Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

This study aimed to screen the potential phytochemicals derived from (Shatavari) against Thymidylate Kinase (TMPK) and D9 decapping enzyme, which is the vital target of the monkeypox virus and helps in the host- pathogen interaction mechanism, using integrated docking, QSAR analysis, and a molecular dynamics approach.

Background

The Monkeypox Virus (MPXV) is a recently emerging outbreak with ongoing infection cases. Drugs and vaccines for smallpox are being used to reduce the infection. However, no specific drugs or vaccines are available to combat this infection.

Methods

The TMPK and D9 decapping enzymes were retrieved from the MPXV virus UK strain in FASTA format. Due to the unavailability of an experimentally determined structure, the 3D structure was modelled SWISS-MODEL and further enhanced and validated. The structure was subjected to docking analysis with the derived phytochemicals from using a maestro module. The potential inhibitors were examined QSAR analysis. Additionally, through MD simulation 250 ns, the stability was analyzed, and the MM-GBSA was employed to calculate the binding affinities.

Results

The molecular investigation revealed asparoside-C (PubChem ID: 158598) and asparoside-D (PubChem ID: 158597) to be potential hits among others for both targets (TMPK and D9 decapping enzyme) compared to the reference drugs, , tecovirimat, brincidofovir, and cidofovir, possessing antiviral and required bioactivity analyzed the ADME and QSAR analyses. Moreover, the simulation study of over 250 ns revealed strong stability, followed by RMSD, RMSF, The free energy calculation MM-GBSA exhibited strong affinities of asparoside-C and asparoside-D towards the TMPK and the D9 decapping enzyme according to their respective scores.

Conclusion

The docking, QSAR, and simulation investigation revealed dual-target inhibitors activity of phytochemicals from towards the MPXV targeting TMPK and D9 decapping enzyme. It has been observed that asparoside-D and asparoside-C can potentially combat MPXV.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673361923250101072831
2025-02-10
2025-11-01
Loading full text...

Full text loading...

