Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Mercury is a pervasive global pollutant, with primary anthropogenic sources including mining, industrial processes, and mercury-containing products such as dental amalgams. These sources release mercury into the environment, where it accumulates in ecosystems and enters the food chain, notably through bioamplification in marine life, posing a risk to human health. Dental amalgams, widely used for over a century, serve as a significant endogenous source of inorganic mercury. Studies have demonstrated that mercury vapor can be released from amalgams at room temperature due to material corrosion, potentially leading to chronic exposure. Pregnant women and children are particularly susceptible to mercury’s toxic effects, with research linking prenatal mercury exposure to developmental delays, neurocognitive deficits, and conditions such as autism spectrum disorder. Moreover, the long-term accumulation of mercury in the body raises concerns about delayed health impacts in individuals exposed during childhood. Recent findings suggest even low levels of mercury exposure may contribute to kidney damage mediated by oxidative stress, highlighting the importance of monitoring mercury levels in vulnerable populations. Prenatal mercury transfer and postnatal exposure through breastfeeding further amplify the risks. This review critically assesses the health implications of mercury exposure from dental amalgams, focusing on its impact on pregnancy and childhood development. It underscores the need for updated regulatory measures to mitigate mercury-related risks and calls for further research to clarify the extent of mercury’s long-term effects on human health.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334663250101101006
2025-01-28
2025-10-06
Loading full text...

Full text loading...

References

  1. KirtanaA. SeetharamanB. Comprehending the role of endocrine disruptors in inducing epigenetic toxicity.Endocr. Metab. Immune Disord. Drug Targets202222111059107210.2174/187153032266622041108265635410624
    [Google Scholar]
  2. PeanaM. ZorodduM.A. PelucelliA. MediciS. CappaiR. NurchiV.M. Metal toxicity and speciation: A review.Curr. Med. Chem.202128357190720810.2174/092986732866621032416120533761850
    [Google Scholar]
  3. CliftonJ.C.II Mercury exposure and public health.Pediatr. Clin. North Am.2007542237.e1237.e45, viii10.1016/j.pcl.2007.02.00517448359
    [Google Scholar]
  4. RichardsonG.M. WilsonR. AllardD. PurtillC. DoumaS. GravièreJ. Mercury exposure and risks from dental amalgam in the US population, post-2000.Sci. Total Environ.2011409204257426810.1016/j.scitotenv.2011.06.03521782213
    [Google Scholar]
  5. SchmalzG. WidbillerM. Biocompatibility of amalgam vs composite - a review.Oral Health Prev. Dent.202220114915635308016
    [Google Scholar]
  6. ShianiA. SharafiK. OmerA.K. KianiA. KaramimatinB. MassahiT. EbrahimzadehG. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder.Sci. Total Environ.2023857Pt 215924610.1016/j.scitotenv.2022.15924636220469
    [Google Scholar]
  7. PavithraK.G. SundarRajanP. KumarP.S. RangasamyG. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review.Chemosphere2023312Pt 113731410.1016/j.chemosphere.2022.13731436410499
    [Google Scholar]
  8. BjørklundG. AntonyakH. PolishchukA. SemenovaY. LesivM. LysiukR. PeanaM. Effect of methylmercury on fetal neurobehavioral development: An overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals.Arch. Toxicol.202296123175319910.1007/s00204‑022‑03366‑336063174
    [Google Scholar]
  9. BjørklundG. DadarM. MutterJ. AasethJ. The toxicology of mercury: Current research and emerging trends.Environ. Res.201715954555410.1016/j.envres.2017.08.05128889024
