Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Mannich bases, synthesized through the reaction of an aldehyde, a primary or secondary amine, and a compound bearing an acidic hydrogen atom, represent a versatile class of scaffolds in medicinal chemistry. This review explores their broad spectrum of biological activities, emphasizing their potential in combating infectious diseases. With demonstrated efficacy against bacteria, fungi, and parasites, Mannich bases stand out as promising candidates for the development of novel therapeutic agents. Their versatility arises from the ability of their electronic, steric, and conformational parameters to modulate receptor interactions, significantly expanding their applicability in drug design. The review provides an in-depth analysis of the structure-activity relationship (SAR) of Mannich bases, highlighting how specific structural modifications enhance their biological activity. Additionally, it examines the lipophilic properties of these compounds, offering key insights into their influence on pharmacokinetics and pharmacodynamics. This understanding is essential for optimizing the development of novel therapeutics, particularly for addressing challenging infectious diseases. By integrating these aspects, this review underscores the pivotal role of Mannich bases in overcoming current challenges in drug resistance and shaping the future of drug discovery and development.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673360057250219044138
2025-03-10
2025-10-01
Loading full text...

Full text loading...

References

  1. BhilareN.V. MarulkarV.S. ShiroteP.J. DombeS.A. PiseV.J. SalveP.L. BiradarS.M. YadavV.D. JadhavP.D. BodheA.A. BorkarS.P. GhadgeP.M. ShelarP.A. JadhavA.V. GodseK.C. Mannich bases: Centrality in cytotoxic drug design.Med. Chem.202218773575610.2174/157340641866621122012411934931967
    [Google Scholar]
  2. RomanG. Mannich bases in medicinal chemistry and drug design.Eur. J. Med. Chem.20158974381610.1016/j.ejmech.2014.10.07625462280
    [Google Scholar]
  3. FarhidH. KhodkariV. NazeriM.T. JavanbakhtS. ShaabaniA. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines.Org. Biomol. Chem.202119153318335810.1039/D0OB02600J33899847
    [Google Scholar]
  4. DziduchK. GreniukD. WujecM. The current directions of searching for antiparasitic drugs.Molecules202227153410.3390/molecules27051534
    [Google Scholar]
  5. TramontiniM. Advances in the Chemistry of Mannich Bases.Synthesis197319731270377510.1055/s‑1973‑22294
    [Google Scholar]
  6. MannichC. KröscheW. About a condensation product of formaldehyde, ammonia and antipyrine.Arch. Pharm. (Weinheim)1912250164766710.1002/ardp.19122500151
    [Google Scholar]
  7. GulH.I. TugrakM. GulM. MazlumogluS. SakagamiH. GulcinI. SupuranC.T. New phenolic Mannich bases with piperazines and their bioactivities.Bioorg. Chem.20199010305710.1016/j.bioorg.2019.10305731226471
    [Google Scholar]
  8. KunduB.K. RanjanR. MukherjeeA. MobinS.M. MukhopadhyayS. Mannich base Cu(II) complexes as biomimetic oxidative catalyst.J. Inorg. Biochem.201919516417310.1016/j.jinorgbio.2019.03.02330954693
    [Google Scholar]
  9. MikesellL.D. LivinghouseT. Base-catalyzed phenol-mannich condensation of preformed Cesium Iminodiacetate. The direct synthesis of Calcein Blue AM and related acyloxymethyl esters.J. Org. Chem.20238816120641206810.1021/acs.joc.3c0015537556402
    [Google Scholar]
  10. BiersackB. AhmedK. PadhyeS. SchobertR. Recent developments concerning the application of the Mannich reaction for drug design.Expert Opin. Drug Discov.2018131394910.1080/17460441.2018.140342029137490
    [Google Scholar]
  11. ShamnaS. AfsinaC.M.A. PhilipR.M. AnilkumarG. Recent advances and prospects in the Zn-catalysed Mannich reaction.RSC Advances202111169098911110.1039/D0RA10772G35423453
    [Google Scholar]
  12. FilhoJ.F.A. LemosB.C. de SouzaA.S. PinheiroS. GrecoS.J. Multicomponent mannich reactions: General aspects, methodologies and applications.Tetrahedron201773506977700410.1016/j.tet.2017.10.063
    [Google Scholar]
  13. Mannich Reaction: Chemistry score2024Available from: https://chemistryscore.com/mannich-reaction/
  14. KumarN.S. PradeepT. JaniG. SilpaD. KumarB.V. Design, synthesis, and antimicrobial screening of novel pyridyl-2-amidrazone incorporated isatin mannich bases.J. Adv. Pharm. Technol. Res.201231576110.4103/2231‑4040.9355922470895
    [Google Scholar]
  15. DatarP. LimayeS. Design and synthesis of mannich bases as benzimidazole derivatives as analgesic agents.Antiinflamm. Antiallergy Agents Med. Chem.2015141354610.2174/187152301466615031216462525764079
    [Google Scholar]
  16. CzopekA. ByrtusH. ZagórskaA. SiwekA. KazekG. BednarskiM. SapaJ. PawłowskiM. Design, synthesis, anticonvulsant, and antiarrhythmic properties of novel N-Mannich base and amide derivatives of β-tetralinohydantoin.Pharmacol. Rep.201668588689310.1016/j.pharep.2016.04.01827351944
    [Google Scholar]
  17. CaoZ. SongQ. YuG. LiuZ. CongS. TanZ. DengY. Novel 3-benzylidene/benzylphthalide Mannich base derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20213511607410.1016/j.bmc.2021.11607433640707
    [Google Scholar]
  18. RomanG. Anticancer activity of mannich bases: A review of recent literature.ChemMedChem20221716e20220025810.1002/cmdc.20220025835678192
    [Google Scholar]
  19. VedarethinamV. DhanarajK. IlavenilS. ArasuM. ChoiK. Al-DhabiN. SrisesharamS. LeeK. KimD. DhanapalT. SivanesanR. ChoiH. KimY. Antitumor effect of the mannich base(1,3-bis-((3-Hydroxynaphthalen-2-yl)phenylmethyl)urea) on hepatocellular carcinoma.Molecules201621563210.3390/molecules2105063227187346
    [Google Scholar]
