Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Reactive Oxygen Species (ROS) and the redoxin system regulate the redox environment. Thus, they mediate various physiological and pathological processes involved in tumor occurrence and development by activating redox-sensitive genes and regulating redox signaling pathways, including tumor cell proliferation, migration, invasion, and various cell death types. Therefore, the mechanism underlying redox environment regulation must be clarified to accurately target this mechanism and improve the effect of tumor treatment. This review introduces redox-sensitive transcription factors and their activated downstream signaling pathways, and the application of inhibitors targeting related transcription factors in tumor therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309338240819063253
2024-08-28
2025-10-01
Loading full text...

Full text loading...

References

  1. SiesH. Oxidative stress: A concept in redox biology and medicine.Redox Biol.2015418018310.1016/j.redox.2015.01.00225588755
    [Google Scholar]
  2. GuptaS.V. CamposL. SchmidtK.H. Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress.Genetics20232252iyad14710.1093/genetics/iyad14737638880
    [Google Scholar]
  3. SiswantoF.M. OkukawaK. TamuraA. OguroA. ImaokaS. Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: A role in liver cancer resistance to oxidative stress.Free Radic. Res.202357322323810.1080/10715762.2023.222950937364176
    [Google Scholar]
  4. ZhuY. WangS. NiuP. ChenH. ZhouJ. JiangL. LiD. ShiD. Raptor couples mTORC1 and ERK1/2 inhibition by cardamonin with oxidative stress induction in ovarian cancer cells.PeerJ202311e1549810.7717/peerj.1549837304865
    [Google Scholar]
  5. GhoneumA. AbdulfattahA.Y. WarrenB.O. ShuJ. SaidN. Redox homeostasis and metabolism in cancer: A complex mechanism and potential targeted therapeutics.Int. J. Mol. Sci.2020219310010.3390/ijms2109310032354000
    [Google Scholar]
  6. WangD. DengZ. LuM. DengK. LiZ. ZhouF. Integrated analysis of the roles of oxidative stress related genes and prognostic value in clear cell renal cell carcinoma.J. Cancer Res. Clin. Oncol.202314913110571107110.1007/s00432‑023‑04983‑w37340189
    [Google Scholar]
  7. HouY. WangH. WuJ. GuoH. ChenX. Dissecting the pleiotropic roles of reactive oxygen species (ROS) in lung cancer: From carcinogenesis toward therapy.Med. Res. Rev.20244441566159510.1002/med.2201838284170
    [Google Scholar]
  8. HarrisI.S. DeNicolaG.M. The complex interplay between antioxidants and ROS in cancer.Trends Cell Biol.202030644045110.1016/j.tcb.2020.03.00232303435
    [Google Scholar]
  9. GorriniC. HarrisI.S. MakT.W. Modulation of oxidative stress as an anticancer strategy.Nat. Rev. Drug Discov.2013121293194710.1038/nrd400224287781
    [Google Scholar]
  10. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑134194012
    [Google Scholar]
  11. AddabboF. MontagnaniM. GoligorskyM.S. Mitochondria and reactive oxygen species.Hypertension200953688589210.1161/HYPERTENSIONAHA.109.13005419398655
    [Google Scholar]
  12. JiangX. LiG. ZhuB. ZangJ. LanT. JiangR. WangB. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer.Cell. Mol. Biol. Lett.20232812510.1186/s11658‑023‑00434‑z36977989
    [Google Scholar]
