Skip to content
2000
Volume 32, Issue 37
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Exercise-induced muscle damage (EIMD) is a common occurrence among athletes and individuals engaged in physical fitness activities. Muscle strains result from excessive or repetitive muscle tension, leading to tissue damage, inflammation, and pain. These strains can range from mild discomfort to severe damage, resulting in pain, inflammation, and reduced functionality. Effective management of muscle damage is crucial for promoting recovery and returning individuals to their desired level of activity. Conventional treatment modalities such as rest, ice, compression, and elevation (RICE), physical therapy, and nonsteroidal anti-inflammatory drugs (NSAIDs) have limitations in terms of efficacy and long-term outcomes. Consequently, there is a need for innovative approaches that not only address the symptoms but also promote healing and prevention of future injuries. Hydrogels are three-dimensional crosslinked networks of hydrophilic polymers that have gained significant attention in the field of biomedicine. Their unique properties, drug-delivery capabilities, and capacity to provide mechanical support make them promising tools in muscle damage management. Biomedical hydrogels hold significant potential as a preventive or alleviative approach for EIMD. This review provides a comprehensive overview of biomedical hydrogels as a promising approach for preventing and alleviating EIMD, addressing current challenges, and outlining future directions for research and development in the field.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673360294241217061953
2024-12-26
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/37/CMC-32-37-03.html?itemId=/content/journals/cmc/10.2174/0109298673360294241217061953&mimeType=html&fmt=ahah

References

  1. JamurtasA.Z. TheocharisV. TofasT. TsiokanosA. YfantiC. PaschalisV. KoutedakisY. NosakaK. Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage.Eur. J. Appl. Physiol.2005952-317918510.1007/s00421‑005‑1345‑016007451
    [Google Scholar]
  2. FatourosI. JamurtasA. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance.J. Inflamm. Res.2016917518610.2147/JIR.S11463527799809
    [Google Scholar]
  3. OwensD.J. TwistC. CobleyJ.N. HowatsonG. CloseG.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions?Eur. J. Sport Sci.2019191718510.1080/17461391.2018.150595730110239
    [Google Scholar]
  4. BongiovanniT. GenovesiF. NemmerM. CarlingC. AlbertiG. HowatsonG. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives.Eur. J. Appl. Physiol.202012091965199610.1007/s00421‑020‑04432‑332661771
    [Google Scholar]
  5. HowatsonG. van SomerenK.A. The prevention and treatment of exercise-induced muscle damage.Sports Med.200838648350310.2165/00007256‑200838060‑0000418489195
    [Google Scholar]
  6. OrtegaD.R. LópezA.M. AmayaH.M. Berral de la RosaF. Tart cherry and pomegranate supplementations enhance recovery from exercise-induced muscle damage: a systematic review.Biol. Sport20213819711110.5114/biolsport.2020.9706933795919
    [Google Scholar]
  7. Rojano-OrtegaD. Peña AmaroJ. Berral-AguilarA.J. Berral-de la RosaF.J. Effects of beetroot supplementation on recovery after exercise-induced muscle damage: a systematic review.Sports Health202214455656510.1177/1941738121103641234399653
    [Google Scholar]
  8. Fernández-LázaroD. Mielgo-AyusoJ. Seco CalvoJ. Córdova MartínezA. Caballero GarcíaA. Fernandez-LazaroC. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review.Nutrients202012250110.3390/nu1202050132075287
