 2013 61 2 194 203 10.1248/cpb.c12‑00874 23150066
    [Google Scholar]
  45. Lin S. Sin W.L.W. Koh J.J. Lim F. Wang L. Cao D. Beuerman R.W. Ren L. Liu S. Semisynthesis and biological evaluation of xanthone amphiphilics as selective, highly potent antifungal agents to combat fungal resistance. J. Med. Chem. 2017 60 24 10135 10150 10.1021/acs.jmedchem.7b01348 29155590
    [Google Scholar]
  46. Lyles J. Negrin A. Khan S. He K. Kennelly E. In vitro antiplasmodial activity of benzophenones and xanthones from edible fruits of Garcinia species. Planta Med. 2014 80 8-9 676 681 10.1055/s‑0034‑1368585 24963617
    [Google Scholar]
  47. Azebaze A.G.B. Meyer M. Valentin A. Nguemfo E.L. Fomum Z.T. Nkengfack A.E. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C. Chem. Pharm. Bull. 2006 54 1 111 113 10.1248/cpb.54.111 16394561
    [Google Scholar]
  48. Azebaze A.G.B. Dongmo A.B. Meyer M. Ouahouo B.M.W. Valentin A. Nguemfo E.L. Nkengfack A.E. Vierling W. Antimalarial and vasorelaxant constituents of the leaves of Allanblackia monticola (Guttiferae). Ann. Trop. Med. Parasitol. 2007 101 1 23 30 10.1179/136485907X157022 17244407
    [Google Scholar]
  49. Mahabusarakam W. Kuaha K. Wilairat P. Taylor W. Prenylated xanthones as potential antiplasmodial substances. Planta Med. 2006 72 10 912 916 10.1055/s‑2006‑947190 16902859
    [Google Scholar]
  50. Zelefack F. Guilet D. Fabre N. Bayet C. Chevalley S. Ngouela S. Lenta B.N. Valentin A. Tsamo E. Dijoux-Franca M.G. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod. 2009 72 5 954 957 10.1021/np8005953 19296616
    [Google Scholar]
  51. Lenta B. Kamdem L. Ngouela S. Tantangmo F. Devkota K. Boyom F. Rosenthal P. Tsamo E. Antiplasmodial constituents from the fruit pericarp of Pentadesma butyracea. Planta Med. 2011 77 4 377 379 10.1055/s‑0030‑1250384 20927694
    [Google Scholar]
  52. Chaijaroenkul W. Mubaraki M.A. Ward S.A. Na-Bangchang K. Metabolite footprinting of Plasmodium falciparum following exposure to Garcinia mangostana Linn. crude extract. Exp. Parasitol. 2014 145 80 86 10.1016/j.exppara.2014.07.013 25102435
    [Google Scholar]
  53. Upegui Y. Robledo S.M. Romero J.F.G. Quiñones W. Archbold R. Torres F. Escobar G. Nariño B. Echeverri F. In vivo antimalarial activity of α-mangostin and the new xanthone δ-Mangostin. Phytother. Res. 2015 29 8 1195 1201 10.1002/ptr.5362 25943035
    [Google Scholar]
  54. Keiser J. Vargas M. Winter R. Anthelminthic properties of mangostin and mangostin diacetate. Parasitol. Int. 2012 61 2 369 371 10.1016/j.parint.2012.01.004 22265670
    [Google Scholar]
  55. Ryu H.W. Curtis-Long M.J. Jung S. Jin Y.M. Cho J.K. Ryu Y.B. Lee W.S. Park K.H. Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana. Bioorg. Med. Chem. 2010 18 17 6258 6264 10.1016/j.bmc.2010.07.033 20696581
    [Google Scholar]
  56. Han A.-R. Woo H.S. Kim D.W. Ryu H.-W. Jin C.-H. α-Mangostin derivatives produced by γ-irradiation and their inhibitory activities against influenza virus neuraminidase. Nat. Prod. Commun. 2024 19 9 1934578X24 1283184 10.1177/1934578X241283184
    [Google Scholar]
  57. Tarasuk M. Songprakhon P. Chieochansin T. Choomee K. Na-Bangchang K. Yenchitsomanus P. Alpha-mangostin inhibits viral replication and suppresses nuclear factor kappa B (NF-κB)-mediated inflammation in dengue virus infection. Sci. Rep. 2022 12 1 16088 10.1038/s41598‑022‑20284‑7 36168031
    [Google Scholar]