References

  1. AdedoyinO.B. SoykanE. COVID-19 pandemic and online learning: The challenges and opportunities.Interact. Learn. Environ.202331286387510.1080/10494820.2020.1813180
    [Google Scholar]
  2. MishraS.K. PriyaP. RaiG.P. HaqueR. ShankerA. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2.Comput. Biol. Med.202316310723310.1016/j.compbiomed.2023.10723337422941
    [Google Scholar]
  3. BragazziN.L. WoldegerimaW.A. IyaniwuraS.A. HanQ. WangX. ShausanA. BaduK. OkwenP. PrescodC. WestinM. OmameA. ConvertiM. MelladoB. WuJ. KongJ.D. Knowing the unknown: The underestimation of monkeypox cases. Insights and implications from an integrative review of the literature.Front. Microbiol.202213101104910.3389/fmicb.2022.101104936246252
    [Google Scholar]
  4. HuggettJ.F. FrenchD. O’SullivanD.M. Moran-GiladJ. ZumlaA. Monkeypox: Another test for PCR.Euro Surveill.20222732220049710.2807/1560‑7917.ES.2022.27.32.220049735959687
    [Google Scholar]
  5. SahuA. GaurM. MahanandiaN.C. SubudhiE. SwainR.P. SubudhiB.B. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs against them: An in silico approach.Comput. Biol. Med.202316110697110.1016/j.compbiomed.2023.10697137211001
    [Google Scholar]
  6. PodduturiS. VemulaD. SingothuS. BhandariV. In-silico investigation of E8 surface protein of the monkeypox virus to identify potential therapeutic agents.J. Biomol. Struct. Dyn.202311437555596
    [Google Scholar]
  7. LikosA.M. SammonsS.A. OlsonV.A. FraceA.M. LiY. Olsen-RasmussenM. DavidsonW. GallowayR. KhristovaM.L. ReynoldsM.G. ZhaoH. CarrollD.S. CurnsA. FormentyP. EspositoJ.J. RegneryR.L. DamonI.K. A tale of two clades: Monkeypox viruses.J. Gen. Virol.200586102661267210.1099/vir.0.81215‑016186219
    [Google Scholar]
  8. LadnyjI.D. ZieglerP. KimaE. A human infection caused by monkeypox virus in basankusu territory, democratic republic of the congo.Bull. World Health Organ.19724655935974340218
    [Google Scholar]
  9. JezekZ. KhodakevichL.N. WickettJ.F. Smallpox and its post-eradication surveillance.Bull. World Health Organ.19876544254343319266
    [Google Scholar]
  10. NakazawaY. MauldinM. EmersonG. ReynoldsM. LashR. GaoJ. ZhaoH. LiY. MuyembeJ.J. KingebeniP. WemakoyO. MalekaniJ. KaremK. DamonI. CarrollD. A phylogeographic investigation of African monkeypox.Viruses2015742168218410.3390/v704216825912718
    [Google Scholar]
  11. GhateS.D. PintoL. AlvaS. SrinivasaM.G. VangalaR.K. NaikP. RevanasiddappaB.C. RaoR.S.P. In silico identification of potential phytochemical inhibitors for mpox virus: Molecular docking, MD simulation, and ADMET studies.Mol. Divers.202410.1007/s11030‑023‑10797‑238519803
    [Google Scholar]
  12. OtuA. EbensoB. WalleyJ. BarcelóJ.M. OchuC.L. Global human monkeypox outbreak: Atypical presentation demanding urgent public health action.Lancet Microbe202238e554e55510.1016/S2666‑5247(22)00153‑735688169
    [Google Scholar]
  13. SahooA.K. AugusthianP.D. MuralitharanI. Vivek-AnanthR.P. KumarK. KumarG. RanganathanG. SamalA. In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs.Mol. Divers.202211636331784
    [Google Scholar]
  14. ChadhaJ. KhullarL. GulatiP. ChhibberS. HarjaiK. Insights into the monkeypox virus: Making of another pandemic within the pandemic?Environ. Microbiol.202224104547456010.1111/1462‑2920.1617435974453
    [Google Scholar]
  15. RaoA.K. PetersenB.W. WhitehillF. RazeqJ.H. IsaacsS.N. MerchlinskyM.J. Campos-OutcaltD. MorganR.L. DamonI. SánchezP.J. BellB.P. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: Recommendations of the advisory committee on immunization practices — United States, 2022.MMWR Morb. Mortal. Wkly. Rep.2022712273474210.15585/mmwr.mm7122e135653347
    [Google Scholar]
  16. KhameesA. AwadiS. Al-ShamiK. AlkhounH.A. Al-EitanS.F. AlsheikhA.M. SaeedA. Al-ZoubiR.M. ZoubiM.S.A. Human monkeypox virus in the shadow of the COVID-19 pandemic.J. Infect. Public Health20231681149115710.1016/j.jiph.2023.05.01337269693
    [Google Scholar]
  17. SiegristE.A. SassineJ. Antivirals with activity against Mpox: A clinically oriented review.Clin. Infect. Dis.202376115516410.1093/cid/ciac62235904001
    [Google Scholar]