    [Google Scholar]
  9. OxleyR.A. PeartD.J. The effect of curcumin supplementation on functional strength outcomes and markers of exercise-induced muscle damage: A systematic review and meta-analysis.Nutr. Health2024301779210.1177/0260106023118643937408367
    [Google Scholar]
  10. HotfielT. FreiwaldJ. HoppeM.W. LutterC. ForstR. GrimC. BlochW. HüttelM. HeissR. Advances in delayed-onset muscle soreness (DOMS): Part I: pathogenesis and diagnostics.Sportverletz Sportschaden201832424325010.1055/a‑0753‑1884
    [Google Scholar]
  11. TanabeY. FujiiN. SuzukiK. Dietary supplementation for attenuating exercise-induced muscle damage and delayed-onset muscle soreness in humans.Nutrients20211417010.3390/nu1401007035010943
    [Google Scholar]
  12. HyldahlR.D. ChenT.C. NosakaK. Mechanisms and mediators of the skeletal muscle repeated bout effect.Exerc. Sport Sci. Rev.2017451243310.1249/JES.000000000000009527782911
    [Google Scholar]
  13. DamasF. NosakaK. LibardiC. ChenT. UgrinowitschC. Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample.Int. J. Sports Med.201637863364010.1055/s‑0042‑10028127116346
    [Google Scholar]
  14. PaulsenG. MikkelsenU.R. RaastadT. PeakeJ.M. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?Exerc. Immunol. Rev.201218429722876722
    [Google Scholar]
  15. PitorreM. GazailleC. PhamL.T.T. FrankovaK. BéjaudJ. LautramN. RiouJ. PerrotR. GenevièveF. MoalV. BenoitJ.P. BastiatG. Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform.Mater. Sci. Eng. C202112611218810.1016/j.msec.2021.11218834082987
    [Google Scholar]
  16. ProskeU. MorganD.L. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications.J. Physiol.2001537233334510.1111/j.1469‑7793.2001.00333.x11731568
    [Google Scholar]
  17. WannerS.G. GlossmannH. KnausH.G. BakerR. ParsonsW. RupprechtK.M. BrochuR. CohenC.J. SchmalhoferW. SmithM. WarrenV. GarciaM.L. KaczorowskiG.J. WIN 17317-3, a new high-affinity probe for voltage-gated sodium channels.Biochemistry19993834111371114610.1021/bi990336p10460170
    [Google Scholar]
  18. HyldahlR.D. HubalM.J. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise.Muscle Nerve201449215517010.1002/mus.2407724030935
    [Google Scholar]
  19. McHughM.P. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise.Scand. J. Med. Sci. Sports2003132889710.1034/j.1600‑0838.2003.02477.x12641640
    [Google Scholar]
  20. DamasF. PhillipsS.M. LixandrãoM.E. VechinF.C. LibardiC.A. RoschelH. TricoliV. UgrinowitschC. An inability to distinguish edematous swelling from true hypertrophy still prevents a completely accurate interpretation of the time course of muscle hypertrophy.Eur. J. Appl. Physiol.2016116244544610.1007/s00421‑015‑3287‑526515294
    [Google Scholar]
  21. YuX. ByrneJ.H. BaxterD.A. Modeling interactions between electrical activity and second-messenger cascades in Aplysia neuron R15.J. Neurophysiol.20049152297231110.1152/jn.00787.200314702331
    [Google Scholar]
  22. SorichterS. PuschendorfB. MairJ. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury.Exerc. Immunol. Rev.1999552110519060
    [Google Scholar]
  23. FridénJ. LieberR.L. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components.Acta Physiol. Scand.2001171332132610.1046/j.1365‑201x.2001.00834.x11412144
    [Google Scholar]
  24. SorichterS. MairJ. KollerA. PelsersM.M. PuschendorfB. GlatzJ.F. Early assessment of exercise induced skeletal muscle injury using plasma fatty acid binding protein.Br. J. Sports Med.199832212112410.1136/bjsm.32.2.1219631217