  13. St-PierreJ. BuckinghamJ.A. RoebuckS.J. BrandM.D. Topology of superoxide production from different sites in the mitochondrial electron transport chain.J. Biol. Chem.200227747447844479010.1074/jbc.M20721720012237311
    [Google Scholar]
  14. DingX. WangZ. YuQ. MichałN. RomanS. LiuY. PengN. Superoxide dismutase-like regulated Fe/Ppa@PDA/B for synergistically targeting ferroptosis/apoptosis to enhance anti-tumor efficacy.Adv. Healthc. Mater.20231229230182410.1002/adhm.20230182437485811
    [Google Scholar]
  15. VermotA. Petit-HärtleinI. SmithS.M.E. FieschiF. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology.Antioxidants202110689010.3390/antiox1006089034205998
    [Google Scholar]
  16. BlockK. GorinY. Aiding and abetting roles of NOX oxidases in cellular transformation.Nat. Rev. Cancer201212962763710.1038/nrc333922918415
    [Google Scholar]
  17. YangC.Y. YangC.F. TangX.F. MachadoL.E.S.F. SinghJ.P. PetiW. ChenC.S. MengT.C. Active-site cysteine 215 sulfonation targets protein tyrosine phosphatase PTP1B for Cullin1 E3 ligase-mediated degradation.Free Radic. Biol. Med.202319414715910.1016/j.freeradbiomed.2022.11.04136462629
    [Google Scholar]
  18. MahbouliS. Der VartanianA. OrtegaS. RougéS. VassonM.P. RossaryA. Leptin induces ROS via NOX5 in healthy and neoplastic mammary epithelial cells.Oncol. Rep.20173853254326410.3892/or.2017.600929048637
    [Google Scholar]
  19. VandierendonckA. DegrooteH. VanderborghtB. VerhelstX. GeertsA. DevisscherL. Van VlierbergheH. NOX1 inhibition attenuates the development of a pro-tumorigenic environment in experimental hepatocellular carcinoma.J. Exp. Clin. Cancer Res.20214014010.1186/s13046‑021‑01837‑633485364
    [Google Scholar]
  20. StorrS.J. WoolstonC.M. ZhangY. MartinS.G. Redox environment, free radical, and oxidative DNA damage.Antioxid. Redox Signal.201318182399240810.1089/ars.2012.492023249296
    [Google Scholar]
  21. AkiT. TanakaH. FunakoshiT. UnumaK. UemuraK. Excessive N-acetylcysteine exaggerates glutathione redox homeostasis and apoptosis during acetaminophen exposure in Huh-7 human hepatoma cells.Biochem. Biophys. Res. Commun.2023676667210.1016/j.bbrc.2023.07.02337487439
    [Google Scholar]
  22. FernandesA.P. FladvadM. BerndtC. AndrésenC. LilligC.H. NeubauerP. SunnerhagenM. HolmgrenA. Vlamis-GardikasA. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase.J. Biol. Chem.200528026245442455210.1074/jbc.M50067820015833738
    [Google Scholar]
  23. OgataF.T. Simões SatoA.Y. CoppoL. AraiR.J. SternA.I. Pequeno MonteiroH. Thiol-based antioxidants and the epithelial/mesenchymal transition in cancer.Antioxid. Redox Signal.20223613-151037105010.1089/ars.2021.019934541904
    [Google Scholar]
  24. ZengK. LiQ. SongG. ChenB. LuoM. MiaoJ. LiuB. CPT2-mediated fatty acid oxidation inhibits tumorigenesis and enhances sorafenib sensitivity via the ROS/PPARγ/NF-κB pathway in clear cell renal cell carcinoma.Cell. Signal.202311011083810.1016/j.cellsig.2023.11083837541641
    [Google Scholar]
  25. LiuX. LiuL. WangX. JinY. WangS. XieQ. JinY. ZhangM. LiuY. LiJ. WangZ. FuX. JinC.Y. Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer.Phytomedicine202311815494310.1016/j.phymed.2023.15494337421765
    [Google Scholar]
  26. TuY. ZhangW. FanG. ZouC. ZhangJ. WuN. DingJ. ZouW.Q. XiaoH. TanS. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy.Drug Deliv.2023301218910610.1080/10717544.2023.218910636916054