  18. CaillatC. TopalisD. AgrofoglioL.A. PochetS. BalzariniJ. Deville-BonneD. MeyerP. Crystal structure of poxvirus thymidylate kinase: An unexpected dimerization has implications for antiviral therapy.Proc. Natl. Acad. Sci. USA200810544169001690510.1073/pnas.080452510518971333
    [Google Scholar]
  19. GuimarãesA.P. RamalhoT.C. FrançaT.C.C. Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase from Variola virus.J. Biomol. Struct. Dyn.201432101601161210.1080/07391102.2013.83057823998201
    [Google Scholar]
  20. BednarczykM. PetersJ.K. KasprzykR. StarekJ. WarminskiM. SpiewlaT. MugridgeJ.S. GrossJ.D. JemielityJ. KowalskaJ. Fluorescence-based activity screening assay reveals small molecule inhibitors of vaccinia virus mRNA decapping enzyme D9.ACS Chem. Biol.20221761460147110.1021/acschembio.2c0004935576528
    [Google Scholar]
  21. FarlowJ. IchouM.A. HugginsJ. IbrahimS. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus.Virol. J.20107111010.1186/1743‑422X‑7‑11020509894
    [Google Scholar]
  22. KhanA. AdilS. QudsiaH.A. WaheedY. AlshabrmiF.M. WeiD.Q. Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations.Comput. Biol. Med.202315810679710.1016/j.compbiomed.2023.10679736966556
    [Google Scholar]
  23. Tuz-ZohuraF. ShawonA.R.M. HasanM.M. AeyasA. ChowdhuryF.I. KhandakerM.U. In-silico approach to designing effective antiviral drugs against SARS-CoV-2 and SARS-CoV-1 from reported phytochemicals: A quality improvement study.Ann. Med. Surg.20238573446346010.1097/MS9.000000000000083937427236
    [Google Scholar]
  24. ChikhaleR.V. GuptaV.K. EldesokyG.E. WabaidurS.M. PatilS.A. IslamM.A. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies.J. Biomol. Struct. Dyn.202011632741259
    [Google Scholar]
  25. VegadU.G. GajjarN.D. NagarP.R. ChauhanS.P. PandyaD.J. DhameliyaT.M. In silico screening, ADMET analysis and MD simulations of phytochemicals of Onosma bracteata Wall. as SARS CoV-2 inhibitors.3 Biotech2023137221
    [Google Scholar]
  26. HalderS.K. SultanaI. ShuvoM.N. ShilA. HimelM.K. HasanM.A. ShawanM.M.A.K. In silico identification and analysis of potentially bioactive antiviral phytochemicals against SARS-CoV-2: A molecular docking and dynamics simulation approach.BioMed Res. Int.202320231546925810.1155/2023/546925837214084
    [Google Scholar]
  27. KurniaD. PutriS.A. TumilaarS.G. ZainuddinA. DharsonoH.D.A. AminM.F. In silico study of antiviral activity of polyphenol compounds from ocimum basilicum by molecular docking, ADMET, and drug-likeness analysis.Adv. Appl. Bioinform. Chem.202316374710.2147/AABC.S40317537131997
    [Google Scholar]
  28. SruthiD. DhanalakshmiM. RaoH.C.Y. ParthasarathyR. DeepanrajS.P. JayabaskaranC. Curative potential of high-value phytochemicals on COVID-19 infection.Biochemistry2023881647210.1134/S000629792301006637068882
    [Google Scholar]
  29. Vakhariya SakinaS. MishraS.K. SharmaK. GeorrgeJ.J. Designing of a novel curcumin analogue to inhibit mitogen-activated protein kinase: A cheminformatics approach.J. Phytonanotechnol. Pharm. Sci.2023313747
    [Google Scholar]
  30. ZhaX. JiR. ZhouS. Marine bacteria: A source of novel bioactive natural products.Curr. Med. Chem.202431416842685410.2174/092986733166623082110252137605398
    [Google Scholar]
  31. AlokS. JainS.K. VermaA. KumarM. MahorA. SabharwalM. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review.Asian Pac. J. Trop. Dis.20133324225110.1016/S2222‑1808(13)60049‑3
    [Google Scholar]
  32. BoonsomT. WaranuchN. IngkaninanK. DenduangboripantJ. SukrongS. Molecular analysis of the genus Asparagus based on matK sequences and its application to identify A. racemosus, a medicinally phytoestrogenic species.Fitoterapia201283594795310.1016/j.fitote.2012.04.01422542919
    [Google Scholar]
  33. UpadhyayS. JeenaG.S. KumarS. ShuklaR.K. Asparagus racemosus bZIP transcription factor-regulated squalene epoxidase (ArSQE) promotes germination and abiotic stress tolerance in transgenic tobacco.Plant Sci.202029011029110.1016/j.plantsci.2019.11029131779892
    [Google Scholar]
  34. LalertL. KruevaisayawanH. AmatyakulP. IngkaninanK. KhongsombatO. Neuroprotective effect of Asparagus racemosus root extract via the enhancement of brain-derived neurotrophic factor and estrogen receptor in ovariectomized rats.J. Ethnopharmacol.201822533634110.1016/j.jep.2018.07.01430009979
    [Google Scholar]