  58. Yongpitakwattana P. Morchang A. Panya A. Sawasdee N. Yenchitsomanus P. Alpha-mangostin inhibits dengue virus production and pro-inflammatory cytokine/chemokine expression in dendritic cells. Arch. Virol. 2021 166 6 1623 1632 10.1007/s00705‑021‑05017‑x 33782775
    [Google Scholar]
  59. Panda K. Alagarasu K. Patil P. Agrawal M. More A. Kumar N.V. Mainkar P.S. Parashar D. Cherian S. In vitro antiviral activity of α-mangostin against dengue virus serotype-2 (DENV-2). Molecules 2021 26 10 3016 10.3390/molecules26103016 34069351
    [Google Scholar]
  60. Cardozo-Muñoz J. Cuca-Suárez L.E. Prieto-Rodríguez J.A. Lopez-Vallejo F. Patiño-Ladino O.J. Multitarget action of Xanthones from Garcinia mangostana against α-Amylase, α-glucosidase and pancreatic lipase. Molecules 2022 27 10 3283 10.3390/molecules27103283 35630761
    [Google Scholar]
  61. Jiang H.Z. Quan X.F. Tian W.X. Hu J.M. Wang P.C. Huang S.Z. Cheng Z.Q. Liang W.J. Zhou J. Ma X.F. Zhao Y.X. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg. Med. Chem. Lett. 2010 20 20 6045 6047 10.1016/j.bmcl.2010.08.061 20817450
    [Google Scholar]
  62. Daud S. Karunakaran T. Santhanam R. Nagaratnam S.R. Jong V.Y.M. Ee G.C.L. Cytotoxicity and nitric oxide inhibitory activities of Xanthones isolated from Calophyllum hosei Ridl. Nat. Prod. Res. 2021 35 24 6067 6072 10.1080/14786419.2020.1819273 32901512
    [Google Scholar]
  63. Saenkham A. Jaratrungtawee A. Siriwattanasathien Y. Boonsri P. Chainok K. Suksamrarn A. Namsa-aid M. Pattanaprateeb P. Suksamrarn S. Highly potent cholinesterase inhibition of geranylated Xanthones from Garcinia fusca and molecular docking studies. Fitoterapia 2020 146 104637 10.1016/j.fitote.2020.104637 32470371
    [Google Scholar]
  64. na Pattalung P. Thongtheeraparp W. Wiriyachitra P. Taylor W. Xanthones of Garcinia cowa. Planta Med. 1994 60 4 365 368 10.1055/s‑2006‑959502 7938273
    [Google Scholar]
  65. Raksat A. Phukhatmuen P. Yang J. Maneerat W. Charoensup R. Andersen R.J. Wang Y.A. Pyne S.G. Laphookhieo S. Phloroglucinol benzophenones and Xanthones from the leaves of Garcinia cowa and their nitric oxide production and α-glucosidase inhibitory activities. J. Nat. Prod. 2020 83 1 164 168 10.1021/acs.jnatprod.9b00849 31860303
    [Google Scholar]
  66. Karunakaran T. Ee G.C.L. Ismail I.S. Nor S.M.M. Zamakshshari N.H. Acetyl- and O -alkyl- derivatives of β- mangostin from Garcinia mangostana and their anti-inflammatory activities. Nat. Prod. Res. 2018 32 12 1390 1394 10.1080/14786419.2017.1350666 28715912
    [Google Scholar]
  67. Jaisin Y. Ratanachamnong P. Kuanpradit C. Khumpum W. Suksamrarn S. Protective effects of γ-mangostin on 6-OHDA-induced toxicity in SH-SY5Y cells. Neurosci. Lett. 2018 665 229 235 10.1016/j.neulet.2017.11.059 29195909
    [Google Scholar]
  68. Lin S. Wade J.D. Liu S. De Novo design of flavonoid-based mimetics of cationic antimicrobial peptides: Discovery, development, and applications. Acc. Chem. Res. 2021 54 1 104 119 10.1021/acs.accounts.0c00550 33346639
    [Google Scholar]
  69. Dharmaratne H.R.W. Sakagami Y. Piyasena K.G.P. Thevanesam V. Antibacterial activity of Xanthones from Garcinia mangostana (L.) and their structure–activity relationship studies. Nat. Prod. Res. 2013 27 10 938 941 10.1080/14786419.2012.678348 22494050
    [Google Scholar]