  20. NguyenV.S. ShiL. WangS.C. WangQ.A. Synthesis of Icaritin and β-anhydroicaritin mannich base derivatives and their cytotoxic activities on three human cancer cell lines.Anticancer. Agents Med. Chem.201717113714210.2174/187152061666616040411121027039924
    [Google Scholar]
  21. FawzyM.A. Abu-baihR.H. Abuo-RahmaG.E.D.A. Abdel-RahmanI.M. El-SheikhA.A.K. NazmyM.H. In vitro anticancer activity of novel ciprofloxacin mannich base in lung adenocarcinoma and high-grade serous ovarian cancer cell lines via attenuating MAPK signaling pathway.Molecules2023283113710.3390/molecules2803113736770806
    [Google Scholar]
  22. BalaS. SharmaN. KajalA. KambojS. Design, synthesis, characterization, and computational studies on benzamide substituted Mannich bases as novel, potential antibacterial agents.Scientific World J.201420141910.1155/2014/73214124574915
    [Google Scholar]
  23. AouadM. Synthesis, characterization and antimicrobial evaluation of some new schiff, mannich and acetylenic Mannich bases incorporating a 1,2,4-triazole nucleus.Molecules20141911188971891010.3390/molecules19111889725412038
    [Google Scholar]
  24. Al-AbdullahE. Al-TuwaijriH. HassanH. HaibaM. HabibE. El-EmamA. Antimicrobial and hypoglycemic activities of novel N-Mannich bases derived from 5-(1-adamantyl)-4-substituted-1,2,4-triazoline-3-thiones.Int. J. Mol. Sci.20141512229952301010.3390/ijms15122299525514407
    [Google Scholar]
  25. SwikritiR. BabbarR. SainiD. RawatR. ChigurupatiS. FelembanS.G. Vargas-De-La-CruzC. BehlT. Design and synthesis of neoteric benzylidene amino-benzimidazole scaffolds for antioxidant and anti-inflammatory activity.Future Med. Chem.2023151081382810.4155/fmc‑2023‑005837350114
    [Google Scholar]
  26. RapaczA. RybkaS. ObniskaJ. SałatK. PowroźnikB. PękalaE. FilipekB. Evaluation of anticonvulsant and antinociceptive properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione.Naunyn Schmiedebergs Arch. Pharmacol.2016389333934810.1007/s00210‑015‑1194‑226650502
    [Google Scholar]
  27. TaoD. WangY. BaoX.Q. YangB.B. GaoF. WangL. ZhangD. LiL. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease.Eur. J. Med. Chem.201917320321210.1016/j.ejmech.2019.04.01631005056
    [Google Scholar]
  28. ZhangX. SongQ. CaoZ. LiY. TianC. YangZ. ZhangH. DengY. Design, synthesis and evaluation of chalcone Mannich base derivatives as multifunctional agents for the potential treatment of Alzheimer’s disease.Bioorg. Chem.20198739540810.1016/j.bioorg.2019.03.04330921741
    [Google Scholar]
  29. BosurgiL. RothlinC.V. Management of cell death in parasitic infections.Semin. Immunopathol.202143448110.1007/s00281‑021‑00875‑8
    [Google Scholar]
  30. Guimarães-PintoK. FerreiraJ.R.M. da CostaA.L.A. MorrotA. Freire-de-LimaL. Decote-RicardoD. Freire-de-LimaC.G. FilardyA.A. Cellular stress and senescence induction during Trypanosoma cruzi infection.Trop. Med. Infect. Dis.20227712910.3390/tropicalmed707012935878141
    [Google Scholar]
  31. Menna-BarretoR.F.S. Cell death pathways in pathogenic trypanosomatids: Lessons of (over)kill.Cell Death Dis.20191029310.1038/s41419‑019‑1370‑230700697
    [Google Scholar]
  32. SattlerF.R. FrameP. DavisR. NicholsL. SheltonB. AkilB. BaughmanR. HughlettC. WeissW. BoylenC.T. van der HorstC. BlackJ. PowderlyW. SteigbigelR.T. LeedomJ.M. MasurH. FeinbergJ. Trimetrexate with leucovorin versus trimethoprim-sulfamethoxazole for moderate to severe episodes of Pneumocystis carinii pneumonia in patients with AIDS: A prospective, controlled multicenter investigation of the AIDS Clinical Trials Group Protocol 029/031.J. Infect. Dis.1994170116517210.1093/infdis/170.1.1658014493
    [Google Scholar]
  33. ChwaA. KavanaghK. LinneburS.A. FixenD.R. Evaluation of methenamine for urinary tract infection prevention in older adults: A review of the evidence.Ther. Adv. Drug Saf.201910204209861987674910.1177/204209861987674931579504
    [Google Scholar]
  34. RogoschT. SinningC. PodlewskiA. WatzerB. SchlosburgJ. LichtmanA.H. CascioM.G. BisognoT. Di MarzoV. NüsingR. ImmingP. Novel bioactive metabolites of dipyrone (metamizol).Bioorg. Med. Chem.201220110110710.1016/j.bmc.2011.11.02822172309
    [Google Scholar]
  35. McDougaldL.R. SeibertB.P. Residual activity of anticoccidial drugs in chickens after withdrawal of medicated feeds.Vet. Parasitol.1998742-4919910.1016/S0304‑4017(97)00172‑69561697
    [Google Scholar]
  36. LeuchtS. TardyM. KomossaK. HeresS. KisslingW. SalantiG. DavisJ.M. Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: A systematic review and meta-analysis.Lancet201237998312063207110.1016/S0140‑6736(12)60239‑622560607
    [Google Scholar]
  37. MarsdenC.D. ParkesJ.D. Success and problems of long-term levodopa therapy in parkinson’s disease.Lancet1977309800734534910.1016/S0140‑6736(77)91146‑164868
    [Google Scholar]
  38. YamaliC. GulM. GulH.I. Current pharmaceutical research on the significant pharmacophore mannich bases in drug design.Curr. Top. Med. Chem.202323272590260810.2174/011568026625610223092210193937807407
    [Google Scholar]
  39. SenthilK.R. PriyadharshiniV. RevathyS. SangeethaP. ThatchayaniC. PraveenS. Recent advances in biological applications of mannich bases: An overview. Int. J. Pharm. Chem. Anal.20231015710.18231/j.ijpca.2023.004
    [Google Scholar]
  40. RanasingheS. ArmsonA. LymberyA.J. ZahediA. AshA. Medicinal plants as a source of antiparasitics: An overview of experimental studies.Pathog. Glob. Health2023117653555310.1080/20477724.2023.217945436805662
    [Google Scholar]
  41. Garcia-BustosJ.F. SleebsB.E. GasserR.B. An appraisal of natural products active against parasitic nematodes of animals.Parasit. Vectors201912130610.1186/s13071‑019‑3537‑131208455
    [Google Scholar]
  42. StanD. EnciuA.M. MateescuA.L. IonA.C. BrezeanuA.C. StanD. TanaseC. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation.Front. Pharmacol.20211272323310.3389/fphar.2021.72323334552489