    [Google Scholar]
  10. DuttaS. GorainB. ChoudhuryH. RoychoudhuryS. SenguptaP. Environmental and occupational exposure of metals and female reproductive health.Environ. Sci. Pollut. Res. Int.20222941620676209210.1007/s11356‑021‑16581‑934558053
    [Google Scholar]
  11. VelascoA. CabreraA.F. VargasO.I. RamírezM. OrtinezA. UmlaufG. SenaF. Global mercury observatory system (gmos): Measurements of atmospheric mercury in celestun, yucatan, mexico during 2012.Environ. Sci. Pollut. Res. Int.20162317174741748310.1007/s11356‑016‑6852‑527230151
    [Google Scholar]
  12. WienerJ.G. SuchanekT.H. The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining.Ecol. Appl.200818sp8Suppl.A3A1110.1890/06‑1939.119475915
    [Google Scholar]
  13. ZengL. LuoG. HeT. GuoY. QianX. Effects of sulfate-reducing bacteria on methylmercury at the sediment–water interface.J. Environ. Sci.20164621421910.1016/j.jes.2016.05.01827521953
    [Google Scholar]
  14. ClarksonT.W. The three modern faces of mercury.Environ. Health Perspect.2002110Suppl 1Suppl. 1112310.1289/ehp.02110s11111834460
    [Google Scholar]
  15. GangulyJ. KulshreshthaD. JogM. Mercury and movement disorders: The toxic legacy continues.Can. J. Neurol. Sci.202249449350110.1017/cjn.2021.14634346303
    [Google Scholar]
  16. MaqboolF. BahadarH. AbdollahiM. Exposure to mercury from dental amalgams: A threat to society.Arh. Hig. Rada Toksikol.201465333934010.2478/10004‑1254‑65‑2014‑254325205693
    [Google Scholar]
  17. AnusaviceK.J. ShenC. RawlsH.R. Phillips’ science of dental materials.Elsevier Health Sciences2012
    [Google Scholar]
  18. DarvellB.W. Effect of corrosion on the strength of dental silver amalgam.Dent. Mater.2012289e160e16710.1016/j.dental.2012.06.00122770402
    [Google Scholar]
  19. KelletV.C. Del Barrio-DíazP. Oral amalgam tattoo mimicking melanoma.N. Engl. J. Med.201637417e2110.1056/NEJMicm151021627119254
    [Google Scholar]
  20. GallettaV.C. ArticoG. VechioD.A.M. LemosC.A.Jr MigliariD.A. Extensive amalgam tattoo on the alveolar-gingival mucosa.An. Bras. Dermatol.20118651019102110.1590/S0365‑0596201100050002622147048
    [Google Scholar]
  21. VukmirR.B. Abdominal pain in a child associated with dental amalgam ingestion.Am. J. Emerg. Med.200523339139310.1016/j.ajem.2005.02.03215915421
    [Google Scholar]
  22. EamesW.B. PalmertreeC.O.Jr Mercury emission during amalgam condensation.Oper. Dent.1979411519296801
    [Google Scholar]
  23. GeierD.A. GeierM.R. Estimated mercury vapor exposure from amalgams among American pregnant women.Hum. Exp. Toxicol.2024430960327124123194510.1177/0960327124123194538316638
    [Google Scholar]
  24. LimH.E. ShimJ.J. LeeS.Y. LeeS.H. JoJ.Y. InK.H. KimH.G. YooS.H. KangK.H. KangK.H. Mercury inhalation poisoning and acute lung injury.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)199813212713010.3904/kjim.1998.13.2.1279735669
    [Google Scholar]
  25. MoromisatoD.Y. AnasN.G. GoodmanG. Mercury inhalation poisoning and acute lung injury in a child. Use of high-frequency oscillatory ventilation.Chest1994105261361510.1378/chest.105.2.6138306778
    [Google Scholar]
  26. HenrikssonJ. TjälveH. Uptake of inorganic mercury in the olfactory bulbs via olfactory pathways in rats.Environ. Res.199877213014010.1006/enrs.1997.38179600806
    [Google Scholar]
  27. TianL. ShangY. ChenR. BaiR. ChenC. InthavongK. TuJ. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory.Part. Fibre Toxicol.2019161610.1186/s12989‑019‑0290‑830683122
    [Google Scholar]
  28. CariccioV.L. SamàA. BramantiP. MazzonE. Mercury involvement in neuronal damage and in neurodegenerative diseases.Biol. Trace Elem. Res.2019187234135610.1007/s12011‑018‑1380‑429777524
    [Google Scholar]