    [Google Scholar]
  25. JonesD.A. NewhamD.J. ClarksonP.M. Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors.Pain198730223324210.1016/0304‑3959(87)91079‑73670875
    [Google Scholar]
  26. NewhamD.J. JonesD.A. ClarksonP.M. Repeated high- force eccentric exercise: effects on muscle pain and damage.J. Appl. Physiol19856341381610.1152/jappl.1987.63.4.1381
    [Google Scholar]
  27. CaoY. ZhouY. ChenZ. ZhangZ. ChenX. HeC. Localized chemotherapy based on injectable hydrogel boosts the antitumor activity of adoptively transferred T Lymphocytes in vivo.Adv. Healthc. Mater.20211019210081410.1002/adhm.20210081434297480
    [Google Scholar]
  28. ChenM. WangZ. SuoW. BaoZ. QuanH. Injectable hydrogel for synergetic low dose radiotherapy, chemodynamic therapy and photothermal therapy.Front. Bioeng. Biotechnol.2021975742810.3389/fbioe.2021.75742834881231
    [Google Scholar]
  29. GaoQ. JiangY. LiX. ChenH. TangS. ChenH. ShiX. ChenY. FuS. LinS. Intratumoral injection of anlotinib hydrogel combined with radiotherapy reduces hypoxia in lewis lung carcinoma xenografts: assessment by micro fluorine-18-fluoromisonidazole positron emission tomography/computed tomography hypoxia imaging.Front. Oncol.20211162889510.3389/fonc.2021.62889533777779
    [Google Scholar]
  30. GaowaA. HoribeT. KohnoM. SatoK. HaradaH. HiraokaM. TabataY. KawakamiK. Combination of hybrid peptide with biodegradable gelatin hydrogel for controlled release and enhancement of anti-tumor activity in vivo.J. Control. Release20141761710.1016/j.jconrel.2013.12.02124378440
    [Google Scholar]
  31. LouJ. MooneyD.J. Chemical strategies to engineer hydrogels for cell culture.Nat. Rev. Chem.202261072674410.1038/s41570‑022‑00420‑737117490
    [Google Scholar]
  32. HadigalS.R. GuptaA.K. Application of hydrogel spacer spaceOAR vue for prostate radiotherapy.Tomography2022862648266110.3390/tomography806022136412680
    [Google Scholar]
  33. HuangC. ChenB. ChenM. JiangW. LiuW. Injectable hydrogel for Cu2+ controlled release and potent tumor therapy.Life (Basel)202111539110.3390/life1105039133925834
    [Google Scholar]
  34. IndolfiL. CausaF. GiovinoC. UngaroF. QuagliaF. NettiP.A. Microsphere-integrated drug-eluting stents: PLGA microsphere integration in hydrogel coating for local and prolonged delivery of hydrophilic antirestenosis agents.J. Biomed. Mater. Res. A201197A220121110.1002/jbm.a.3303921394898
    [Google Scholar]
  35. KatopodiT. PetanidisS. TsavlisD. AnestakisD. CharalampidisC. ChatziprodromidouI. EskitzisP. ZarogoulidisP. KosmidisC. MatthaiosD. PorpodisK. Engineered multifunctional nanocarriers for controlled drug delivery in tumor immunotherapy.Front. Oncol.202212104212510.3389/fonc.2022.104212536338748
    [Google Scholar]
  36. KonishiM. TabataY. KariyaM. HosseinkhaniH. SuzukiA. FukuharaK. MandaiM. TakakuraK. FujiiS. In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel.J. Control. Release2005103171910.1016/j.jconrel.2004.11.01415710496
    [Google Scholar]
  37. RadisicM. Hydrogel implant rehabilitates muscles through electrical stimulation.Nature20236237985373810.1038/d41586‑023‑03211‑237914943
    [Google Scholar]
  38. NiY. ZhaoW. ChengW. DengC. YingZ. LiL. WangX. SunC. TuJ. JiangL. Lipopeptide liposomes-loaded hydrogel for multistage transdermal chemotherapy of melanoma.J. Control. Release202235124525410.1016/j.jconrel.2022.09.01436108811
    [Google Scholar]