    [Google Scholar]
  43. WinkM. Medicinal plants: A source of anti-parasitic secondary metabolites.Molecules20121711127711279110.3390/molecules17111277123114614
    [Google Scholar]
  44. SenP. VijayM. SinghS. HameedS. VijayaraghvanP. Understanding the environmental drivers of clinical azole resistance in Aspergillus species.Drug. Target. Insights.2022161253510.33393/dti.2022.247636458152
    [Google Scholar]
  45. YangY.L. XiangZ.J. YangJ.H. WangW.J. XuZ.C. XiangR.L. Adverse effects associated with currently commonly used antifungal agents: A network meta-analysis and systematic review.Front. Pharmacol.20211269733010.3389/fphar.2021.69733034776941
    [Google Scholar]
  46. ModingamP. FaillieJ.L. CampilloJ.T. Serious adverse events reported with benzimidazole derivatives: A disproportionality analysis from the World Health Organization’s pharmacovigilance database.PLoS Negl. Trop. Dis.20241811e001263410.1371/journal.pntd.001263439504320
    [Google Scholar]
  47. Lachau-DurandS. LammensL. van der LeedeB. Van GompelJ. BaileyG. EngelenM. LampoA. Preclinical toxicity and pharmacokinetics of a new orally bioavailable flubendazole formulation and the impact for clinical trials and risk/benefit to patients.PLoS Negl. Trop. Dis.2019131e000702610.1371/journal.pntd.000702630650076
    [Google Scholar]
  48. VialpandoM. SmuldersS. BoneS. JagerC. VodakD. Van SpeybroeckM. VerheyenL. BackxK. BoeykensP. BrewsterM.E. CeulemansJ. Novoa de ArmasH. Van GeelK. KesselaersE. HillewaertV. Lachau-DurandS. MeursG. PsathasP. Van HoveB. VerreckG. VoetsM. WeutsI. MackieC. Evaluation of three amorphous drug delivery technologies to improve the oral absorption of flubendazole.J. Pharm. Sci.201610592782279310.1016/j.xphs.2016.03.00327113473
    [Google Scholar]
  49. GeurdenT. ChartierC. FankeJ. di RegalbonoA.F. TraversaD. von Samson-HimmelstjernaG. DemelerJ. VanimisettiH.B. BartramD.J. DenwoodM.J. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe.Int. J. Parasitol. Drugs Drug Resist.20155316317110.1016/j.ijpddr.2015.08.00126448902
    [Google Scholar]
  50. BenaimG. CasanovaP. Hernandez-RodriguezV. Mujica-GonzalezS. Parra-GimenezN. Plaza-RojasL. ConcepcionJ.L. LiuY.L. OldfieldE. Paniz-MondolfiA. SuarezA.I. Dronedarone, an amiodarone analog with improved anti-Leishmania mexicana efficacy.Antimicrob. Agents Chemother.20145842295230310.1128/AAC.01240‑1324492373
    [Google Scholar]
  51. OryanA. BemaniE. BahramiS. Emerging role of amiodarone and dronedarone, as antiarrhythmic drugs, in treatment of leishmaniasis.Acta Trop.2018185344110.1016/j.actatropica.2018.04.02229689189
    [Google Scholar]
  52. CamargoJ.N.A. PianoskiK.E. dos SantosM.G. Lazarin-BidóiaD. VolpatoH. MouraS. NakamuraC.V. RosaF.A. Antiparasitic behavior of trifluoromethylated pyrazole 2-Amino-1,3,4-thiadiazole hybrids and their analogues: Synthesis and structure-activity relationship.Front. Pharmacol.20201159157010.3389/fphar.2020.591570
    [Google Scholar]
  53. GanjooR. VermaC. ThakurA. AlFantaziA. AssadH. SharmaS. DubeyS. KumarA. Mannich bases: Chemical structure, chemistry, coordination bonding and application in aqueous phase corrosion protection.J. Ind. Eng. Chem.202413113616610.1016/j.jiec.2023.10.056
    [Google Scholar]
  54. BalaS. SharmaN. KajalA. KambojS. SainiV. Mannich bases: An important pharmacophore in present scenario.Int. J. Med. Chem.2014201411510.1155/2014/19107225478226
    [Google Scholar]
  55. PuM.X. GuoH.Y. QuanZ.S. LiX. ShenQ.K. Application of the Mannich reaction in the structural modification of natural products.J. Enzyme Inhib. Med. Chem.2023381223509510.1080/14756366.2023.223509537449337
    [Google Scholar]
  56. De RyckerM. BaragañaB. DuceS.L. GilbertI.H. Challenges and recent progress in drug discovery for tropical diseases.Nature2018559771549850610.1038/s41586‑018‑0327‑430046073
    [Google Scholar]
  57. MitraA. MawsonA. Neglected tropical diseases: Epidemiology and global burden.Trop. Med. Infect. Dis.2017233610.3390/tropicalmed203003630270893
    [Google Scholar]
  58. World Health Organization. Neglected tropical diseases. 2024 https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1
  59. LinY. FangK. ZhengY. WangH. WuJ. Global burden and trends of neglected tropical diseases from 1990 to 2019.J. Travel Med.2022293taac03110.1093/jtm/taac03135238925
    [Google Scholar]
  60. StarkeyL.A. BlagburnB.L. Antiparasitic Drugs.Greene’s Infectious Diseases of the Dog and Cat.5th edElsevier202314916010.1016/B978‑0‑323‑50934‑3.00013‑6
    [Google Scholar]
  61. PicotS. BeugnetF. LeboucherG. BienvenuA.L. Drug resistant parasites and fungi from a one-health perspective: A global concern that needs transdisciplinary stewardship programs.One Health20221410036810.1016/j.onehlt.2021.10036834957316
    [Google Scholar]
  62. Gómez-OchoaS.A. RojasL.Z. EcheverríaL.E. MukaT. FrancoO.H. Global, regional, and national trends of chagas disease from 1990 to 2019: Comprehensive analysis of the global burden of disease study.Glob. Heart20221715910.5334/gh.115036051318
    [Google Scholar]
  63. World Health Organization. Chagas disease (also known as American trypanosomiasis).2024Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  64. LidaniK.C.F. AndradeF.A. BaviaL. DamascenoF.S. BeltrameM.H. Messias-ReasonI.J. SandriT.L. Chagas disease: From discovery to a worldwide health problem.Front. Public Health2019716610.3389/fpubh.2019.0016631312626
    [Google Scholar]
  65. Martín-EscolanoJ. MarínC. RosalesM.J. TsaousisA.D. Medina-CarmonaE. Martín-EscolanoR. An updated view of the Trypanosoma cruzi life cycle: Intervention points for an effective treatment.ACS Infect. Dis.2022861107111510.1021/acsinfecdis.2c0012335652513