  70. Gopalakrishnan G. Banumathi B. Suresh G. Evaluation of the antifungal activity of natural Xanthones from Garcinia mangostana and their synthetic derivatives. J. Nat. Prod. 1997 60 5 519 524 10.1021/np970165u 9213587
    [Google Scholar]
  71. Yan K. Rawle D.J. Le T.T. Suhrbier A. Simple rapid in vitro screening method for SARS-CoV-2 anti-virals that identifies potential cytomorbidity-associated false positives. Virol. J. 2021 18 1 123 10.1186/s12985‑021‑01587‑z 34107996
    [Google Scholar]
  72. Buravlev E.V. Shevchenko O.G. Anisimov A.A. Suponitsky K.Y. Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity. Eur. J. Med. Chem. 2018 152 10 20 10.1016/j.ejmech.2018.04.022 29684706
    [Google Scholar]
  73. Wang A. Liu Q. Ye Y. Wang Y. Lin L. Identification of hepatoprotective Xanthones from the pericarps of Garcinia mangostana, guided with tert -butyl hydroperoxide induced oxidative injury in HL-7702 cells. Food Funct. 2015 6 9 3013 3021 10.1039/C5FO00573F 26189454
    [Google Scholar]
  74. Chavan T. Muth A. The diverse bioactivity of α-mangostin and its therapeutic implications. Future Med. Chem. 2021 13 19 1679 1694 10.4155/fmc‑2021‑0146 34410182
    [Google Scholar]
  75. Chen G. Li Y. Wang W. Deng L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: A review. Expert Opin. Ther. Pat. 2018 28 5 415 427 10.1080/13543776.2018.1455829 29558225
    [Google Scholar]
  76. Alam M. Rashid S. Fatima K. Adnan M. Shafie A. Akhtar M.S. Ganie A.H. Eldin S.M. Islam A. Khan I. Hassan M.I. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed. Pharmacother. 2023 163 114710 10.1016/j.biopha.2023.114710 37141737
    [Google Scholar]
  77. Ibrahim M.Y. Hashim N.M. Mariod A.A. Mohan S. Abdulla M.A. Abdelwahab S.I. Arbab I.A. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab. J. Chem. 2016 9 3 317 329 10.1016/j.arabjc.2014.02.011
    [Google Scholar]
  78. Pinto D. de Souza G. Pitasse-Santos P. Velez A. Decote-Ricardo D. dos Santos D. Freire-de-Lima L. Freire-de-Lima C. de Lima M. The potential of the natural Xanthone α-mangostine in the development of new anti-infective agents: A review. Quim. Nova 2022 46 1 10.21577/0100‑4042.20170954
    [Google Scholar]
  79. Zhang K.-J. Gu Q.-L. Yang K. Ming X.-J. Wang J.-X. Anticarcinogenic effects of α-Mangostin: A review. Planta Med. 2017 83 3-04 188 202 10.1055/s‑0042‑119651 27824406
    [Google Scholar]
  80. Nauman M.C. Johnson J.J. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected Xanthones. Pharmacol. Res. 2022 175 106032 10.1016/j.phrs.2021.106032 34896543
    [Google Scholar]
  81. Yang A. Liu C. Wu J. Kou X. Shen R. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease. Eur. J. Pharmacol. 2021 897 173950 10.1016/j.ejphar.2021.173950 33607107
    [Google Scholar]
  82. John O. Mushunje A. Surugau N. Guad R. The metabolic and molecular mechanisms of α-mangostin in cardiometabolic disorders (Review). Int. J. Mol. Med. 2022 50 3 120 10.3892/ijmm.2022.5176 35904170
    [Google Scholar]
  83. Buravlev E.V. Synthesis of new derivatives of α-mangostin (microreview). Chem. Heterocycl. Compd. 2019 55 11 1038 1040 10.1007/s10593‑019‑02573‑8
    [Google Scholar]
  84. Saraswathy S.U.P. Lalitha L.C.P. Rahim S. Gopinath C. Haleema S. SarojiniAmma S. Aboul-Enein H.Y. A review on synthetic and pharmacological potential of compounds isolated from Garcinia mangostana Linn. Phytomed. Plus 2022 2 2 100253 10.1016/j.phyplu.2022.100253
    [Google Scholar]