    [Google Scholar]
  27. YinD. LiuL. ShiZ. ZhangL. YangY. Ropivacaine inhibits cell proliferation, migration and invasion, whereas induces oxidative stress and cell apoptosis by circscaf11/mir-145-5p axis in glioma.Cancer Manag. Res.202012111451115510.2147/CMAR.S27497533173347
    [Google Scholar]
  28. WangJ. JiaJ. HeQ. XuY. LiaoH. XiongX. LiuL. SunC. A novel multifunctional mitochondrion-targeting NIR fluorophore probe inhibits tumour proliferation and metastasis through the PPARγ/ROS/β-catenin pathway.Eur. J. Med. Chem.202325811543510.1016/j.ejmech.2023.11543537327679
    [Google Scholar]
  29. ZhouK. ZhangT. FanY. Serick DuG. WuP. GengD. MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN.Tumour Biol.20163710134691347710.1007/s13277‑016‑5155‑227465551
    [Google Scholar]
  30. HuM. ZhuS. XiongS. XueX. ZhouX. MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review).Oncol. Rep.20194131439145410.3892/or.2019.696230628706
    [Google Scholar]
  31. LiL. ZhuX. ShouT. YangL. ChengX. WangJ. DengL. ZhengY. MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway.Mol. Med. Rep.20181734003401029257342
    [Google Scholar]
  32. YanY. HuangH. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer.Adv. Exp. Med. Biol.2019121031933110.1007/978‑3‑030‑32656‑2_1431900915
    [Google Scholar]
  33. Calvo-OchoaE. Sánchez-AlegríaK. Gómez-InclánC. FerreraP. AriasC. Palmitic acid stimulates energy metabolism and inhibits insulin/PI3K/AKT signaling in differentiated human neuroblastoma cells: The role of mTOR activation and mitochondrial ROS production.Neurochem. Int.2017110758310.1016/j.neuint.2017.09.00828919254
    [Google Scholar]
  34. DengW. WangY. ZhaoS. ZhangY. ChenY. ZhaoX. LiuL. SunS. ZhangL. YeB. DuJ. MICAL 1 facilitates breast cancer cell proliferation via ROS -sensitive ERK /cyclin D pathway.J. Cell. Mol. Med.20182263108311810.1111/jcmm.1358829524295
    [Google Scholar]
  35. MaoQ. ZhangP.H. WangQ. LiS.L. Ginsenoside F2 induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo.Phytomedicine201421451552210.1016/j.phymed.2013.10.01324252332
    [Google Scholar]
  36. ChenT. ZhaoL. ChenS. ZhengB. ChenH. ZengT. SunH. ZhongS. WuW. LinX. WangL. The curcumin analogue WZ35 affects glycolysis inhibition of gastric cancer cells through ROS-YAP-JNK pathway.Food Chem. Toxicol.202013711113110.1016/j.fct.2020.11113131958483
    [Google Scholar]
  37. WangL. WangC. TaoZ. ZhaoL. ZhuZ. WuW. HeY. ChenH. ZhengB. HuangX. YuY. YangL. LiangG. CuiR. ChenT. Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer.J. Exp. Clin. Cancer Res.201938146010.1186/s13046‑019‑1424‑431703744
    [Google Scholar]
  38. HurdT.R. DeGennaroM. LehmannR. Redox regulation of cell migration and adhesion.Trends Cell Biol.201222210711510.1016/j.tcb.2011.11.00222209517
    [Google Scholar]
  39. TochhawngL. DengS. PervaizS. YapC.T. Redox regulation of cancer cell migration and invasion.Mitochondrion201313324625310.1016/j.mito.2012.08.00222960576
    [Google Scholar]
  40. El-AshmawyN.E. El-ZamaranyE.A. KhedrE.G. Abo- SaifM.A. Activation of EMT in colorectal cancer by MTDH/NF-κB p65 pathway.Mol. Cell. Biochem.20194571-2839110.1007/s11010‑019‑03514‑x30825051
    [Google Scholar]