    [Google Scholar]
  66. Centers for Disease Control and Prevention American Trypanosomiasis.2024Available form: https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html
  67. SuárezC. NolderD. García-MingoA. MooreD.A.J. ChiodiniP.L. Diagnosis and clinical management of chagas disease: An increasing challenge in non-endemic areas.Res. Rep. Trop. Med.202213254010.2147/RRTM.S27813535912165
    [Google Scholar]
  68. ScarimC.B. JornadaD.H. ChelucciR.C. de AlmeidaL. dos SantosJ.L. ChungM.C. Current advances in drug discovery for Chagas disease.Eur. J. Med. Chem.201815582483810.1016/j.ejmech.2018.06.04030033393
    [Google Scholar]
  69. RibeiroV. DiasN. PaivaT. Hagström-BexL. NitzN. PratesiR. HechtM. Current trends in the pharmacological management of Chagas disease.Int. J. Parasitol. Drugs Drug Resist.20201271710.1016/j.ijpddr.2019.11.00431862616
    [Google Scholar]
  70. LascanoF. BournissenF.G. AltchehJ. Review of pharmacological options for the treatment of Chagas disease.Br. J. Clin. Pharmacol.202288238340210.1111/bcp.1470033314266
    [Google Scholar]
  71. KannS. ConchaG. FrickmannH. HagenR.M. WarnkeP. MolitorE. HoeraufA. BackhausJ. Chagas disease: Comparison of therapy with nifurtimox and benznidazole in indigenous communities in Colombia.J. Clin Med.2024139256510.3390/jcm13092565
    [Google Scholar]
  72. JacksonY. WyssaB. ChappuisF. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease.J. Antimicrob. Chemother.202075369069610.1093/jac/dkz47331754690
    [Google Scholar]
  73. Crespillo-AndújarC. López-VélezR. TrigoE. NormanF. Díaz-MenéndezM. Monge-MailloB. ArsuagaM. Pérez-MolinaJ.A. Comparison of the toxicity of two treatment schemes with benznidazole for chronic Chagas disease: A prospective cohort study in two Spanish referral centres.Clin. Microbiol. Infect.20202638438410.1016/j.cmi.2019.10.030
    [Google Scholar]
  74. OliveraM.J. CucunubáZ.M. Valencia-HernándezC.A. HerazoR. Agreda-RudenkoD. FlórezC. DuqueS. NichollsR.S. Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease.PLoS One2017129e018503310.1371/journal.pone.018503328949997
    [Google Scholar]
  75. Beltran-HortelanoI. AthertonR.L. Rubio-HernándezM. Sanz-SerranoJ. AlcoleaV. KellyJ.M. Pérez-SilanesS. OlmoF. Design and synthesis of Mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in Chagas Disease.Eur. J. Med. Chem.202122311364610.1016/j.ejmech.2021.11364634182359
    [Google Scholar]
  76. ScarimC. OlmoF. FerreiraE. ChinC. KellyJ. FranciscoA. Image-Based in vitro screening reveals the trypanostatic activity of hydroxymethylnitrofurazone against Trypanosoma cruzi. Int. J. Mol. Sci.20212213693010.3390/ijms2213693034203228
    [Google Scholar]
  77. PaucarR. Martín-EscolanoR. Moreno-ViguriE. AzquetaA. CirauquiN. MarínC. Sánchez-MorenoM. Pérez-SilanesS. Rational modification of Mannich base-type derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation.Bioorg. Med. Chem.201927173902391710.1016/j.bmc.2019.07.02931345745
    [Google Scholar]
  78. PaucarR. Martín-EscolanoR. Moreno-ViguriE. CirauquiN. RodriguesC.R. MarínC. Sánchez-MorenoM. Pérez-SilanesS. RaveraM. GabanoE. A step towards development of promising trypanocidal agents: Synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives.Eur. J. Med. Chem.201916356958210.1016/j.ejmech.2018.12.00530554132
    [Google Scholar]
  79. Martín-EscolanoR. Moreno-ViguriE. Santivañez-VelizM. Martin-MontesA. Medina-CarmonaE. PaucarR. MarínC. AzquetaA. CirauquiN. PeyA.L. Pérez-SilanesS. Sánchez-MorenoM. Second generation of mannich base-type derivatives with in vivo activity against Trypanosoma cruzi.J. Med. Chem.201861135643566310.1021/acs.jmedchem.8b0046829883536
    [Google Scholar]
  80. Moreno-ViguriE. Jiménez-MontesC. Martín-EscolanoR. Santivañez-VelizM. Martin-MontesA. AzquetaA. Jimenez-LopezM. LedesmaS.Z. CirauquiN. López de CeráinA. MarínC. Sánchez-MorenoM. Pérez-SilanesS. In vitro and in vivo anti- Trypanosoma cruzi activity of new arylamine mannich base-type derivatives.J. Med. Chem.20165924109291094510.1021/acs.jmedchem.6b0078428002965
    [Google Scholar]
  81. World Health Organization. Leishmaniasis.2023Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
  82. Torres-GuerreroE. Quintanilla-CedilloM.R. Ruiz-EsmenjaudJ. ArenasR. Leishmaniasis: A review.F1000 Res.2017675010.12688/f1000research.11120.1
    [Google Scholar]
  83. Leishmaniasis, Centers for Disease Control and Prevention.2024Available from: https://www.cdc.gov/dpdx/leishmaniasis/index.html
  84. PAHO/WHOLeishmaniasis, Pan American Health Organization.2024Available from: https://www.paho.org/en/topics/leishmaniasis
  85. World Health Organization. Leishmaniasis.2024 https://www.who.int/health-topics/leishmaniasis#tab=tab_1
  86. Abadías-GranadoI. DiagoA. CerroP.A. Palma-RuizA.M. GilaberteY. Cutaneous and Mucocutaneous Leishmaniasis.Actas Dermosifiliogr.202111260161810.1016/j.ad.2021.02.00834045157
    [Google Scholar]
  87. MannS. FrascaK. ScherrerS. Henao-MartínezA.F. NewmanS. RamananP. SuarezJ.A. A review of leishmaniasis: Current knowledge and future directions.Curr. Trop. Med. Rep.20218212113210.1007/s40475‑021‑00232‑733747716
    [Google Scholar]
  88. Costa-da-SilvaA.C. NascimentoD.O. FerreiraJ.R.M. Guimarães-PintoK. Freire-de-LimaL. MorrotA. Decote-RicardoD. FilardyA.A. Freire-de-LimaC.G. Immune responses in leishmaniasis: An overview.Trop. Med. Infect. Dis.2022745410.3390/tropicalmed704005435448829
    [Google Scholar]
  89. ElmahallawyE.K. AlkhaldiA.A.M. SalehA.A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research.Biomed. Pharmacother.202113911167110.1016/j.biopha.2021.11167133957562
    [Google Scholar]