  29. PatiniR. SpagnuoloG. GuglielmiF. StaderiniE. SimeoneM. CamodecaA. GallenziP. Clinical effects of mercury in conservative dentistry: A systematic review, meta-analysis, and trial sequential analysis of randomized controlled trials.Int. J. Dent.2020202011210.1155/2020/885723832849873
    [Google Scholar]
  30. GuzziG. MinoiaC. PigattoP.D. SeveriG. Methylmercury, amalgams, and children’s health.Environ. Health Perspect.20061143A149A14910.1289/ehp.114‑a149a16507443
    [Google Scholar]
  31. HeintzeU. EdwardssonS. DérandT. BirkhedD. Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro.Eur. J. Oral Sci.198391215015210.1111/j.1600‑0722.1983.tb00792.x6222462
    [Google Scholar]
  32. LeistevuoJ. LeistevuoT. HeleniusH. PyyL. ÖsterbladM. HuovinenP. TenovuoJ. Dental amalgam fillings and the amount of organic mercury in human saliva.Caries Res.200135316316610.1159/00004745011385194
    [Google Scholar]
  33. LyttleH.A. BowdenG.H. The level of mercury in human dental plaque and interaction in vitro between biofilms of Streptococcus mutans and dental amalgam.J. Dent. Res.19937291320132410.1177/002203459307200911018360382
    [Google Scholar]
  34. WeinerJ.A. NylanderM. BerglundF. Does mercury from amalgam restorations constitute a health hazard?Sci. Total Environ.1990991-212210.1016/0048‑9697(90)90206‑A2270464
    [Google Scholar]
  35. LygreG.B. BjörkmanL. HaugK. SkjærvenR. HellandV. Exposure to dental amalgam restorations in pregnant women.Community Dent. Oral Epidemiol.201038546046910.1111/j.1600‑0528.2010.00544.x20406270
    [Google Scholar]
  36. GeierD. KernJ. GeierM. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity.Acta Neurobiol. Exp.200969218919710.55782/ane‑2009‑174419593333
    [Google Scholar]
  37. FindikB.R. CelikH.T. ErsoyA.O. TasciY. MoralogluO. KarakayaJ. Mercury concentration in maternal serum, cord blood, and placenta in patients with amalgam dental fillings: Effects on fetal biometric measurements.J. Matern. Fetal Neonatal Med.201629223665366910.3109/14767058.2016.114073726898132
    [Google Scholar]
  38. PalkovicovaL. UrsinyovaM. MasanovaV. YuZ. PicciottoH.I. Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn.J. Expo. Sci. Environ. Epidemiol.200818332633110.1038/sj.jes.750060617851449
    [Google Scholar]
  39. YoshidaM. Placental to fetal transfer of mercury and fetotoxicity.Tohoku J. Exp. Med.20021962798810.1620/tjem.196.7912498319
    [Google Scholar]
  40. SantosE.O. JesusI.M. CâmaraV.M. BraboE.S. JesusM.I. FayalK.F. AsmusC.I.R.F. Correlation between blood mercury levels in mothers and newborns in Itaituba, Pará State, Brazil.Cad. Saude Publica200723Suppl. 4S622S62910.1590/S0102‑311X200700160002218038043
    [Google Scholar]
  41. KimK.N. BaeS. ParkH.Y. KwonH.J. HongY.C. Low-level mercury exposure and risk of asthma in school-age children.Epidemiology201526573373910.1097/EDE.000000000000035126154023
    [Google Scholar]
  42. OuL. ChenC. ChenL. WangH. YangT. XieH. TongY. HuD. ZhangW. WangX. Low-level prenatal mercury exposure in north China: An exploratory study of anthropometric effects.Environ. Sci. Technol.201549116899690810.1021/es505586825936461
    [Google Scholar]
  43. GumpB.B. GabrikovaE. BendinskasK. DumasA.K. PalmerC.D. ParsonsP.J. MacKenzieJ.A. Low-level mercury in children: Associations with sleep duration and cytokines TNF-α and IL-6.Environ. Res.201413422823210.1016/j.envres.2014.07.02625173056
    [Google Scholar]
  44. StoneJ. SutraveP. GascoigneE. GivensM.B. FryR.C. ManuckT.A. Exposure to toxic metals and per- and polyfluoroalkyl substances and the risk of preeclampsia and preterm birth in the United States: A review.Am. J. Obstet. Gynecol. MFM20213310030810.1016/j.ajogmf.2021.10030833444805
    [Google Scholar]