  41. LiH. ZengC. ShuC. CaoY. ShaoW. ZhangM. CaoH. ZhaoS. Laminins in tumor-derived exosomes upregulated by ETS1 reprogram omental macrophages to promote omental metastasis of ovarian cancer.Cell Death Dis.20221312102810.1038/s41419‑022‑05472‑736477408
    [Google Scholar]
  42. ZhangX. LuoY. CenY. QiuX. LiJ. JieM. YangS. QinS. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1.Cell Death Dis.2022131192310.1038/s41419‑022‑05285‑836333284
    [Google Scholar]
  43. MaM. ZengG. TanB. ZhaoG. SuQ. ZhangW. SongY. LiangJ. XuB. WangZ. ChenJ. HouM. YangC. YunJ. HuangY. LinY. ChenD. HanY. DeMorrowS. LiangL. LaiJ. HuangL. DAGLβ is the principal synthesizing enzyme of 2-AG and promotes aggressive phenotype of intrahepatic cholangiocarcinoma via AP-1/DAGLβ/miR4516 feedforward circuitry.Am. J. Physiol. Gastrointest. Liver Physiol.20233253G213G22910.1152/ajpgi.00243.202237366545
    [Google Scholar]
  44. ChenC.J. ShangH.S. HuangY.L. TienN. ChenY.L. HsuS.Y. WuR.S.C. TangC.L. LienJ.C. LeeM.H. LuH.F. HsiaT.C. Bisdemethoxycurcumin suppresses human brain glioblastoma multiforme GBM 8401 cell migration and invasion via affecting NF-κB and MMP -2 and MMP -9 signaling pathway in vitro.Environ. Toxicol.202237102388239710.1002/tox.2360435735092
    [Google Scholar]
  45. TanX. LiuZ. WangY. WuZ. ZouY. LuoS. TangY. ChenD. YuanG. YaoK. miR-138-5p-mediated HOXD11 promotes cell invasion and metastasis by activating the FN1/MMP2/MMP9 pathway and predicts poor prognosis in penile squamous cell carcinoma.Cell Death Dis.202213981610.1038/s41419‑022‑05261‑236151071
    [Google Scholar]
  46. ZhangY. LiQ. LiuH. TangH. YangH. WuD. HuangY. LiL. LiuL. LiM. MKRN1 promotes colorectal cancer metastasis by activating the TGF-β signalling pathway through SNIP1 protein degradation.J. Exp. Clin. Cancer Res.202342121910.1186/s13046‑023‑02788‑w37620897
    [Google Scholar]
  47. ZhangQ. GaoY. ZhangY. JingM. WangD. WangY. KhattakS. QiH. CaiC. ZhangJ. NgowiE.E. KhanN.H. LiT. JiA. JiangQ. JiX. LiY. WuD. Cystathionine γ-lyase mediates cell proliferation, migration, and invasion of nasopharyngeal carcinoma.Oncogene202241495238525210.1038/s41388‑022‑02512‑636310322
    [Google Scholar]
  48. ReynoldsA.B. Roczniak-FergusonA. Emerging roles for p120-catenin in cell adhesion and cancer.Oncogene200423487947795610.1038/sj.onc.120816115489912
    [Google Scholar]
  49. YazakiK. MatsunoY. YoshidaK. SherpaM. NakajimaM. MatsuyamaM. KiwamotoT. MorishimaY. IshiiY. HizawaN. ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling.Eur. J. Cell Biol.20211007-815118110.1016/j.ejcb.2021.15118134763128
    [Google Scholar]
  50. RhyuD.Y. YangY. HaH. LeeG.T. SongJ.S. UhS. LeeH.B. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.J. Am. Soc. Nephrol.200516366767510.1681/ASN.200405042515677311
    [Google Scholar]
  51. KiddM.E. ShumakerD.K. RidgeK.M. The role of vimentin intermediate filaments in the progression of lung cancer.Am. J. Respir. Cell Mol. Biol.20145011610.1165/rcmb.2013‑0314TR23980547
    [Google Scholar]
  52. SuroliaR. AntonyV.B. Pathophysiological role of vimentin intermediate filaments in lung diseases.Front. Cell Dev. Biol.20221087275910.3389/fcell.2022.87275935573702
    [Google Scholar]