  35. KohliD. ChampawatP.S. MudgalV.D. Asparagus (Asparagus racemosus L.) roots: nutritional profile, medicinal profile, preservation, and value addition.J. Sci. Food Agric.202310352239225010.1002/jsfa.1235836433663
    [Google Scholar]
  36. KishoreN. BalakumarS. David RajC. SivakumarN. ThirumalaivasanR. MaheshN. SelvankumarT. Implications of Asparagus racemosus and Terminalia chebula extracts on oxazolone induced inflammatory bowel disease in Danio rerio (zebrafish).Biocatal. Agric. Biotechnol.20235110279010.1016/j.bcab.2023.102790
    [Google Scholar]
  37. KrishnanA. PackirisamyA.S.B. Exploration of therapeutic potential and pesticidal activity of Sapindus mukorossi by In vitro and In silico profiling of phytochemicals.J. Mol. Struct.2024131513886610.1016/j.molstruc.2024.138866
    [Google Scholar]
  38. JeevanandamJ. MadhumithaR. SaraswathiN.T. Identification of potential phytochemical lead against diabetic cataract: An in silico approach.J. Mol. Struct.2021122612942810.1016/j.molstruc.2020.129428
    [Google Scholar]
  39. Sushma PrasadD. MaithaniR. SafiZ. WazzanN. BerishaA. To investigate the anticorrosive properties of Ageratina adenophora extract as a green inhibitor for SS-410 in hydrochloric acid solution: Experimental and computational studies.J. Mol. Struct.2024131313856010.1016/j.molstruc.2024.138560
    [Google Scholar]
  40. ChikhaleR.V. SinhaS.K. PatilR.B. PrasadS.K. ShakyaA. GuravN. PrasadR. DhaswadikarS.R. WanjariM. GuravS.S. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19.J. Biomol. Struct. Dyn.202139145033504710.1080/07391102.2020.178428932579064
    [Google Scholar]
  41. Ait LahcenN. LimanW. OubahmaneM. HdoufaneI. HabibiY. AlanaziA.S. AlanaziM.M. DelaiteC. MaatallahM. CherqaouiD. Drug design of new anti-EBOV inhibitors: QSAR, homology modeling, molecular docking and molecular dynamics studies.Arab. J. Chem.202417910587010.1016/j.arabjc.2024.105870
    [Google Scholar]
  42. WangY. XuT. ChenX. YeY. LiuL. WangY. ZhangP. Network pharmacology and molecular docking approach to investigate the mechanism of a Chinese herbal formulation Yougui pills against steroid-related osteonecrosis of the femoral head.Arab. J. Chem.202417310560910.1016/j.arabjc.2024.105609
    [Google Scholar]
  43. AlqahtaniS.M. A multi-target mechanism of Withania somnifera bioactive compounds in autism spectrum disorder (ASD) treatment: Network pharmacology, molecular docking, and molecular dynamics simulations studies.Arab. J. Chem.202417610577210.1016/j.arabjc.2024.105772
    [Google Scholar]
  44. XuS. YuanH. LiL. YangK. ZhaoL. Computational screening of potential bromodomain-containing protein 2 inhibitors for blocking SARS-CoV-2 infection through pharmacophore modeling, molecular docking and molecular dynamics simulation.Arab. J. Chem.202417110536510.1016/j.arabjc.2023.105365
    [Google Scholar]
  45. MishraS.K. Jeba PrabaJ. GeorrgeJ.J. An emerging trends of bioinformatics and big data analytics in healthcare. Digital transformation in healthcare 5.0.Metaverse, Nanorobots and Machine LearningDe Gruyter2024Vol. 2159
    [Google Scholar]
  46. LuukkonenS. van den MaagdenbergH.W. EmmerichM.T.M. van WestenG.J.P. Artificial intelligence in multi-objective drug design.Curr. Opin. Struct. Biol.20237910253710.1016/j.sbi.2023.10253736774727
    [Google Scholar]
  47. VinjodaP. Nanotechnology and In Silico Tools.Elsevier202437738310.1016/B978‑0‑443‑15457‑7.00007‑1
    [Google Scholar]
  48. VaghasiaV.V. Nanotechnology and In Silico Tools.Elsevier202430931710.1016/B978‑0‑443‑15457‑7.00015‑0
    [Google Scholar]
  49. SinhaP. YadavA.K. Unraveling the anti-breast cancer activity of Cimicifugae rhizoma using biological network pathways and molecular dynamics simulation.Mol. Divers.202410.1007/s11030‑024‑10847‑338615110
    [Google Scholar]
  50. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS- MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky42729788355
    [Google Scholar]
  51. KoJ. ParkH. HeoL. SeokC. GalaxyWEB server for protein structure prediction and refinement.Nucleic Acids Res.201240W294W29710.1093/nar/gks493
    [Google Scholar]
  52. StuderG. RempferC. WaterhouseA.M. GumiennyR. HaasJ. SchwedeT. QMEAND is Co-distance constraints applied on model quality estimation.Bioinformatics20203661765177110.1093/bioinformatics/btz82831697312