  45. LuglieP.F. CampusG. ChessaG. SpanoG. CapobiancoG. FaddaG.M. DessoleS. Effect of amalgam fillings on the mercury concentration in human amniotic fluid.Arch. Gynecol. Obstet.2005271213814210.1007/s00404‑003‑0578‑614689312
    [Google Scholar]
  46. CalabreseE.J. IavicoliI. CalabreseV. SlechtaC.D.A. GiordanoJ. Elemental mercury neurotoxicity and clinical recovery of function: A review of findings, and implications for occupational health.Environ. Res.201816313414810.1016/j.envres.2018.01.02129438899
    [Google Scholar]
  47. UnuvarE. AhmadovH. KizilerA. AydemirB. ToprakS. UlkerV. ArkC. Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: Clinical, prospective cohort study.Sci. Total Environ.20073741607010.1016/j.scitotenv.2006.11.04317258795
    [Google Scholar]
  48. VimyM.J. TakahashiY. LorscheiderF.L. Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings.Am. J. Physiol.19902584 Pt 2R939R9452331037
    [Google Scholar]
  49. KayaaltıZ. AkyüzlüK.D. YükselB. ÖzdemirF. SöylemezoğluT. Is there a relationship between metallothionein polymorphism and mercury levels of maternal blood, placental tissue and cord blood?Toxicol. Lett.2016258258S29010.1016/j.toxlet.2016.06.2008
    [Google Scholar]
  50. WoodsJ.S. HeyerN.J. RussoJ.E. MartinM.D. PillaiP.B. FarinF.M. Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children.Neurotoxicol. Teratol.201339364410.1016/j.ntt.2013.06.00423827881
    [Google Scholar]
  51. DraschG. SchuppI. HöflH. ReinkeR. RoiderG. Mercury burden of human fetal and infant tissues.Eur. J. Pediatr.1994153860761010.1007/BF021906717957411
    [Google Scholar]
  52. CaceI.B. MilardovicA. PrpicI. KrajinaR. PetrovicO. VukelicP. SpiricZ. HorvatM. MazejD. SnojJ. Relationship between the prenatal exposure to low-level of mercury and the size of a newborn’s cerebellum.Med. Hypotheses201176451451610.1016/j.mehy.2010.12.00521195558
    [Google Scholar]
  53. RooneyJ.P.K. The retention time of inorganic mercury in the brain - A systematic review of the evidence.Toxicol. Appl. Pharmacol.2014274342543510.1016/j.taap.2013.12.01124368178
    [Google Scholar]
  54. DackK. FellM. TaylorC.M. HavdahlA. LewisS.J. Prenatal mercury exposure and neurodevelopment up to the age of 5 years: A systematic review.Int. J. Environ. Res. Public Health2022194197610.3390/ijerph1904197635206164
    [Google Scholar]
  55. MutterJ. NaumannJ. SchneiderR. WalachH. HaleyB. Mercury and autism: Accelerating Evidence?Act. Nerv. Super.2007491/222
    [Google Scholar]
  56. WoodsJ.S. HeyerN.J. RussoJ.E. MartinM.D. FarinF.M. Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: Summary findings from the Casa Pia Children’s Amalgam Clinical Trial.Neurotoxicology20144428830210.1016/j.neuro.2014.07.01025109824
    [Google Scholar]
  57. SolanT.D. LindowS.W. Mercury exposure in pregnancy: A review.J. Perinat. Med.201442672572910.1515/jpm‑2013‑034924698820
    [Google Scholar]
  58. SalehA.I. SedairiA.A. Mercury (Hg) burden in children: The impact of dental amalgam.Sci. Total Environ.2011409163003301510.1016/j.scitotenv.2011.04.04721601239
    [Google Scholar]
  59. DraschG. AignerS. RoiderG. StaigerE. LipowskyG. Mercury in human colostrum and early breast milk. Its dependence on dental amalgam and other factors.J. Trace Elem. Med. Biol.1998121232710.1016/S0946‑672X(98)80017‑59638609
    [Google Scholar]
  60. SchulteA. StollR. WittichM. PieperK. StachnissV. Mercury concentrations in the urine of children with and without amalgam fillings.Schweizer Monatsschrift fur Zahnmedizin= Revue mensuelle suisse d'odonto-stomatologie= Rivista mensile svizzera di odontologia e stomatologia19941041113361340
    [Google Scholar]
  61. BjörnbergK.A. VahterM. BerglundB. NiklassonB. BlennowM. EnglundS.G. Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant.Environ. Health Perspect.2005113101381138510.1289/ehp.785616203251