  53. LiuX. HuT. JiaY. YangS. YangY. CuiZ. WangT. LiangR. TanC. WangY. A MgAl-LDH- CuS nanosheet-based thermo-responsive composite hydrogel with nir-responsive angiogenesis inhibitor releasing capability for multimode starvation therapy.J. Nanobiotechnology202422112710.1186/s12951‑024‑02384‑w38520008
    [Google Scholar]
  54. LiT. XuL. WeiZ. ZhangS. LiuX. YangY. GuY. ZhangJ. ELF5 drives angiogenesis suppression though stabilizing WDTC1 in renal cell carcinoma.Mol. Cancer202322118410.1186/s12943‑023‑01871‑237980532
    [Google Scholar]
  55. CarmelietP. Angiogenesis in life, disease and medicine.Nature2005438707093293610.1038/nature0447816355210
    [Google Scholar]
  56. LinY.P. HseuY.C. ThiyagarajanV. VadivalaganC. PandeyS. LinK.Y. HsuY.T. LiaoJ.W. LeeC.C. YangH.L. The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells.Biomed. Pharmacother.202315811417810.1016/j.biopha.2022.11417836916401
    [Google Scholar]
  57. CaiY. LvL. LuT. DingM. YuZ. ChenX. ZhouX. WangX. α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis.Cell Death Discov.20239118210.1038/s41420‑023‑01475‑137308557
    [Google Scholar]
  58. UradeR. ChangW.T. KoC.C. LiR.N. YangH.M. ChenH.Y. HuangL.Y. ChangM.Y. WuC.Y. ChiuC.C. A fluorene derivative inhibits human hepatocellular carcinoma cells by ROS-mediated apoptosis, anoikis and autophagy.Life Sci.202332912183510.1016/j.lfs.2023.12183537295712
    [Google Scholar]
  59. YanY. ChenJ. PengM. ZhangX. FengE. LiQ. GuoB. DingX. ZhangY. TangL. Sesquiterpenes from Carpesium faberi triggered ROS-induced apoptosis and protective autophagy in hepatocellular carcinoma cells.Phytochemistry202321411380510.1016/j.phytochem.2023.11380537527743
    [Google Scholar]
  60. SimonH.U. Haj-YehiaA. Levi-SchafferF. Role of reactive oxygen species (ROS) in apoptosis induction.Apoptosis20005541541810.1023/A:100961622830411256882
    [Google Scholar]
  61. KeY. FanX. RuiH. XinjunR. DejiaW. ChuanzhenZ. LiX. Exosomes derived from RPE cells under oxidative stress mediate inflammation and apoptosis of normal RPE cells through Apaf1/caspase-9 axis.J. Cell. Biochem.2020121124849486110.1002/jcb.2971332277521
    [Google Scholar]
  62. BoehningD. PattersonR.L. SedaghatL. GlebovaN.O. KurosakiT. SnyderS.H. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis.Nat. Cell Biol.20035121051106110.1038/ncb106314608362
    [Google Scholar]
  63. LiuW. VetrenoR.P. CrewsF.T. Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder.Mol. Psychiatry20212662254226210.1038/s41380‑020‑0698‑432139808
    [Google Scholar]
  64. ParkJ.R. LeeM.C. MoonS.C. KimJ. HaK.T. ParkE.J. HongC. SeoB.D. KimB.J. Scutellaria baicalensis Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells.Mol. Med. Rep.20171622302230810.3892/mmr.2017.679828627691
    [Google Scholar]
  65. YinH. FuX. GaoH. GaoH. MaY. ChenX. ZhangX. DuS.S. QiY.K. Hybrid peptide NTP-217 triggers ROS-mediated rapid necrosis in liver cancer cells by induction of mitochondrial leakage.Front. Oncol.202312102860010.3389/fonc.2022.102860036713538
    [Google Scholar]
  66. BenavidesR.A.S. Leiro-VidalJ.M. Rodriguez-GonzalezJ.A. Ares-PenaF.J. López-MartínE. The HL-60 human promyelocytic cell line constitutes an effective in vitro model for evaluating toxicity, oxidative stress and necrosis/apoptosis after exposure to black carbon particles and 2.45 GHz radio frequency.Sci. Total Environ.202386716147510.1016/j.scitotenv.2023.16147536632900