  39. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discov. Today201621111835184910.1016/j.drudis.2016.07.00627423369
    [Google Scholar]
  40. PakulskaM.M. VulicK. TamR.Y. ShoichetM.S. Hybrid crosslinked methylcellulose hydrogel: A predictable and tunable platform for local drug delivery.Adv. Mater.201527345002500810.1002/adma.20150276726184559
    [Google Scholar]
  41. HoT.C. ChangC.C. ChanH.P. ChungT.W. ShuC.W. ChuangK.P. DuhT.H. YangM.H. TyanY.C. Hydrogels: Properties and applications in biomedicine.Molecules2022279290210.3390/molecules2709290235566251
    [Google Scholar]
  42. TongS. LiQ. LiuQ. SongB. WuJ. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers.Front. Bioeng. Biotechnol.202210103949510.3389/fbioe.2022.103949536267448
    [Google Scholar]
  43. ZhaoL. ZhouY. ZhangJ. LiangH. ChenX. TanH. Natural polymer-based hydrogels: from polymer to biomedical applications.Pharmaceutics20231510251410.3390/pharmaceutics1510251437896274
    [Google Scholar]
  44. LiuW. MadryH. CucchiariniM. Application of alginate hydrogels for next-generation articular cartilage regeneration.Int. J. Mol. Sci.2022233114710.3390/ijms2303114735163071
    [Google Scholar]
  45. WangQ. QuY. ZhangZ. HuangH. XuY. ShenF. WangL. SunL. Injectable DNA hydrogel-based local drug delivery and immunotherapy.Gels20228740010.3390/gels807040035877485
    [Google Scholar]
  46. XuL. ChenY. ZhangP. TangJ. XueY. LuoH. DaiR. JinJ. LiuJ. 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor photothermal-chemotherapy and wound healing.Biomater. Sci.202210195648566110.1039/D2BM00903J35994007
    [Google Scholar]
  47. YangX. WangY. MaoT. WangY. LiuR. YuL. DingJ. An oxygen-enriched thermosensitive hydrogel for the relief of a hypoxic tumor microenvironment and enhancement of radiotherapy.Biomater. Sci.20219227471748210.1039/D1BM01280K34617528
    [Google Scholar]
  48. ZhangJ. LinW. YangL. ZhangA. ZhangY. LiuJ. LiuJ. Injectable and pH-responsive self-assembled peptide hydrogel for promoted tumor cell uptake and enhanced cancer chemotherapy.Biomater. Sci.202210385486210.1039/D1BM01788H35006223
    [Google Scholar]
  49. AraújoD. MartinsM. FreitasF. Exploring the drug-loading and release ability of fucopol hydrogel membranes.Int. J. Mol. Sci.202324191459110.3390/ijms24191459137834039
    [Google Scholar]
  50. ZhuR. LiaoH. HuangY. ShenH. Application of injectable hydrogels as delivery systems in osteoarthritis and rheumatoid arthritis.Br. J. Hosp. Med. (Lond.)202485814110.12968/hmed.2024.034739212571
    [Google Scholar]
  51. StojanovicS. GraudinsL.V. AungA.K. GrannellL. HewM. ZubrinichC. Safety of intravenous iron following infusion reactions.J. Allergy. Clin. Immunol. Pract.2021941660166610.1016/j.jaip.2020.11.02833248279
    [Google Scholar]
  52. AlotaibiB.S. BuabeidM. IbrahimN.A. KharabaZ.J. IjazM. MurtazaG. Recent strategies driving oral biologic administration.Expert. Rev. Vaccines202120121587160110.1080/14760584.2021.199004434612121
    [Google Scholar]
  53. FilhoD. GuerreroM. PariguanaM. MaricanA. Durán-LaraE.F. Hydrogel-based microneedle as a drug delivery system.Pharmaceutics20231510244410.3390/pharmaceutics1510244437896204
    [Google Scholar]
  54. CaoH. DuanL. ZhangY. CaoJ. ZhangK. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct. Target. Ther.20216142610.1038/s41392‑021‑00830‑x34916490
    [Google Scholar]
  55. WangS. TohtiM. ZhangJ. LiJ. LiD. Acylhydrazone-derived whole pectin-based hydrogel as an injectable drug delivery system.Int. J. Biol. Macromol.202325112627610.1016/j.ijbiomac.2023.12627637582429