    [Google Scholar]
  62. OrünE. YalçinS.S. AykutO. OrhanG. MorgilK.G. YurdakökK. UzunR. Mercury exposure via breast-milk in infants from a suburban area of Ankara, Turkey.Turk. J. Pediatr.201254213614322734299
    [Google Scholar]
  63. SalehA.I. AbduljabbarM. RouqiA.R. EltabacheC. RajudiA.T. ElkhatibR. NesterM. The extent of mercury (Hg) exposure among Saudi mothers and their respective infants.Environ. Monit. Assess.20151871167810.1007/s10661‑015‑4858‑y26450688
    [Google Scholar]
  64. CostaS.L. MalmO. DóreaJ.G. Breast-milk mercury concentrations and amalgam surface in mothers from Brasília, Brazil.Biol. Trace Elem. Res.2005106214515210.1385/BTER:106:2:14516116246
    [Google Scholar]
  65. DrexlerH. SchallerK.H. The mercury concentration in breast milk resulting from amalgam fillings and dietary habits.Environ. Res.199877212412910.1006/enrs.1997.38139600805
    [Google Scholar]
  66. OskarssonA. SchützA. SkerfvingS. HallénI.P. OhlinB. LagerkvistB.J. Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women.Arch. Environ. Health199651323424110.1080/00039896.1996.99360218687245
    [Google Scholar]
  67. VimyM.J. HooperD.E. KingW.W. LorscheiderF.L. Mercury from maternal “silver” tooth fillings in sheep and human breast milk.Biol. Trace Elem. Res.199756214315210.1007/BF027853889164660
    [Google Scholar]
  68. RosebushM.S. BriodyA.N. CordellK.G. Black and Brown: Non-neoplastic Pigmentation of the Oral Mucosa.Head Neck Pathol.2019131475510.1007/s12105‑018‑0980‑930671761
    [Google Scholar]
  69. PariziJ.L.S. NaiG.A. Amalgam tattoo: A cause of sinusitis?J. Appl. Oral Sci.201018110010410.1590/S1678‑7757201000010001620379688
    [Google Scholar]
  70. KremersL. HalbachS. WillruthH. MehlA. WelzlG. WackF.X. HickelR. GreimH. Effect of rubber dam on mercury exposure during amalgam removal.Eur. J. Oral Sci.1999107320220710.1046/j.0909‑8836.1999.eos1070307.x10424384
    [Google Scholar]
  71. ZieniewskaI. MaciejczykM. ZalewskaA. The effect of selected dental materials used in conservative dentistry, endodontics, surgery, and orthodontics as well as during the periodontal treatment on the redox balance in the oral cavity.Int. J. Mol. Sci.20202124968410.3390/ijms2124968433353105
    [Google Scholar]
  72. GuzziG. PigattoP.D. Occupational exposure to mercury from amalgams during pregnancy.Occup. Environ. Med.20076410715.171610.1136/oem.2007.03278917881473
    [Google Scholar]
  73. TakahashiY. TsurutaS. ArimotoM. TanakaH. YoshidaM. Placental transfer of mercury in pregnant rats which received dental amalgam restorations.Toxicology20031851-2233310.1016/S0300‑483X(02)00588‑712505442
    [Google Scholar]
  74. WannagA. SkjaeråsenJ. Mercury accumulation in placenta and foetal membranes. A study of dental workers and their babies.Environ. Physiol. Biochem.1975553483521193047
    [Google Scholar]
  75. ColsonD.G. A safe protocol for amalgam removal.J. Env. Public Health.2012201251739110.1155/2012/517391
    [Google Scholar]
  76. BjørklundG. DadarM. ChirumboloS. AasethJ. The role of xenobiotics and trace metals in parkinson’s disease.Mol. Neurobiol.20205731405141710.1007/s12035‑019‑01832‑131754997
    [Google Scholar]
  77. BjørklundG. PeanaM. DadarM. ChirumboloS. AasethJ. MartinsN. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders.Clin. Immunol.202021310835210.1016/j.clim.2020.10835232032765
    [Google Scholar]
  78. MahmoudiN. JafariJ.A. MoradiY. EsrafiliA. The mercury level in hair and breast milk of lactating mothers in Iran: A systematic review and meta-analysis.J. Environ. Health Sci. Eng.202018135536610.1007/s40201‑020‑00460‑532399246
    [Google Scholar]
  79. VisagM.C. Manejo responsable del mercurio de la amalgama dental: Una revisión sobre sus repercusiones en la salud.Rev. Peru. Med. Exp. Salud Publica201431472573210.17843/rpmesp.2014.314.12625597726