    [Google Scholar]
  67. LiuX. SongC. KongC. TianX. Bufalin induces programmed necroptosis in triple-negative breast cancer drug-resistant cell lines through RIP1/ROS-mediated pathway.Chin. J. Integr. Med.2022281090090810.1007/s11655‑021‑3458‑734826043
    [Google Scholar]
  68. SinhaB.K. BhattacharjeeS. ChatterjeeS. JiangJ. MottenA.G. KumarA. EspeyM.G. MasonR.P. Role of nitric oxide in the chemistry and anticancer activity of etoposide (VP-16,213).Chem. Res. Toxicol.201326337938710.1021/tx300480q23402364
    [Google Scholar]
  69. PalombaL. SestiliP. ColumbaroM. FalcieriE. CantoniO. Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: The effect of the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide.Biochem. Pharmacol.199958111743175010.1016/S0006‑2952(99)00271‑310571248
    [Google Scholar]
  70. TroyanoA. FernándezC. SanchoP. de BlasE. AllerP. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation.J. Biol. Chem.200127650471074711510.1074/jbc.M10451620011602574
    [Google Scholar]
  71. AlexanderA. CaiS.L. KimJ. NanezA. SahinM. MacLeanK.H. InokiK. GuanK.L. ShenJ. PersonM.D. KusewittD. MillsG.B. KastanM.B. WalkerC.L. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS.Proc. Natl. Acad. Sci. USA201010794153415810.1073/pnas.091386010720160076
    [Google Scholar]
  72. LiB. WuG. DaiW. WangG. SuH. ShenX. ZhanR. XieJ. WangZ. QinZ. GaoQ. ShenG. Aescin-induced reactive oxygen species play a pro-survival role in human cancer cells via ATM/AMPK/ULK1-mediated autophagy.Acta Pharmacol. Sin.201839121874188410.1038/s41401‑018‑0047‑129921885
    [Google Scholar]
  73. ParkJ.Y. SohnH.Y. KohY.H. JoC. A splicing variant of TFEB negatively regulates the TFEB-autophagy pathway.Sci. Rep.20211112111910.1038/s41598‑021‑00613‑y34702966
    [Google Scholar]
  74. ZengW. XiaoT. CaiA. CaiW. LiuH. LiuJ. LiJ. TanM. XieL. LiuY. YangX. LongY. Inhibiting ROS-TFEB-dependent autophagy enhances salidroside-induced apoptosis in human chondrosarcoma cells.Cell. Physiol. Biochem.20174341487150210.1159/00048197129035891
    [Google Scholar]
  75. HuangQ.F. LiY.H. HuangZ.J. JunM. WangW. ChenX.L. WangG.H. Artesunate carriers induced ferroptosis to overcome biological barriers for anti-cancer.Eur. J. Pharm. Biopharm.202319028429310.1016/j.ejpb.2023.07.01437532638
    [Google Scholar]
  76. XuL. DuX. LiuT. SunD. In situ and dynamic SERS monitoring of glutathione levels during cellular ferroptosis metabolism.Anal. Bioanal. Chem.2023415256145615310.1007/s00216‑023‑04909‑y37644323
    [Google Scholar]
  77. ElingN. ReuterL. HazinJ. Hamacher-BradyA. BradyN.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells.Oncoscience20152551753210.18632/oncoscience.16026097885
    [Google Scholar]
  78. ZhuS. ZhangQ. SunX. ZehH.J.III LotzeM.T. KangR. TangD. HSPA5 regulates ferroptotic cell death in cancer cells.Cancer Res.20177782064207710.1158/0008‑5472.CAN‑16‑197928130223
    [Google Scholar]
  79. LiuZ. WangX. LiJ. YangX. HuangJ. JiC. LiX. LiL. ZhouJ. HuY. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway.Chem. Biol. Interact.202338211060210.1016/j.cbi.2023.11060237302459
    [Google Scholar]
  80. ChenL. CaiQ. YangR. WangH. LingH. LiT. LiuN. WangZ. SunJ. TaoT. ShiY. CaoY. WangX. XiaoD. LiuS. TaoY. GINS4 suppresses ferroptosis by antagonizing p53 acetylation with Snail.Proc. Natl. Acad. Sci. USA202312015e221958512010.1073/pnas.221958512037018198