    [Google Scholar]
  56. AiY. LinZ. ZhaoW. CuiM. QiW. HuangR. SuR. Nanocellulose-based hydrogels for drug delivery.J. Mater. Chem. B. Mater. Biol. Med.202311307004702310.1039/D3TB00478C37313732
    [Google Scholar]
  57. FreedmanB.R. KuttlerA. BeckmannN. NamS. KentD. SchuleitM. RamazaniF. AccartN. RockA. LiJ. KurzM. FischA. UllrichT. HastM.W. TinguelyY. WeberE. MooneyD.J. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity.Nat. Biomed. Eng.20226101167117910.1038/s41551‑021‑00810‑034980903
    [Google Scholar]
  58. RaoN. AgmonG. TierneyM.T. UngerleiderJ.L. BradenR.L. SaccoA. ChristmanK.L. Engineering an injectable muscle-specific microenvironment for improved cell delivery using a nanofibrous extracellular matrix hydrogel.ACS Nano20171143851385910.1021/acsnano.7b0009328323411
    [Google Scholar]
  59. DzhonovaD. OlariuR. LeckenbyJ. DhayaniA. VemulaP.K. ProstJ.C. BanzY. TaddeoA. RiebenR. Local release of tacrolimus from hydrogel-based drug delivery system is controlled by inflammatory enzymes in vivo and can be monitored non-invasively using in vivo imaging.PLoS One2018138e020340910.1371/journal.pone.020340930161258
    [Google Scholar]
  60. GilmoreD. SchulzM. LiuR. ZubrisK.A.V. PaderaR.F. CatalanoP.J. GrinstaffM.W. ColsonY.L. Cytoreductive surgery and intraoperative administration of paclitaxel-loaded expansile nanoparticles delay tumor recurrence in ovarian carcinoma.Ann. Surg. Oncol.20132051684169310.1245/s10434‑012‑2696‑523128939
    [Google Scholar]
  61. HendriksB.S. ReynoldsJ.G. KlinzS.G. GerettiE. LeeH. LeonardS.C. GaddyD.F. EspelinC.W. NielsenU.B. WickhamT.J. Multiscale kinetic modeling of liposomal Doxorubicin delivery quantifies the role of tumor and drug-specific parameters in local delivery to tumors.CPT Pharmacometrics Syst. Pharmacol.201211111110.1038/psp.2012.1623835797
    [Google Scholar]
  62. HiguchiT. LiC.P. HirotaY. HayashiY. ArisawaF. ManabeI. SakuraiT. AdachiA. SaitoT. A long-term survival case of histiocytic sarcoma by surgery alone in a Japanese elderly breast tumor patient.Surg. Case Rep.2023913310.1186/s40792‑023‑01609‑836849750
    [Google Scholar]
  63. HillT.K. KelkarS.S. WojtynekN.E. SouchekJ.J. PayneW.M. StumpfK. MariniF.C. MohsA.M. Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery.Theranostics20166132314232810.7150/thno.1651427877237
    [Google Scholar]
  64. HuangX. WangL. GuoH. ZhangW. Macrophage membrane-coated nanovesicles for dual-targeted drug delivery to inhibit tumor and induce macrophage polarization.Bioact. Mater.202323697910.1016/j.bioactmat.2022.09.02736406251
    [Google Scholar]
  65. IshikoT BeppuT SugiyamaS SuyamaK TashimaR MasudaT HirataA KanemitsuK EgamiH BabaH. Local ablation therapy for hepatocellular carcinoma (HCC) on the liver surface: radio-frequency ablation aimed at tumor marginal pre-ablation under endoscopic surgery.Gan To Kagaku Ryoho.2005321116571659
    [Google Scholar]
  66. JiangY. LinN. HuangS. LinC. JinN. ZhangZ. KeJ. YuY. ZhuJ. WangY. Tracking nonpalpable breast cancer for breast-conserving surgery with carbon nanoparticles: implication in tumor location and lymph node dissection.Medicine (Baltimore)20159410e60510.1097/MD.000000000000060525761181
    [Google Scholar]
  67. ZhangM. WangH. DaiG.C. LuP.P. GaoY.C. CaoM.M. LiY.J. RuiY.F. Injectable self-assembled GDF5- containing dipeptide hydrogels for enhanced tendon repair.Mater. Today Bio20242610104610.1016/j.mtbio.2024.10104638600922