    [Google Scholar]
  80. EmenyR.T. KorrickS.A. LiZ. NadeauK. MadanJ. JacksonB. BakerE. KaragasM.R. Prenatal exposure to mercury in relation to infant infections and respiratory symptoms in the New Hampshire Birth Cohort Study.Environ. Res.201917152352910.1016/j.envres.2019.01.02630743244
    [Google Scholar]
  81. TjälveH. HenrikssonJ. Uptake of metals in the brain via olfactory pathways.Neurotoxicology1999202-318119510385882
    [Google Scholar]
  82. BarregardL. TrachtenbergF. McKinlayS. Renal effects of dental amalgam in children: The New England children’s amalgam trial.Environ. Health Perspect.2008116339439910.1289/ehp.1050418335109
    [Google Scholar]
  83. Burbured.C. BuchetJ.P. LeroyerA. NisseC. HaguenoerJ.M. MuttiA. SmerhovskýZ. CikrtM. OchockaT.M. RazniewskaG. JakubowskiM. BernardA. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels.Environ. Health Perspect.2006114458459010.1289/ehp.820216581550
    [Google Scholar]
  84. NuttallK.L. Interpreting mercury in blood and urine of individual patients.Ann. Clin. Lab. Sci.200434323525015487698
    [Google Scholar]
  85. WebbJ. CoomesO.T. RossN. MerglerD. Mercury concentrations in urine of amerindian populations near oil fields in the peruvian and ecuadorian amazon.Environ. Res.201615134435010.1016/j.envres.2016.07.04027525667
    [Google Scholar]
  86. MoodK.M. ShiraziS.A.R. MoodB.M. Urinary mercury excretion following amalgam filling in children.J. Toxicol. Clin. Toxicol.200139770170510.1081/CLT‑10010851011778667
    [Google Scholar]
  87. WoodsJ.S. MartinM.D. LerouxB.G. DeRouenT.A. LeitãoJ.G. BernardoM.F. LuisH.S. SimmondsP.L. KushleikaJ.V. HuangY. The contribution of dental amalgam to urinary mercury excretion in children.Environ. Health Perspect.2007115101527153110.1289/ehp.1024917938746
    [Google Scholar]
  88. GeierD.A. CarmodyT. KernJ.K. KingP.G. GeierM.R. A significant relationship between mercury exposure from dental amalgams and urinary porphyrins: A further assessment of the Casa Pia children’s dental amalgam trial.Biometals201124221522410.1007/s10534‑010‑9387‑021053054
    [Google Scholar]
  89. WarwickD. YoungM. PalmerJ. ErmelR.W. Mercury vapor volatilization from particulate generated from dental amalgam removal with a high-speed dental drill – a significant source of exposure.J. Occup. Med. Toxicol.20191412210.1186/s12995‑019‑0240‑231346345
    [Google Scholar]
  90. SalehA.I. SedairiA.A. ElkhatibR. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children.Sci. Total Environ.201243118819610.1016/j.scitotenv.2012.05.03622683759
    [Google Scholar]
  91. GuzziG. PigattoP.D. Urinary mercury levels in children with amalgam fillings.Environ. Health Perspect.20081167A286A28710.1289/ehp.1123518629336
    [Google Scholar]
  92. EnglundS.G. ElinderC.G. JohansonG. LindB. SkareI. EkstrandJ. The absorption, blood levels, and excretion of mercury after a single dose of mercury vapor in humans.Toxicol. Appl. Pharmacol.1998150114615310.1006/taap.1998.84009630463
    [Google Scholar]
  93. HolmesA.S. BlaxillM.F. HaleyB.E. Reduced levels of mercury in first baby haircuts of autistic children.Int. J. Toxicol.200322427728510.1080/1091581030512012933322
    [Google Scholar]
  94. BaskinD.S. NgoH. DidenkoV.V. Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts.Toxicol. Sci.200374236136810.1093/toxsci/kfg12612773768
    [Google Scholar]
  95. GarrechtM. AustinD.W. The plausibility of a role for mercury in the etiology of autism: A cellular perspective.Toxicol. Environ. Chem.20119361251127310.1080/02772248.2011.58058822163375
    [Google Scholar]