    [Google Scholar]
  81. OrešićT. BubanovićS. RamićS. ŠarčevićB. Čipak GašparovićA. Nuclear localization of NRF2 in stroma of HER2 positive and triple-negative breast cancer.Pathol. Res. Pract.202324815466210.1016/j.prp.2023.15466237421843
    [Google Scholar]
  82. DeNicolaG.M. KarrethF.A. HumptonT.J. GopinathanA. WeiC. FreseK. MangalD. YuK.H. YeoC.J. CalhounE.S. ScrimieriF. WinterJ.M. HrubanR.H. Iacobuzio-DonahueC. KernS.E. BlairI.A. TuvesonD.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.Nature2011475735410610910.1038/nature1018921734707
    [Google Scholar]
  83. LiuY. LangF. YangC. NRF2 in human neoplasm: Cancer biology and potential therapeutic target.Pharmacol. Ther.202121710766410.1016/j.pharmthera.2020.10766432810525
    [Google Scholar]
  84. JiL. MoghalN. ZouX. FangY. HuS. WangY. TsaoM.S. The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells.Cancer Med.20231255688570210.1002/cam4.531136305267
    [Google Scholar]
  85. ShiJ. MaC. ZhengZ. ZhangT. LiZ. SunX. HeZ. ZhangZ. ZhangC. Low-dose antimony exposure promotes prostate cancer proliferation by inhibiting ferroptosis via activation of the Nrf2-SLC7A11-GPX4 pathway.Chemosphere202333913971610.1016/j.chemosphere.2023.13971637562508
    [Google Scholar]
  86. ZhangZ. ChenL. ZhaoC. GongQ. TangZ. LiH. TaoJ. CASC9 potentiates gemcitabine resistance in pancreatic cancer by reciprocally activating NRF2 and the NF-κB signaling pathway.Cell Biol. Toxicol.20233941549156010.1007/s10565‑022‑09746‑w35913601
    [Google Scholar]
  87. YangG. XiangY. ZhouW. ZhongX. ZhangY. LinD. HuangX. 1-Bromopropane-induced apoptosis in OVCAR-3 cells via oxidative stress and inactivation of Nrf2.Toxicol. Ind. Health2021372596710.1177/074823372097942733305700
    [Google Scholar]
  88. CullinanS.B. GordanJ.D. JinJ. HarperJ.W. DiehlJ.A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.Mol. Cell. Biol.200424198477848610.1128/MCB.24.19.8477‑8486.200415367669
    [Google Scholar]
  89. YangH. DuY. FeiX. HuangS. YimitiM. YangX. MaJ. LiS. TuoheniyaziH. ZhaoY. GuZ. XuD. SUMOylation of the ubiquitin ligase component KEAP1 at K39 upregulates NRF2 and its target function in lung cancer cell proliferation.J. Biol. Chem.20232991010521510.1016/j.jbc.2023.10521537660919
    [Google Scholar]
  90. KenslerT.W. WakabayashiN. BiswalS. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.Annu. Rev. Pharmacol. Toxicol.20074718911610.1146/annurev.pharmtox.46.120604.14104616968214
    [Google Scholar]
  91. RenX. ZhangG. LingX. ZhangL. TianY. ZhuG. WangP. LeavenworthJ.W. LuoL. LiF. Allyl-isothiocyanate against colorectal cancer via the mutual dependent regulation of p21 and Nrf2.Eur. J. Pharmacol.202395717601610.1016/j.ejphar.2023.17601637634842
    [Google Scholar]
  92. DasL. VinayakM. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer.PLoS One2015104e012400010.1371/journal.pone.012400025860911
    [Google Scholar]
  93. DeBlasiJ.M. FalzoneA. CaldwellS. Prieto-FariguaN. PriggeJ.R. SchmidtE.E. ChioI.I.C. KarrethF.A. DeNicolaG.M. Distinct Nrf2 signaling thresholds mediate lung tumor initiation and progression.Cancer Res.202383121953196710.1158/0008‑5472.CAN‑22‑384837062029
    [Google Scholar]