    [Google Scholar]
  68. KongX. FengM. WuL. HeY. MaoH. GuZ. Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment.Drug Deliv.20222911595160710.1080/10717544.2022.207598435612309
    [Google Scholar]
  69. KuddushiM. RayD. AswalV. HoskinsC. MalekN. Poly (vinyl alcohol) and functionalized ionic liquid-based smart hydrogels for doxorubicin release.ACS Appl. Bio Mater.2020384883489410.1021/acsabm.0c0039335021732
    [Google Scholar]
  70. LinC. ZhangX. ChenH. BianZ. ZhangG. RiazM.K. TyagiD. LinG. ZhangY. WangJ. LuA. YangZ. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide.Drug Deliv.201825125626610.1080/10717544.2018.142577729334814
    [Google Scholar]
  71. LinN. QiuJ. WuW. YangW. WangY. Preoperative carbon nanoparticles and titanium clip combined labeling method for transverse colon tumor surgery.Asian J. Surg.201942884484510.1016/j.asjsur.2019.04.00631248750
    [Google Scholar]
  72. LiuR. XuB. MaZ. YeH. GuanX. KeY. XiangZ. ShiQ. Controlled release of nitric oxide for enhanced tumor drug delivery and reduction of thrombosis risk.RSC Advances20221250323553236410.1039/D2RA05438H36425712
    [Google Scholar]
  73. MarcuelloM. MayolX. Felipe-FumeroE. CostaJ. López-HierroL. SalvansS. AlonsoS. PascualM. GrandeL. PeraM. Modulation of the colon cancer cell phenotype by pro-inflammatory macrophages: A preclinical model of surgery-associated inflammation and tumor recurrence.PLoS One2018132e019295810.1371/journal.pone.019295829462209
    [Google Scholar]
  74. QiuZ. YuZ. XuT. WangL. MengN. JinH. XuB. Novel nano-drug delivery system for brain tumor treatment.Cells20221123376110.3390/cells1123376136497021
    [Google Scholar]
  75. ChenM. CuiY. WangY. ChangC. Triple physically cross-linked hydrogel artificial muscles with high-stroke and high-work capacity.Chem. Eng. J.202345313989310.1016/j.cej.2022.139893
    [Google Scholar]
  76. ZhouJ. LiuW. ZhaoX. XianY. WuW. ZhangX. ZhaoN. XuF.J. WangC. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization.Adv. Sci. (Weinh.)2021820210050510.1002/advs.20210050534414693
    [Google Scholar]
  77. HyldahlR.D. OlsonT. WellingT. GroscostL. ParcellA.C. Satellite cell activity is differentially affected by contraction mode in human muscle following a work- matched bout of exercise.Front. Physiol.2014548510.3389/fphys.2014.0048525566087
    [Google Scholar]
  78. ShanB.H. WuF.G. Hydrogel-based growth factor delivery platforms: strategies and recent advances.Adv. Mater.2024365221070710.1002/adma.20221070737009859
    [Google Scholar]
  79. CensiR. DubbiniA. MatricardiP. Bioactive hydrogel scaffolds - advances in cartilage regeneration through controlled drug delivery.Curr. Pharm. Des.201521121545155510.2174/138161282166615011515071225594409
    [Google Scholar]
  80. LinC.Y. BattistoniC.M. LiuJ.C. Redox-responsive hydrogels with decoupled initial stiffness and degradation.Biomacromolecules202122125270528010.1021/acs.biomac.1c0118034793135
    [Google Scholar]
  81. WilliamsM.A.C. MairD.B. LeeW. LeeE. KimD.H. Engineering three-dimensional vascularized cardiac tissues.Tissue Eng. Part B Rev.202228233635010.1089/ten.teb.2020.034333559514
    [Google Scholar]
  82. OwhC. OwV. LinQ. WongJ.H.M. HoD. LohX.J. XueK. Bottom-up design of hydrogels for programmable drug release.Biomater. Adv.202214121310010.1016/j.bioadv.2022.21310036096077
    [Google Scholar]
  83. YuanW. LiZ. XieX. ZhangZ.Y. BianL. Bisphosphonate-based nanocomposite hydrogels for biomedical applications.Bioact. Mater.20205481983110.1016/j.bioactmat.2020.06.00232637746