  96. BjørklundG. SkalnyA.V. RahmanM.M. DadarM. YassaH.A. AasethJ. ChirumboloS. SkalnayaM.G. TinkovA.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.Environ. Res.201816623425010.1016/j.envres.2018.05.02029902778
    [Google Scholar]
  97. BjørklundG. MeguidN.A. BanaE.M.A. TinkovA.A. SaadK. DadarM. HemimiM. SkalnyA.V. HosnedlováB. KizekR. OsredkarJ. UrbinaM.A. FabjanT. HoufeyE.A.A. Kałużna-CzaplińskaJ. GątarekP. ChirumboloS. Oxidative Stress in Autism Spectrum Disorder.Mol. Neurobiol.20205752314233210.1007/s12035‑019‑01742‑232026227
    [Google Scholar]
  98. BjørklundG. DoşaM.D. MaesM. DadarM. FryeR.E. PeanaM. ChirumboloS. The impact of glutathione metabolism in autism spectrum disorder.Pharmacol. Res.202116610543710.1016/j.phrs.2021.10543733493659
    [Google Scholar]
  99. BjørklundG. TinkovA.A. HosnedlováB. KizekR. AjsuvakovaO.P. ChirumboloS. SkalnayaM.G. PeanaM. DadarM. AnsaryE.A. QasemH. AdamsJ.B. AasethJ. SkalnyA.V. The role of glutathione redox imbalance in autism spectrum disorder: A review.Free Radic. Biol. Med.202016014916210.1016/j.freeradbiomed.2020.07.01732745763
    [Google Scholar]
  100. WoodsJ.S. HeyerN.J. EcheverriaD. RussoJ.E. MartinM.D. BernardoM.F. LuisH.S. VazL. FarinF.M. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children.Neurotoxicol. Teratol.201234551352110.1016/j.ntt.2012.06.00422765978
    [Google Scholar]
  101. KernJ.K. GeierD.A. AdamsJ.B. MehtaJ.A. GrannemannB.D. GeierM.R. Toxicity biomarkers in autism spectrum disorder: A blinded study of urinary porphyrins.Pediatr. Int.201153214715310.1111/j.1442‑200X.2010.03196.x20626635
    [Google Scholar]
  102. YounS.I. JinS.H. KimS.H. LimS. Porphyrinuria in Korean children with autism: Correlation with oxidative stress.J. Toxicol. Environ. Health A2010731070171010.1080/1528739100361400020391113
    [Google Scholar]
  103. KhaledE.M. MeguidN.A. BjørklundG. GoudaA. BaharyM.H. HashishA. SallamN.M. ChirumboloS. BanaE.M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in egyptian children with autism spectrum disorder.Metab. Brain Dis.20163161419142610.1007/s11011‑016‑9870‑627406246
    [Google Scholar]
  104. EcheverriaD. WoodsJ. HeyerN. RohlmanD. FarinF. LiT. GarabedianC. The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans.Neurotoxicol. Teratol.2006281394810.1016/j.ntt.2005.10.00616343843
    [Google Scholar]
  105. CheukD. WongV. Attention-deficit hyperactivity disorder and blood mercury level: A case-control study in Chinese children.Neuropediatrics200637423424010.1055/s‑2006‑92457717177150
    [Google Scholar]
  106. FuksA.B. The use of amalgam in pediatric dentistry: New insights and reappraising the tradition.Pediatr. Dent.201537212513225905653
    [Google Scholar]
  107. GaoZ.Y. LiM.M. WangJ. YanJ. ZhouC.C. YanC.H. Blood mercury concentration, fish consumption and anthropometry in chinese children: A national study.Environ. Int.2018110142110.1016/j.envint.2017.08.01629113684
    [Google Scholar]
  108. TobiasG. ChackartchiT. MannJ. HaimD. FindlerM. Survival rates of amalgam and composite resin restorations from big data real-life databases in the era of restricted dental mercury use.Bioengineering (Basel)202411657910.3390/bioengineering1106057938927815
    [Google Scholar]
  109. LamsalR. EstrichC.G. SandmannD. BarteltK. LipmanR.D. Declining US dental amalgam restorations in US Food and Drug Administration–identified populations: 2017-2023.J. Am. Dent. Assoc.20241551081682410.1016/j.adaj.2024.07.01539243252
    [Google Scholar]
  110. World Health Organization. Draft Global Oral Health Action Plan.2023Available from: https://www.who.int/publications/m/item/draft-global-oral-health-action-plan-(2023-2030)
  111. EatonK. YusufH. VassalloP. Editorial: The WHO global oral health action plan 2023-2030.Community Dent. Health2023402686937265395
    [Google Scholar]