  90. CarvalhoS.H. FrézardF. PereiraN.P. MouraA.S. RamosL.M.Q.C. CarvalhoG.B. RochaM.O.C. American tegumentary leishmaniasis in Brazil: A critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment.Trop. Med. Int. Health201924438039110.1111/tmi.1321030681239
    [Google Scholar]
  91. Ponte-SucreA. GamarroF. DujardinJ.C. BarrettM.P. López-VélezR. García-HernándezR. PountainA.W. MwenechanyaR. PapadopoulouB. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge.PLoS Negl. Trop. Dis.20171112e000605210.1371/journal.pntd.000605229240765
    [Google Scholar]
  92. SinghN. KumarM. SinghR.K. Leishmaniasis: Current status of available drugs and new potential drug targets.Asian Pac. J. Trop. Med.20125648549710.1016/S1995‑7645(12)60084‑422575984
    [Google Scholar]
  93. DirekelŞ. ÜnverY. AkdemirC. Antileishmanial activity of new synthesized schiff and Mannich (Morpholine) base compounds.Turkiye Parazitol. Derg.202044421622010.4274/tpd.galenos.2020.690033269563
    [Google Scholar]
  94. Al NasrI. JentzschJ. WinterI. SchobertR. ErsfeldK. KokoW.S. MujawahA.A.H. KhanT.A. BiersackB. Antiparasitic activities of new lawsone Mannich bases.Arch. Pharm. (Weinheim)201935211190012810.1002/ardp.20190012831536649
    [Google Scholar]
  95. PatelV.M. PatelN.B. Chan-BacabM.J. RiveraG. Synthesis, biological evaluation and molecular dynamics studies of 1,2,4-triazole clubbed Mannich bases.Comput. Biol. Chem.20187626427410.1016/j.compbiolchem.2018.07.02030092449
    [Google Scholar]
  96. PatelV.M. PatelN.B. Chan-BacabM.J. RiveraG. N -Mannich bases of benzimidazole as a potent antitubercular and antiprotozoal agents: Their synthesis and computational studies.Synth. Commun.202050685887810.1080/00397911.2020.1725057
    [Google Scholar]
  97. Martin-MontesA. Santivañez-VelizM. Moreno-ViguriE. Martín-EscolanoR. Jiménez-MontesC. Lopez-GonzalezC. MarínC. SanmartínC. Gutiérrez SánchezR. Sánchez-MorenoM. Pérez-SilanesS. In vivo antileishmanial activity and iron superoxide dismutase inhibition of arylamine Mannich base derivatives.Parasitology2017144131783179010.1017/S0031182017001123
    [Google Scholar]
  98. World Health Organization. Trypanosomiasis, human African (sleeping sickness).2024Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
  99. Centers for Disease Control and Prevention Sleeping sickness (African Trypanosomiasis).2024Available from: https://www.cdc.gov/sleeping-sickness/about/index.html
  100. SimarroP.P. CecchiG. FrancoJ.R. PaoneM. DiarraA. Ruiz-PostigoJ.A. FèvreE.M. MattioliR.C. JanninJ.G. Estimating and mapping the population at risk of sleeping sickness.PLoS Negl. Trop. Dis.2012610e185910.1371/journal.pntd.000185923145192
    [Google Scholar]
  101. SimarroP.P. FrancoJ. DiarraA. PostigoJ.A.R. JanninJ. Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis.Parasitology2012139784284610.1017/S003118201200016922309684
    [Google Scholar]
  102. HollingsheadC.M. BermudezR. Human African Trypanosomiasis (Sleeping Sickness).StatPearls2024
    [Google Scholar]
  103. MorrisonL.J. SteketeeP.C. TetteyM.D. MatthewsK.R. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts.Virulence2023141215044510.1080/21505594.2022.215044536419235
    [Google Scholar]
  104. BüscherP. CecchiG. JamonneauV. PriottoG. Human African trypanosomiasis.Lancet2017390101102397240910.1016/S0140‑6736(17)31510‑628673422
    [Google Scholar]
  105. VenturelliA. TagliazucchiL. LimaC. VenutiF. MalpezziG. MagoulasG.E. SantaremN. CalogeropoulouT. Cordeiro-Da-silvaA. CostiM.P. Current treatments to control African trypanosomiasis and one health perspective.Microorganisms2022107129810.3390/microorganisms10071298
    [Google Scholar]
  106. de KoningH.P. The drugs of sleeping sickness: Their mechanisms of action and resistance, and a brief history.Trop. Med. Infect. Dis.2020511410.3390/tropicalmed5010014
    [Google Scholar]
  107. BabokhovP. SanyaoluA.O. OyiboW.A. Fagbenro-BeyiokuA.F. IriemenamN.C. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis.Pathog. Glob. Health2013107524225210.1179/2047773213Y.000000010523916333
    [Google Scholar]
  108. GrahamD.Y. LewG.M. MalatyH.M. EvansD.G. EvansD.J.Jr KleinP.D. AlpertL.C. GentaR.M. Factors influencing the eradication of Helicobacter pylori with triple therapy.Gastroenterology1992102249349610.1016/0016‑5085(92)90095‑G1732120
    [Google Scholar]
  109. BalmerO. BeadellJ.S. GibsonW. CacconeA. Phylogeography and taxonomy of Trypanosoma brucei.PLoS Negl. Trop. Dis.201152e96110.1371/journal.pntd.000096121347445
    [Google Scholar]
  110. NIH Pivotal study of fexinidazole for human African trypanosomiasis in stage 2.NC Patent T016858272018
  111. FrancoJ.R. CecchiG. PaoneM. DiarraA. GroutL. EbejaA.K. SimarroP.P. ZhaoW. ArgawD. The elimination of human African trypanosomiasis: Achievements in relation to WHO road map targets for 2020.PLoS Negl. Trop. Dis.2022161e001004710.1371/journal.pntd.001004735041668
    [Google Scholar]
  112. BernhardS. KaiserM. BurriC. MäserP. Fexinidazole for human African trypanosomiasis, the fruit of a successful public-private partnership.Diseases20221049010.3390/diseases10040090
    [Google Scholar]
  113. MahalK. AhmadA. SchmittF. LockhauserbäumerJ. StarzK. PradhanR. PadhyeS. SarkarF.H. KokoW.S. SchobertR. ErsfeldK. BiersackB. Improved anticancer and antiparasitic activity of new lawsone Mannich bases.Eur. J. Med. Chem.201712642143110.1016/j.ejmech.2016.11.04327912173
    [Google Scholar]
  114. ZekarL. SharmanT. Plasmodium falciparum Malaria,StatPearls2023
    [Google Scholar]
  115. Crutcher, J.M.; Hoffman, S.L. Malaria. In: Medical Microbiology; Baron S, Ed.; 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.1996Available from: https://www.ncbi.nlm.nih.gov/books/NBK8584/
    [Google Scholar]
  116. CuencaP.R. KeyS. LindbladeK.A. VythilingamI. DrakeleyC. FornaceK. Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review.Malar. J.20222118910.1186/s12936‑022‑04110‑z35300703