    [Google Scholar]
  84. UllahA. LimS.I. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications.Int. J. Pharm.202261212136810.1016/j.ijpharm.2021.12136834896566
    [Google Scholar]
  85. Huerta-LópezC. Alegre-CebolladaJ. Protein hydrogels: the swiss army knife for enhanced mechanical and bioactive properties of biomaterials.Nanomaterials (Basel)2021117165610.3390/nano1107165634202469
    [Google Scholar]
  86. QaziT.H. MuirV.G. BurdickJ.A. Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion.ACS Biomater. Sci. Eng.2022841427144210.1021/acsbiomaterials.1c0144035330993
    [Google Scholar]
  87. DhandA.P. GalarragaJ.H. BurdickJ.A. Enhancing biopolymer hydrogel functionality through interpenetrating networks.Trends Biotechnol.202139551953810.1016/j.tibtech.2020.08.00732950262
    [Google Scholar]
  88. NiuB. JiaJ. WangH. ChenS. CaoW. YanJ. GongX. LianX. LiW. FanY.Y. In vitro and in vivo release of diclofenac sodium-loaded sodium alginate/carboxymethyl chitosan-ZnO hydrogel beads.Int. J. Biol. Macromol.20191411191119810.1016/j.ijbiomac.2019.09.05931518622
    [Google Scholar]
  89. TianB. LiuJ. GuoS. LiA. WanJ.B. Macromolecule-based hydrogels nanoarchitectonics with mesenchymal stem cells for regenerative medicine: A review.Int. J. Biol. Macromol.202324312516110.1016/j.ijbiomac.2023.12516137270118
    [Google Scholar]
  90. BruggemanK.F. WangY. MacleanF.L. ParishC.L. WilliamsR.J. NisbetD.R. Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold.Nanoscale2017936136611366910.1039/C7NR05004F28876347
    [Google Scholar]
  91. CirizaJ. Rodríguez-RomanoA. NoguerolesI. Gallego- FerrerG. CabezueloR.M. PedrazJ.L. RicoP. Borax-loaded injectable alginate hydrogels promote muscle regeneration in vivo after an injury.Mater. Sci. Eng. C202112311200310.1016/j.msec.2021.11200333812623
    [Google Scholar]
  92. HeP. DaiL. WeiJ. ZhuX. LiJ. ChenZ. NiY. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review.Int. J. Biol. Macromol.2022122Pt A83084310.1016/j.ijbiomac.2022.09.214
    [Google Scholar]
  93. LeiT. PanJ. WangN. XiaZ. ZhangQ. FanJ. TaoL. ShouW. GaoY. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports.Mater. Horiz.20241151234125010.1039/D3MH02013D38131412
    [Google Scholar]
  94. LiuR. LiuY. ChengY. LiuH. FuS. JinK. LiD. FuZ. HanY. WangY. TianY. Aloe inspired special structure hydrogel pressure sensor for real-time human- computer interaction and muscle rehabilitation system.Adv. Funct. Mater.20233350230817510.1002/adfm.202308175
    [Google Scholar]
  95. LiZ. LiZ. ZhouS. ZhangJ. ZongL. Biomimetic multiscale oriented PVA/NR1 hydrogel enabled multistimulus responsive and smart shape memory actuator.Small20242025231124010.1002/smll.20231124038299719
    [Google Scholar]
  96. MaY. HuaM. WuS. DuY. PeiX. ZhuX ZhouF. HeX. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil.Sci. Adv.2020647eabd252010.1126/sciadv.abd2520
    [Google Scholar]
  97. LessmannT. JonesS.A. VoigtT. WeisbrodS. KrackerO. WinterS. ZúñigaL.A. StarkS. BisekN. SprogøeK. Degradable hydrogel for sustained localized delivery of anti-tumor drugs.J. Pharm. Sci.2023112112843285210.1016/j.xphs.2023.05.01837279836
    [Google Scholar]
  98. SpangM.T. MiddletonR. DiazM. HunterJ. MesfinJ. BankaA. SullivanH. WangR. LazersonT.S. BhatiaS. CorbittJ. D’EliaG. Sandoval-GomezG. KandellR. VratsanosM.A. GnanasekaranK. KatoT. IgataS. LuoC. OsbornK.G. GianneschiN.C. Eniola-AdefesoO. CabralesP. KwonE.J. ContijochF. ReevesR.R. DeMariaA.N. ChristmanK.L. Intravascularly infused extracellular matrix as a biomaterial for targeting and treating inflamed tissues.Nat. Biomed. Eng.2022729410910.1038/s41551‑022‑00964‑536581694