  85. Wang M.H. Zhang K.J. Gu Q.L. Bi X.L. Wang J.X. Pharmacology of mangostins and their derivatives: A comprehensive review. Chin. J. Nat. Med. 2017 15 2 81 93 10.1016/S1875‑5364(17)30024‑9 28284429
    [Google Scholar]
  86. He L. Zhu C. Su Z. Two new γ-mangostin glycosides through microbial transformation by cunninghamella blakesleana. Chem. Nat. Compd. 2021 57 2 285 288 10.1007/s10600‑021‑03338‑6
    [Google Scholar]
  87. He L. Zhu C. Yuan Y. Xu Z. Qiu S. Specific glycosylated metabolites of α-mangostin by Cunninghamella blakesleana. Phytochem. Lett. 2014 9 175 178 10.1016/j.phytol.2014.06.009
    [Google Scholar]
  88. Le T.T. Trang N.T. Pham V.T.T. Quang D.N. Phuong Hoa L.T. Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions. R. Soc. Open Sci. 2023 10 8 230676 10.1098/rsos.230676 37593716
    [Google Scholar]
  89. Ha L.D. Hansen P.E. Vang O. Duus F. Pham H.D. Nguyen L.H.D. Cytotoxic geranylated Xanthones and O-alkylated derivatives of alpha-mangostin. Chem. Pharm. Bull. 2009 57 8 830 834 10.1248/cpb.57.830 19652408
    [Google Scholar]
  90. Fei X. Jo M. Lee B. Han S.B. Lee K. Jung J.K. Seo S.Y. Kwak Y.S. Synthesis of Xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents. Bioorg. Med. Chem. Lett. 2014 24 9 2062 2065 10.1016/j.bmcl.2014.03.047 24717154
    [Google Scholar]
  91. Mardianingrum R. Hariono M. Ruswanto R. Yusuf M. Muchtaridi M. Synthesis, anticancer activity, structure–activity relationship, and molecular modeling studies of α-mangostin derivatives as hERα inhibitor. J. Chem. Inf. Model. 2022 62 21 5305 5316 10.1021/acs.jcim.1c00926 34854302
    [Google Scholar]
  92. Kim H.J. Fei X. Cho S.C. Choi B.Y. Ahn H.C. Lee K. Seo S.Y. Keum Y.S. Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1. Bioorg. Med. Chem. Lett. 2015 25 23 5625 5631 10.1016/j.bmcl.2015.10.034 26508549
    [Google Scholar]
  93. Jiang K. Gao B. Yu J. Jiang L. Niu A. Jia Y. Meng T. Zhou L. Wang J. Design, synthesis, and biological evaluation of 1,3,6,7-tetrahydroxyxanthone derivatives as phosphoglycerate mutase 1 inhibitors. Bioorg. Med. Chem. Lett. 2021 36 127820 10.1016/j.bmcl.2021.127820 33513389
    [Google Scholar]
  94. Suphavanich K. Maitarad P. Hannongbua S. Sudta P. Suksamrarn S. Tantirungrotechai Y. Limtrakul J. CoMFA and CoMSIA studies on a new series of Xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line. Monatsh. Chem. 2009 140 3 273 280 10.1007/s00706‑008‑0014‑5
    [Google Scholar]
  95. Shibata M.A. Hamaoka H. Morimoto J. Kanayama T. Maemura K. Ito Y. Iinuma M. Kondo Y. Synthetic α- mangostin dilaurate strongly suppresses wide-spectrum organ metastasis in a mouse model of mammary cancer. Cancer Sci. 2018 109 5 1660 1671 10.1111/cas.13590 29601143
    [Google Scholar]
  96. Markowicz J. Uram Ł. Wołowiec S. Rode W. Biotin transport-targeting polysaccharide-modified PAMAM G3 dendrimer as system delivering α-mangostin into cancer cells and C. elegans worms. Int. J. Mol. Sci. 2021 22 23 12925 10.3390/ijms222312925 34884739
    [Google Scholar]
  97. Markowicz J. Wołowiec S. Rode W. Uram Ł. Synthesis and properties of α-mangostin and vadimezan conjugates with glucoheptoamidated and biotinylated 3rd generation poly(amidoamine) dendrimer, and conjugation effect on their anticancer and anti-nematode activities. Pharmaceutics 2022 14 3 606 10.3390/pharmaceutics14030606 35335982
    [Google Scholar]