    [Google Scholar]
  117. World Health Organization. Malaria.2024Available from: https://www.who.int/health-topics/malaria#tab=tab_1
  118. VenkatesanP. The 2023 WHO World malaria report.Lancet Microbe202453e21410.1016/S2666‑5247(24)00016‑838309283
    [Google Scholar]
  119. ShiD. WeiL. LiangH. YanD. ZhangJ. WangZ. Trends of the global, regional and national incidence, mortality, and disability-adjusted life years of malaria, 1990–2019: An analysis of the global burden of disease study 2019.Risk Manag. Healthc. Policy2023161187120110.2147/RMHP.S41961637396933
    [Google Scholar]
  120. CDC. Malaria 2024. Available from: https://www.cdc.gov/dpdx/malaria/index.html
  121. BriaY.P. YehC.H. BedingfieldS. Significant symptoms and nonsymptom-related factors for malaria diagnosis in endemic regions of Indonesia.Int. J. Infect. Dis.202110319420010.1016/j.ijid.2020.11.17733249286
    [Google Scholar]
  122. Cerilo-FilhoM. AroucaM.L. MedeirosE.S. JesusM.C.S. SampaioM.P. ReisN.F. SilvaJ.R.S. BaptistaA.R.S. Storti-MeloL.M. MachadoR.L.D. Worldwide distribution, symptoms and diagnosis of the coinfections between malaria and arboviral diseases: A systematic review.Mem. Inst. Oswaldo Cruz2024119e24001510.1590/0074‑0276024001538922217
    [Google Scholar]
  123. Severe Malaria.Trop. Med. Int. Health201419s1Suppl. 1713110.1111/tmi.12313_225214480
    [Google Scholar]
  124. LongC.A. ZavalaF. Immune responses in malaria.Cold Spring Harb. Perspect. Med.201778a02557710.1101/cshperspect.a02557728389518
    [Google Scholar]
  125. BelachewE.B. Immune response and evasion mechanisms of Plasmodium falciparum parasites.J. Immunol. Res.20182018652968110.1155/2018/6529681
    [Google Scholar]
  126. World Health Organization. Treating malaria. 2024Available from: https://www.who.int/activities/treating-malaria
  127. World Health Organization Guidelines for the treatment of Malaria.2010Available from: www.who.int/malaria/docs/TreatmentGuidelines2010.pdf
  128. ParijaS.C. AntonyH.A. Antimalarial drug resistance: An overview.Trop. Parasitol.201661304110.4103/2229‑5070.17508126998432
    [Google Scholar]
  129. SyahriJ. HilmaR. AliA.H. IsmailN. LingN.Y. NurlailiB.A. NurohmahB.A. AgustarH.K. LingL.Y. LatipJ. Chalcone mannich base derivatives: Synthesis, antimalarial activities against Plasmodium knowlesi, and molecular docking analysis.RSC Advances20231351360353604710.1039/D3RA05361J38090066
    [Google Scholar]
  130. PurohitD. DuttR. KumarP. KumarS. KumarA. Design and molecular docking studies of N-Mannich base derivatives of primaquine bearing isatin on the targets involved in the pathophysiology of cerebral malaria.CNS Neurol. Disord. Drug Targets202322693294310.2174/187152732166622043014423235507781
    [Google Scholar]
  131. DziwornuG.A. CoertzenD. LeshabaneM. KorkorC.M. CloeteC.K. NjorogeM. GibhardL. LawrenceN. ReaderJ. van der WattM. WittlinS. BirkholtzL.M. ChibaleK. Antimalarial benzimidazole derivatives incorporating phenolic mannich base side chains inhibit microtubule and hemozoin formation: Structure–activity relationship and in vivo oral efficacy studies.J. Med. Chem.20216485198521510.1021/acs.jmedchem.1c0035433844521
    [Google Scholar]
  132. DingS. FikeK.R. KlembaM. CarlierP.R. In vitro and in vivo evaluation of the antimalarial MMV665831 and structural analogs.Bioorg. Med. Chem. Lett.2020301712734810.1016/j.bmcl.2020.12734832738996
    [Google Scholar]
  133. OkomboJ. BrunschwigC. SinghK. DziwornuG.A. BarnardL. NjorogeM. WittlinS. ChibaleK. Antimalarial pyrido[1,2- a ]benzimidazole derivatives with mannich base side chains: Synthesis, pharmacological evaluation, and reactive metabolite trapping studies.ACS Infect. Dis.20195337238410.1021/acsinfecdis.8b0027930608648
    [Google Scholar]
  134. QuirogaD. Coy-BarreraE. Synthesis of antifungal heterocycle-containing mannich bases: A comprehensive review.Organics20234Z50352310.3390/org4040035
    [Google Scholar]
  135. GulH.I. SahinF. GulM. OzturkS. YerdelenK.O. Arch Pharm Evaluation of antimicrobial activities of several mannich bases and their derivatives.Arch. Pharm. (Weinheim)200533833533810.1002/ardp.200400962
    [Google Scholar]
  136. SriramD. BanerjeeD. YogeeswariP. Efavirenz Mannich bases: Synthesis, anti-HIV and antitubercular activities.J. Enzyme Inhib. Med. Chem.20092411510.1080/1475636070140415919005871
    [Google Scholar]
  137. FisherM.C. Alastruey-IzquierdoA. BermanJ. BicanicT. BignellE.M. BowyerP. BromleyM. BrüggemannR. GarberG. CornelyO.A. GurrS.J. HarrisonT.S. KuijperE. RhodesJ. SheppardD.C. WarrisA. WhiteP.L. XuJ. ZwaanB. VerweijP.E. Tackling the emerging threat of antifungal resistance to human health.Nat. Rev. Microbiol.20222055157110.1038/s41579‑022‑00720‑1
    [Google Scholar]
  138. McKeeganK.S. Borges-WalmsleyM.I. WalmsleyA.R. Microbial and viral drug resistance mechanisms.Trends Microbiol.20021010Suppl.S8S1410.1016/S0966‑842X(02)02429‑012377562
    [Google Scholar]
  139. MancusoG. MidiriA. GeraceE. BiondoC. Bacterial antibiotic resistance: The most critical pathogens.Pathogens20211010131010.3390/pathogens1010131034684258
    [Google Scholar]
  140. WallerN.J.E. CheungC.Y. CookG.M. McNeilM.B. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis Nat Commun.2023141151710.1038/s41467‑023‑37184‑7
    [Google Scholar]
  141. ThakurS. SasiS. PillaiS.G. NagA. ShuklaD. SinghalR. PhalkeS. VeluG.S.K. SARS-CoV-2 mutations and their impact on diagnostics, therapeutics and vaccines.Front. Med. (Lausanne)2022981538910.3389/fmed.2022.81538935273977
    [Google Scholar]
  142. PAHO/WHO. Influenza, SARS-CoV-2, RSV and other respiratory viruses.2024Available from: https://www.paho.org/en/topics/influenza-sars-cov-2-rsv-and-other-respiratory-viruses.