  112. SelinH. KeaneS.E. WangS. SelinN.E. DavisK. BallyD. Linking science and policy to support the implementation of the Minamata Convention on Mercury.Ambio201847219821510.1007/s13280‑017‑1003‑x29388129
    [Google Scholar]
  113. EversD.C. KeaneS.E. BasuN. BuckD. Evaluating the effectiveness of the minamata convention on mercury: Principles and recommendations for next steps.Sci. Total Environ.2016569-57088890310.1016/j.scitotenv.2016.05.00127425440
    [Google Scholar]
  114. KatsonouriA. GabrielC. LópezE.M. NamoradoS. HalldorssonT.I. TratnikS.J. MartinR.L. KarakoltzidisA. ChatzimpaloglouA. GiannadakiD. AnastasiE. ThomaA. MoruecoD.N. PortillaC.A.I. JacobsenE. AssunçãoR. PeresM. SantiagoS. NunesC. DiazP.S. IavicoliI. LesoV. LacasañaM. AlzagaG.B. HorvatM. SepaiO. CastanoA. GehringK.M. KarakitsiosS. SarigiannisD. HBM4EU-MOM: Prenatal methylmercury-exposure control in five countries through suitable dietary advice for pregnancy – Study design and characteristics of participants.Int. J. Hyg. Environ. Health202325211421310.1016/j.ijheh.2023.11421337393843
    [Google Scholar]
  115. TamijiT. EjhiehN.A. Electrocatalytic determination of hg(ii) by the modified carbon paste electrode with sn(iv)- clinoptilolite nanoparticles.Electrocatalysis201910546647610.1007/s12678‑019‑00528‑3
    [Google Scholar]
  116. PirroneN. AasW. CinnirellaS. EbinghausR. HedgecockI.M. PacynaJ. SprovieriF. SunderlandE.M. Toward the next generation of air quality monitoring: Mercury.Atmos. Environ.20138059961110.1016/j.atmosenv.2013.06.053
    [Google Scholar]
  117. KhullarV. SinghH.P. MiroY. AnandD. MohamedH.G. GuptaD. KumarN. GoyalN. IoT fog-enabled multi-node centralized ecosystem for real time screening and monitoring of health information.Appl. Sci.20221219984510.3390/app12199845
    [Google Scholar]
  118. RaniL. SrivastavA.L. KaushalJ. Bioremediation: An effective approach of mercury removal from the aqueous solutions.Chemosphere202128013065410.1016/j.chemosphere.2021.13065434162069
    [Google Scholar]
  119. SharmaP. SirohiR. TongY.W. KimS.H. PandeyA. Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges.J. Hazard. Mater.202141612585510.1016/j.jhazmat.2021.12585534492804
    [Google Scholar]
  120. EshraghiF. EjhiehN.A. EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb(II) removal.Environ. Sci. Pollut. Res. Int.20182514140431405610.1007/s11356‑018‑1461‑029520543
    [Google Scholar]
  121. ShirzadiH. EjhiehN.A. An efficient modified zeolite for simultaneous removal of Pb(II) and Hg(II) from aqueous solution.J. Mol. Liq.201723022122910.1016/j.molliq.2017.01.029
    [Google Scholar]
  122. BarlowN.L. BradberryS.M. Investigation and monitoring of heavy metal poisoning.J. Clin. Pathol.2023762829710.1136/jcp‑2021‑20779336600633
    [Google Scholar]
  123. CrisponiG. NurchiV.M. LachowiczJ.I. AlonsoC.M. ZorodduM.A. PeanaM. Kill or cure: Misuse of chelation therapy for human diseases.Coord. Chem. Rev.201528427828510.1016/j.ccr.2014.04.023
    [Google Scholar]
  124. BarbosaN.V. AschnerM. TinkovA.A. FarinaM. RochaJ.B.T. Should ebselen be considered for the treatment of mercury intoxication? A minireview.Toxicol. Mech. Methods202434111210.1080/15376516.2023.225895837731353
    [Google Scholar]
  125. DudejaP. DudejaK. GroverS. SinghH. JabinZ. Pathway to mercury-free dentistry: An insight into past, present, and future.Eur. Oral Res.2023572677410.26650/eor.2023105009137525858
    [Google Scholar]
  126. YahyaB.I. Global oral health initiative: World Health Organization strategic action plan.J. Dent. Educ.202488S1Suppl. 169970210.1002/jdd.1350438758047
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334663250101101006
Loading
/content/journals/cmc/10.2174/0109298673334663250101101006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test