  98. Chen J.Y. Zhu Q. Cai C.Z. Luo H.B. Lu J.H. α-mangostin derivative 4e as a PDE4 inhibitor promote proteasomal degradation of alpha-synuclein in Parkinson’s disease models through PKA activation. Phytomedicine 2022 101 154125 10.1016/j.phymed.2022.154125 35525236
    [Google Scholar]
  99. Huang Y.Y. Deng J. Tian Y.J. Liang J. Xie X. Huang Y. Zhu J. Zhu Z. Zhou Q. He X. Luo H.B. Mangostanin derivatives as novel and orally active phosphodiesterase 4 inhibitors for the treatment of idiopathic pulmonary fibrosis with improved safety. J. Med. Chem. 2021 64 18 13736 13751 10.1021/acs.jmedchem.1c01085 34520193
    [Google Scholar]
  100. Liu H. Wang Q. Huang Y. Deng J. Xie X. Zhu J. Yuan Y. He Y.M. Huang Y.Y. Luo H.B. He X. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of inflammatory bowel diseases. Eur. J. Med. Chem. 2022 242 114631 10.1016/j.ejmech.2022.114631 35985255
    [Google Scholar]
  101. Khaw K.Y. Choi S.B. Tan S.C. Wahab H.A. Chan K.L. Murugaiyah V. Prenylated Xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine 2014 21 11 1303 1309 10.1016/j.phymed.2014.06.017 25172794
    [Google Scholar]
  102. Chen Y.L. Chen Y.C. Xiong L.A. Huang Q.Y. Gong T.T. Chen Y. Ma L.F. Fang L. Zhan Z.J. Discovery of phenylcarbamoyl xanthone derivatives as potent neuroprotective agents for treating ischemic stroke. Eur. J. Med. Chem. 2023 251 115251 10.1016/j.ejmech.2023.115251 36921528
    [Google Scholar]
  103. Chi X.Q. Hou B. Yang L. Zi C.T. Lv Y.F. Li J.Y. Ren F.C. Yuan M.Y. Hu J.M. Zhou J. Design, synthesis and cholinesterase inhibitory activity of α -mangostin derivatives. Nat. Prod. Res. 2020 34 10 1380 1388 10.1080/14786419.2018.1510925 30456989
    [Google Scholar]
  104. Buravlev E.V. Shevchenko O.G. Novel mannich bases of α-mangostin bearing methoxyphenyl moieties with antioxidant and membrane-protective activity. ChemistrySelect 2022 7 36 e202202474 10.1002/slct.202202474
    [Google Scholar]
  105. Li J. Beuerman R.W. Verma C.S. Molecular insights into the membrane affinities of model hydrophobes. ACS Omega 2018 3 3 2498 2507 10.1021/acsomega.7b01759 30023836
    [Google Scholar]
  106. Koh J.J. Zou H. Lin S. Lin H. Soh R.T. Lim F.H. Koh W.L. Li J. Lakshminarayanan R. Verma C. Tan D.T.H. Cao D. Beuerman R.W. Liu S. Nonpeptidic amphiphilic Xanthone derivatives: Structure–activity relationship and membrane-targeting properties. J. Med. Chem. 2016 59 1 171 193 10.1021/acs.jmedchem.5b01500 26681070
    [Google Scholar]
  107. Koh J.J. Lin S. Aung T.T. Lim F. Zou H. Bai Y. Li J. Lin H. Pang L.M. Koh W.L. Salleh S.M. Lakshminarayanan R. Zhou L. Qiu S. Pervushin K. Verma C. Tan D.T.H. Cao D. Liu S. Beuerman R.W. Amino acid modified Xanthone derivatives: Novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections. J. Med. Chem. 2015 58 2 739 752 10.1021/jm501285x 25474410
    [Google Scholar]
  108. Lin S. Zhu C. Li H. Chen Y. Liu S. Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic γ-mangostin derivative LS02 against Gram-positive bacteria with destructive effect on bacterial membrane. Biochim. Biophys. Acta Biomembr. 2020 1862 9 183353 10.1016/j.bbamem.2020.183353 32407778
    [Google Scholar]
  109. Ni R. Mohamadin M.I. Jong V.Y.M. Synthesis, characterisation and antimicrobial properties of copper(II) complex of heterocyclic ligands. Malays. J. Anal. Sci. 2017 21 5 1151 1155
    [Google Scholar]