  143. World Health Organization. COVID-19 dashboard.2024Available from: https://data.who.int/dashboards/covid19/cases?n=c
  144. LucchettaR.C. LemosI.H. SantosA.C.S. BorbaH.H.L. BonettiA.D.F. GiniA.L.R. OliveiraL.A. PontaroloR. WiensA. MastroianniP.D.C. PontaroloR. WiensA. De Carvalho MastroianniP. Possible long-term outcomes of Covid-19: A systematic scoping review.J. Health. Biol. Sci.2021911810.12662/2317‑3076jhbs.v9i1.3977.p1‑8.2021
    [Google Scholar]
  145. PetrovaA. TretyakovaE. KhusnutdinovaE. KazakovaO. SlitaA. ZarubaevV. MaX. JinH. XuH. XiaoS. Antiviral opportunities of Mannich bases derived from triterpenic N -propargylated indoles.Chem. Biol. Drug Des.20241031e1437010.1111/cbdd.1437037802645
    [Google Scholar]
  146. Tret’yakovaE.V. MaX. KazakovaO.B. ShtroA.A. PetukhovaG.D. KlabukovA.M. DyatlovD.S. SmirnovaA.A. XuH. XiaoS. Synthesis and evaluation of diterpenic Mannich bases as antiviral agents against influenza A and SARS-CoV-2.Phytochem. Lett.202251919610.1016/j.phytol.2022.07.01035935343
    [Google Scholar]
  147. GobinathP. PackialakshmiP. VijayakumarK. AbdellattifM.H. ShahbaazM. IdhayadhullaA. SurendrakumarR. Synthesis and cytotoxic activity of novel indole derivatives and their in silico screening on Spike glycoprotein of SARS-CoV-2.Front. Mol. Biosci.2021863798910.3389/fmolb.2021.63798934046428
    [Google Scholar]
  148. AlavalaR.R. KulandaiveluU. BonagiriP. BoyapatiS. JayaprakashV. SubramaniamA.T. Synthesis and antiviral activity of dihydropyrimidines-ciprofloxacin mannich bases against various viral strains.Antiinfect. Agents20151315416510.2174/221135251302151029111113
    [Google Scholar]
  149. KumarN.R. BalrajT.A. KempegowdaS.N. PrashantA. Multidrug-resistant sepsis: A critical healthcare challenge.Antibiotics2024134610.3390/antibiotics13010046
    [Google Scholar]
  150. MuteebG. RehmanM.T. ShahwanM. AatifM. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review.Pharmaceuticals20231611161510.3390/ph1611161538004480
    [Google Scholar]
  151. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. AguilarG.R. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. BichT.D. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. SharmaT.E.M.W.Y. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  152. World Health Organziation. Antimicrobial resistance.2024Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  153. Costa-de-OliveiraS. RodriguesA.G. Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal.Microorganisms20208215410.3390/microorganisms8020154
    [Google Scholar]
  154. World Health Organziation. WHO fungal priority pathogens list to guide research, development and public health action.2022Available from: https://www.who.int/citations/i/item/9789240060241
  155. JanowskaS. AndrzejczukS. GawryśP. WujecM. Synthesis and antimicrobial activity of new mannich bases with piperazine moiety.Molecules202328556210.3390/molecules28145562
    [Google Scholar]
  156. JagtapS. PishwikarS. Design synthesis and screening of mannich bases of alliin as anti-infective agents. Biomed. J. Sci. Tech. Res.20224323442210.26717/BJSTR.2022.43.006878
    [Google Scholar]
  157. SalamH.A.A.E. Abo-SalemH.M. KutkatO. Abdel-AzizM.S. MontaserA.S. El-SawyE.R. Synthesis of 5-heptadecyl-4H-1,2,4-triazole incorporated indole moiety: Antiviral (SARS-CoV-2), antimicrobial, and molecular docking studies.J. Mol. Struct.2024130313751710.1016/j.molstruc.2024.137517
    [Google Scholar]
  158. LegesseM. AbebeA. DeguS. AlebachewY. TadesseS. Synthesis and antimicrobial activity of knipholone analogs.Nat. Prod. Res.20243881287129310.1080/14786419.2022.213969636315255
    [Google Scholar]
  159. Al-WahaibiL.H. AlagappanK. GomilaR.M. BlacqueO. FronteraA. PercinoM.J. El-EmamA.A. ThamotharanS. A combined crystallographic and theoretical investigation of noncovalent interactions in 1,3,4-oxadiazole-2-thione- N -Mannich derivatives: In vivo bioactivity and molecular docking.RSC Advances20231348340643407710.1039/D3RA07169C38019986
    [Google Scholar]
  160. SalimovaE.V. ParfenovaL.V. IshmetovaD.V. ZainullinaL.F. VakhitovaY.V. Synthesis of fusidane triterpenoid Mannich bases as potential antibacterial and antitumor agents.Nat. Prod. Res.202337233956396310.1080/14786419.2022.216348336591608
    [Google Scholar]
  161. ZalaruC. DumitrascuF. DraghiciC. TarcomnicuI. MarinescuM. NitulescuG.M. TatiaR. MoldovanL. PopaM. ChifiriucM.C. New pyrazolo-benzimidazole Mannich bases with antimicrobial and antibiofilm activities.Antibiotics2022118109410.3390/antibiotics1108109436009963
    [Google Scholar]
  162. Abdel-RahmanI.M. MustafaM. MohamedS.A. YahiaR. Abdel-AzizM. Abuo-RahmaG.E.D.A. HayallahA.M. Novel Mannich bases of ciprofloxacin with improved physicochemical properties, antibacterial, anticancer activities and caspase-3 mediated apoptosis.Bioorg. Chem.202110710462910.1016/j.bioorg.2021.10462933482607
    [Google Scholar]
  163. RimpiläinenT. NunesA. CaladoR. FernandesA.S. AndradeJ. NtungweE. SpenglerG. SzemerédiN. RodriguesJ. GomesJ.P. RijoP. CandeiasN.R. Increased antibacterial properties of indoline-derived phenolic Mannich bases.Eur. J. Med. Chem.202122011345910.1016/j.ejmech.2021.11345933915373
    [Google Scholar]
  164. Al-WahaibiL.H. MohamedA.A.B. TawfikS.S. HassanH.M. El-EmamA.A. 1,3,4-Oxadiazole N-Mannich bases: Synthesis, antimicrobial, and anti-proliferative activities.Molecules2021268211010.3390/molecules2608211033916955
    [Google Scholar]
  165. DascaluA.E. GhinetA. LipkaE. FurmanC. RigoB. FayeulleA. BillambozM. Design, synthesis and antifungal activity of pterolactam-inspired amide Mannich bases.Fitoterapia202014310458110.1016/j.fitote.2020.10458132234373
    [Google Scholar]
  166. MarinescuM. CintezăL.O. MartonG.I. ChifiriucM.C. PopaM. StănculescuI. ZălaruC.M. StavaracheC.E. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases.BMC Chem.20201414510.1186/s13065‑020‑00697‑z32724899
    [Google Scholar]
  167. GuoY. BaoC. LiF. HouE. QinS. ZhangQ. LiuJ. Discovery, synthesis, and biological evaluation of dunnianol-based Mannich bases against methicillin-resistant Staphylococcus aureus (MRSA).ACS Infect. Dis.2020692478248910.1021/acsinfecdis.0c0037732786272