    [Google Scholar]
  99. VolpiM. ParadisoA. CostantiniM. ŚwiȩszkowskiW. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering.ACS Biomater. Sci. Eng.20228237940510.1021/acsbiomaterials.1c0114535084836
    [Google Scholar]
  100. DengW. WeiF. HuJ. Muscle contraction-inspired tough hydrogels.ACS Appl. Mater. Interfaces20231568462847010.1021/acsami.2c2031936734606
    [Google Scholar]
  101. KassL.E. NguyenJ. Nanocarrier-hydrogel composite delivery systems for precision drug release.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022142e175610.1002/wnan.175634532989
    [Google Scholar]
  102. LiY. HanM. CaiY. JiangB. ZhangY. YuanB. ZhouF. CaoC. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing.Biomater. Sci.20221041068108210.1039/D1BM01604K35037673
    [Google Scholar]
  103. LiuG. WuR. YangB. ShiY. DengC. AtalaA. MouS. CriswellT. ZhangY. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo.Acta Biomater.2020107506410.1016/j.actbio.2020.02.00532044457
    [Google Scholar]
  104. YudaevP. ButorovaI. ChuevV. PosokhovaV. KlyukinB. ChistyakovE. Wound gel with antimicrobial effects based on polyvinyl alcohol and functional aryloxycyclotriphosphazene.Polymers (Basel)20231513283110.3390/polym1513283137447477
    [Google Scholar]
  105. YudaevP.A. ChistyakovE.M. Progress in dental materials: application of natural ingredients.Russ. Chem. Rev.2024933RCR510810.59761/RCR5108
    [Google Scholar]
  106. YudaevP. ChuevV. KlyukinB. KuskovA. MezhuevY. ChistyakovE. Polymeric dental nanomaterials: antimicrobial action.Polymers (Basel)202214586410.3390/polym1405086435267686
    [Google Scholar]
  107. YudaevP. MezhuevY. ChistyakovE. Nanoparticle- containing wound dressing: antimicrobial and healing effects.Gels20228632910.3390/gels806032935735673
    [Google Scholar]
  108. KaramiP. StampoultzisT. GuoY. PiolettiD.P. A guide to preclinical evaluation of hydrogel-based devices for treatment of cartilage lesions.Acta Biomater.2023158123110.1016/j.actbio.2023.01.01536638938
    [Google Scholar]
  109. DuchiS. FrancisS.L. OnofrilloC. O’ConnellC.D. ChoongP. Di BellaC. Towards clinical translation of in situ cartilage engineering strategies: optimizing the critical facets of a cell-laden hydrogel therapy.Tissue Eng. Regen. Med.2023201254710.1007/s13770‑022‑00487‑936244053
    [Google Scholar]
  110. NamS. SeoB.R. NajibiA.J. McNamaraS.L. MooneyD.J. Active tissue adhesive activates mechanosensors and prevents muscle atrophy.Nat. Mater.202322224925910.1038/s41563‑022‑01396‑x36357687
    [Google Scholar]
  111. OuY. TianM. Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20219387955797110.1039/D1TB01363G34611684
    [Google Scholar]
  112. WangT. HuangG. YiZ. DaiS. ZhuangW. GuoS. Advances in extracellular vesicle-based combination therapies for spinal cord injury.Neural Regen. Res.202419236937410.4103/1673‑5374.37741337488892
    [Google Scholar]
  113. FentonO.S. AndresenJ.L. PaoliniM. LangerR. β-aminoacrylate synthetic hydrogels: easily accessible and operationally simple biomaterials networks.Angew. Chem. Int. Ed.20185749160261602910.1002/anie.20180845230209869
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673360294241217061953
Loading
/content/journals/cmc/10.2174/0109298673360294241217061953
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test