  110. Boonnak N. Chantrapromma S. Sathirakul K. Kaewpiboon C. Modified tetra-oxygenated Xanthones analogues as anti-MRSA and P. aeruginosa agent and their synergism with vancomycin. Bioorg. Med. Chem. Lett. 2020 30 20 127494 10.1016/j.bmcl.2020.127494 32795625
    [Google Scholar]
  111. Koh J.J. Lin S. Bai Y. Sin W.W.L. Aung T.T. Li J. Chandra V. Pervushin K. Beuerman R.W. Liu S. Antimicrobial activity profiles of Amphiphilic Xanthone derivatives are a function of their molecular oligomerization. Biochim. Biophys. Acta Biomembr. 2018 1860 11 2281 2298 10.1016/j.bbamem.2018.05.006 29782818
    [Google Scholar]
  112. Arunrattiyakorn P. Suksamrarn S. Suwannasai N. Kanzaki H. Microbial metabolism of α-mangostin isolated from Garcinia mangostana L. Phytochemistry 2011 72 8 730 734 10.1016/j.phytochem.2011.02.007 21377704
    [Google Scholar]
  113. Koh J.J. Zou H. Mukherjee D. Lin S. Lim F. Tan J.K. Tan D.Z. Stocker B.L. Timmer M.S.M. Corkran H.M. Lakshminarayanan R. Tan D.T.H. Cao D. Beuerman R.W. Dick T. Liu S. Amphiphilic Xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. Eur. J. Med. Chem. 2016 123 684 703 10.1016/j.ejmech.2016.07.068 27517813
    [Google Scholar]
  114. Mukherjee D. Zou H. Liu S. Beuerman R. Dick T. Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol. 2016 11 5 643 650 10.2217/fmb‑2015‑0015 27158932
    [Google Scholar]
  115. Aung T.T. Yam J.K.H. Lin S. Salleh S.M. Givskov M. Liu S. Lwin N.C. Yang L. Beuerman R.W. Biofilms of pathogenic nontuberculous mycobacteria targeted by new therapeutic approaches. Antimicrob. Agents Chemother. 2016 60 1 24 35 10.1128/AAC.01509‑15 26459903
    [Google Scholar]
  116. Chuprom J. Sangkanu S. Mitsuwan W. Boonhok R. Mahabusarakam W. Singh L.R. Dumkliang E. Jitrangsri K. Paul A.K. Surinkaew S. Wilairatana P. Pereira M.L. Rahmatullah M. Wiart C. Oliveira S.M.R. Nissapatorn V. Anti- Acanthamoeba activity of a semi-synthetic mangostin derivative and its ability in removal of Acanthamoeba triangularis WU19001 on contact lens. PeerJ 2022 10 e14468 10.7717/peerj.14468 36523474
    [Google Scholar]
  117. Nishiyama S. Nishihama Y. Ogamino T. Lei Shi W. Cha B-Y. Yonezawa T. Teruya T. Nagai K. Suenaga K. Woo J-T. Synthetic studies of mangostin derivatives with an inhibitory activity on PDGF-induced human aortic smooth cells proliferation. Heterocycles 2009 77 2 759 10.3987/COM‑08‑S(F)65
    [Google Scholar]
  118. Zhao Y. Yu W. Liu J. Wang H. Du R. Yan Z. Protective effect of α-mangostin derivatives on hypoxia/reoxygenation-induced apoptosis in H9C2 cells and their mechanism. Phytochem. Lett. 2022 47 174 179 10.1016/j.phytol.2021.12.006
    [Google Scholar]
  119. Pai B.R. Natarajan S. Suguna H. Kameswaran L. Shankaranarayan D. Gopalakrishnan C. Synthesis and pharmacology of Mangostin-3,6-di-O-glucoside. J. Nat. Prod. 1979 42 4 361 365 10.1021/np50004a002
    [Google Scholar]
  120. Li J. Liu S. Koh J.J. Zou H. Lakshminarayanan R. Bai Y. Pervushin K. Zhou L. Verma C. Beuerman R.W. A novel fragment based strategy for membrane active antimicrobials against MRSA. Biochim. Biophys. Acta Biomembr. 2015 1848 4 1023 1031 10.1016/j.bbamem.2015.01.001 25582665
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312729250514115343
Loading
/content/journals/cmc/10.2174/0109298673312729250514115343
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Mangostins ; anti-inflammation ; xanthones ; antimicrobial ; anticancer ; neuroprotective
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test