    [Google Scholar]
  168. El AzabI.H. ElkanziN.A.A. Design, synthesis, and antimicrobial evaluation of new annelated pyrimido[2,1-c][1,2,4]triazolo[3,4-f][1,2,4]triazines.Molecules2020256133910.3390/molecules2506133932183502
    [Google Scholar]
  169. HatamlehA.A. Al FarrajD. Al-SaifS.S. ChidambaramS. RadhakrishnanS. AkbarI. Synthesis, cytotoxic analysis, and molecular docking studies of tetrazole derivatives via N-Mannich base condensation as potential antimicrobials.Drug Des. Devel. Ther.2020144477449210.2147/DDDT.S27089633122891
    [Google Scholar]
  170. LvX.H. LiuH. RenZ.L. WangW. TangF. CaoH.Q. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents.Mol. Divers.201923229930610.1007/s11030‑018‑9873‑930168050
    [Google Scholar]
  171. ŚwiątekP. StrzeleckaM. Isothiazolopyridine Mannich bases and their antibacterial effect.Adv. Clin. Exp. Med.201928796797210.17219/acem/9931030561174
    [Google Scholar]
  172. PanethA. TrotskoN. PopiołekŁ. GrzegorczykA. KrzanowskiT. JanowskaS. MalmA. WujecM. Synthesis and antibacterial evaluation of Mannich bases derived from 1,2,4-Triazole.Chem. Biodivers.20191610e190037710.1002/cbdv.20190037731436917
    [Google Scholar]
  173. MohanvelS.K. RavichandranV. KamalanathanC. SatishA.S. RameshS. LeeJ. RajasekharanS.K. Molecular docking and biological evaluation of novel urea-tailed mannich base against Pseudomonas aeruginosa.Microb. Pathog.201913010411110.1016/j.micpath.2019.02.03730849491
    [Google Scholar]
  174. RajasekharanS.K. KamalanathanC. RavichandranV. RayA.K. SatishA.S. MohanvelS.K. Mannich base limits Candida albicans virulence by inactivating Ras-cAMP-PKA pathway.Sci. Rep.2018811497210.1038/s41598‑018‑32935‑930297833
    [Google Scholar]
  175. TriloknadhS. RaoC.V. NagarajuK. KrishnaN.H. RamaiahC.V. RajendraW. TrinathD. SuneethaY. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids.Bioorg. Med. Chem. Lett.20182891663166910.1016/j.bmcl.2018.03.03029602681
    [Google Scholar]
  176. PishawikarS.A. MoreH.N. Synthesis, docking and in-vitro screening of mannich bases of thiosemicarbazide for anti-fungal activity.Arab. J. Chem.201710S2714S272210.1016/j.arabjc.2013.10.016
    [Google Scholar]
  177. GagneuxS. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol.201816420221310.1038/nrmicro.2018.8
    [Google Scholar]
  178. World Health Organization. Tuberculosis2022Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
  179. LinS.Y.G. DesmondE.P. Desmond, molecular diagnosis of tuberculosis and drug resistance.Clin. Lab. Med.20143429731410.1016/j.cll.2014.02.005
    [Google Scholar]
  180. DubeP.S. HartD. LegoabeL.J. JordaanA. WarnerD.F. BeteckR.M. Synthesis and in vitro antibacterial evaluation of Mannich base nitrothiazole derivatives.Molbank202420241M179310.3390/M1793
    [Google Scholar]
  181. LiM. NyantakyiS.A. GoM.L. DickT. Resistance against membrane-inserting MmpL3 inhibitor through upregulation of MmpL5 in Mycobacterium tuberculosis Antimicrob. Agents Chemother.20206412e01100-2010.1128/AAC.01100‑2032958714
    [Google Scholar]
  182. LiM. PhuaZ.Y. XiY. XuZ. NyantakyiS.A. LiW. JacksonM. WongM.W. LamY. ChngS.S. GoM.L. DickT. Potency increase of spiroketal analogs of membrane inserting Indolyl Mannich base antimycobacterials is due to acquisition of MmpL3 inhibition.ACS Infect. Dis.2020671882189310.1021/acsinfecdis.0c0012132413266
    [Google Scholar]
  183. TaflanE. BayrakH. ErM. KaraoğluŞ.A. BozdeveciA. Novel imidazo[2,1-b][1,3,4]thiadiazole (ITD) hybrid compounds: Design, synthesis, efficient antibacterial activity and antioxidant effects.Bioorg. Chem.20198910299810.1016/j.bioorg.2019.10299831128819
    [Google Scholar]
  184. NyantakyiS.A. LiM. GopalP. ZimmermanM. DartoisV. GengenbacherM. DickT. GoM.L. Indolyl Azaspiroketal Mannich bases are potent antimycobacterial agents with selective membrane permeabilizing effects and in vivo activity.J. Med. Chem.201861135733575010.1021/acs.jmedchem.8b0077729894180
    [Google Scholar]
  185. NetoÍ. AndradeJ. FernandesA.S. ReisC.P. SalunkeJ.K. PriimagiA. CandeiasN.R. RijoP. Multicomponent Petasis-borono Mannich preparation of alkylaminophenols and antimicrobial activity studies.ChemMedChem201611182015202310.1002/cmdc.20160024427457409
    [Google Scholar]
  186. JoseG. KumaraT.H.S. SowmyaH.B.V. SriramD. RowT.N.G. HosamaniA.A. MoreS.S. JanardhanB. HarishB.G. TelkarS. RavikumarY.S. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2- c ]pyridine Mannich bases.Eur. J. Med. Chem.201713127528810.1016/j.ejmech.2017.03.01528340368
    [Google Scholar]
  187. SinghA.K. YadavP. KarauliaP. SinghV.K. GuptaP. PuttrevuS.K. ChauhanS. BhattaR.S. TadigoppulaN. GuptaU.D. ChopraS. DasguptaA. Biological evaluation of novel curcumin–pyrazole–mannich derivative active against drug-resistant Mycobacterium tuberculosis. Future Microbiol2017121349136210.2217/fmb‑2017‑0054
    [Google Scholar]
  188. GuyC.S. TichauerE. KayG.L. PhillipsD.J. BaileyT.L. HarrisonJ. FurzeC.M. MillardA.D. GibsonM.I. PallenM.J. FullamE. Identification of the anti-mycobacterial functional properties of piperidinol derivatives.Br. J. Pharmacol.2017174142183219310.1111/bph.1374428195652
    [Google Scholar]
  189. GhatoleA.M. LanjewarK.R. GaidhaneM.K. HatzadeK.M. Evaluation of substituted methyl cyclohexanone hybrids for anti-tubercular, anti-bacterial and anti-fungal activity: Facile syntheses under catalysis by ionic liquids.Spectrochim. Acta A Mol. Biomol. Spectrosc.201515151552410.1016/j.saa.2015.06.03526162339
    [Google Scholar]
  190. ScienceDirect Topics Mannich reaction: An overview2015Available from: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mannich-reaction
  191. XiaH. SongJ. LiC. XueF. Recent developments in promiscuous enzymatic reactions for carbon–nitrogen bond formation.Bioorg. Chem.202212710601410.1016/j.bioorg.2022.10601435841668
    [Google Scholar]
  192. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673360057250219044138
Loading
/content/journals/cmc/10.2174/0109298673360057250219044138
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test