    [Google Scholar]
  53. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735W407W41010.1093/nar/gkm290
    [Google Scholar]
  54. AhmadS. BhanuP. KumarJ. PathakR.K. MallickD. UttarkarA. NiranjanV. MishraV. Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid.Bioinformation202218317017910.6026/9732063001817036518123
    [Google Scholar]
  55. VennilaK.N. ElangoK.P. In silico molecular modelling to identify PDK-1 targeting agents based on its protein-protein docking interaction.J. Biomol. Struct. Dyn.202311237646644
    [Google Scholar]
  56. JorgensenW.L. Tirado-RivesJ. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin.J. Am. Chem. Soc.198811061657166610.1021/ja00214a00127557051
    [Google Scholar]
  57. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field.J. Chem. Theory Comput.2010651509151910.1021/ct900587b26615687
    [Google Scholar]
  58. JakubecD. SkodaP. KrivakR. NovotnyM. HokszaD. PrankWeb 3: Accelerated ligand-binding site predictions for experimental and modelled protein structures.Nucleic Acids Res.202250W1W593W59710.1093/nar/gkac38935609995
    [Google Scholar]
  59. PitsillouE. LiangJ. HungA. KaragiannisT.C. The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of potential small molecule inhibitors by in silico modelling.J. Mol. Graph. Model.202211410819310.1016/j.jmgm.2022.10819335462185
    [Google Scholar]
  60. LankaG. BanerjeeS. AdhikariN. GhoshB. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches.Mol. Divers.202410.1007/s11030‑024‑10837‑538637479
    [Google Scholar]
  61. VermaS. SahuA. PradhanD. RazaK. QaziS. JainA.K. Computational screening for finding new potent COX-2 inhibitors as anticancer agents.Lett. Drug Des. Discov.202320221322410.2174/1570180819666220128122553
    [Google Scholar]
  62. dos Santos CorreiaP.R. de SouzaA.H.D. ChaparroA.R. Tenorio BarajasA.Y. PortoR.S. Molecular docking, ADMET analysis and molecular dynamics (MD) simulation to identify synthetic isoquinolines as potential inhibitors of SARS-CoV-2 MPRO.Curr. Computeraided Drug Des.202319539140410.2174/157340991966623012315001336694326
    [Google Scholar]
  63. JawarkarR.D. ZakiM.E.A. Al-HussainS.A. Al-MutairiA.A. SamadA. MasandV. HumaneV. MaliS. AlzahraniA.Y.A. RashidS. ElossailyG.M. Mechanistic QSAR modeling derived virtual screening, drug repurposing, ADMET and in - vitro evaluation to identify anticancer lead as lysine-specific demethylase 5a inhibitor.J. Biomol. Struct. Dyn.202413110.1080/07391102.2024.231910438385447
    [Google Scholar]
  64. JangraJ. BajadN.G. SinghR. KumarA. SinghS.K. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer’s disease.Mol. Divers.2024284381440110.1007/s11030‑024‑10821‑z38517648
    [Google Scholar]
  65. ShahA.A. AhmadS. YadavM.K. RazaK. KamalM.A. AkhtarS. Structure-based virtual screening, molecular docking, molecular dynamics simulation, and metabolic reactivity studies of quinazoline derivatives for their anti-EGFR activity against tumor angiogenesis.Curr. Med. Chem.202431559561910.2174/092986733066623030914371136892124
    [Google Scholar]
  66. ThangavelN. AlbrattyM. Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids.J. King Saud Univ. Sci.202335110240210.1016/j.jksus.2022.10240236338939
    [Google Scholar]
  67. AldahhamB.J.M. Al-KhafajiK. SalehM.Y. AbdelhakemA.M. AlanaziA.M. IslamM.A. Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: A pharmacoinformatics study.J. Biomol. Struct. Dyn.20224093899390610.1080/07391102.2020.185130533252031
    [Google Scholar]
  68. DuC. YinH. XieA. YuJ. WangY. YaoF. ZhangS. ZhangY. LiuL. WangP. DongJ. XuX. Virtual screening and biological evaluation of natural products as urate transporter 1 (URAT1) inhibitors.J. Biomol. Struct. Dyn.202411410.1080/07391102.2024.233110138553409
    [Google Scholar]
  69. GopinathanA. SankheR. RathiE. KodiT. UpadhyaR. PaiK.S.R. KishoreA. An in silico drug repurposing approach to identify HDAC1 inhibitors against glioblastoma.J. Biomol. Struct. Dyn.202411410.1080/07391102.2024.233529338686917
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673361923250101072831
Loading
/content/journals/cmc/10.2174/0109298673361923250101072831
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test