  94. TianZ.Y. YangY. Effect of Nrf2 in tumor progression and its inhibitors in cancer therapy.Zhongguo Zhongyao Zazhi2021461243233645047
    [Google Scholar]
  95. HsuW.L. WangC.M. YaoC.L. ChenS.C. NienC.Y. SunY.H. TsengT.Y. LuoY.H. Blockage of Nrf2 and autophagy by L-selenocystine induces selective death in Nrf2-addicted colorectal cancer cells through p62-Keap-1-Nrf2 axis.Cell Death Dis.20221312106010.1038/s41419‑022‑05512‑236539411
    [Google Scholar]
  96. ZhangD. HouZ. AldrichK.E. LockwoodL. OdomA.L. LibyK.T. A novel Nrf2 pathway inhibitor sensitizes keap1-mutant lung cancer cells to chemotherapy.Mol. Cancer Ther.20212091692170110.1158/1535‑7163.MCT‑21‑021034158350
    [Google Scholar]
  97. LeiC. WangQ. TangN. WangK. GSTZ1-1 downregulates Wnt/β-catenin signalling in hepatocellular carcinoma cells.FEBS Open Bio202010161710.1002/2211‑5463.1276931782257
    [Google Scholar]
  98. LiJ. WangQ. YangY. LeiC. YangF. LiangL. ChenC. XiaJ. WangK. TangN. GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway.J. Exp. Clin. Cancer Res.201938143810.1186/s13046‑019‑1459‑631666108
    [Google Scholar]
  99. AbdelgalilA.A. AlkahtaniH.M. Al-JenoobiF.I. Sorafenib.Profiles Drug Subst. Excip. Relat. Methodol.20194423926610.1016/bs.podrm.2018.11.00331029219
    [Google Scholar]
  100. WangQ. BinC. XueQ. GaoQ. HuangA. WangK. TangN. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis.Cell Death Dis.202112542610.1038/s41419‑021‑03718‑433931597
    [Google Scholar]
  101. WangJ. QiaoY. SunH. ChangH. ZhaoH. ZhangS. ShanC. Decreased SLC27A5 suppresses lipid synthesis and tyrosine metabolism to activate the cell cycle in hepatocellular carcinoma.Biomedicines202210223410.3390/biomedicines1002023435203444
    [Google Scholar]
  102. GaoQ. ZhangG. ZhengY. YangY. ChenC. XiaJ. LiangL. LeiC. HuY. CaiX. ZhangW. TangH. ChenY. HuangA. WangK. TangN. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC.Cell Death Differ.20202731086110410.1038/s41418‑019‑0399‑131367013
    [Google Scholar]
  103. HaA.T. RahmawatiL. YouL. HossainM.A. KimJ.H. ChoJ.Y. Anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis effects of quercetin 3-o-β-d-glucuronide in human keratinocytes and melanoma cells via activation of NF-κB and AP-1 pathways.Int. J. Mol. Sci.202123143310.3390/ijms2301043335008862
    [Google Scholar]
  104. MitchellS. VargasJ. HoffmannA. Signaling via the NFκB system.Wiley Interdiscip. Rev. Syst. Biol. Med.20168322724110.1002/wsbm.133126990581
    [Google Scholar]
  105. HsiehK.Y. WeiC.K. WuC.C. YC-1 prevents tumor-associated tissue factor expression and procoagulant activity in hypoxic conditions by inhibiting p38/NF-κB signaling pathway.Int. J. Mol. Sci.201920224410.3390/ijms2002024430634531
    [Google Scholar]
  106. LiS. WangH. MaR. WangL. Schisandrin B inhibits epithelial-mesenchymal transition and stemness of large- cell lung cancer cells and tumorigenesis in xenografts via inhibiting the NF-κB and p38 MAPK signaling pathways.Oncol. Rep.202145611510.3892/or.2021.806633907830
    [Google Scholar]
  107. ShiT. LiX. ZhengJ. DuanZ. OoiY.Y. GaoY. WangQ. YangJ. WangL. YaoL. Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis.Cell Oncol.202346496998510.1007/s13402‑023‑00791‑z37014552
    [Google Scholar]
  108. XuL. PathakP.S. FukumuraD. Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3′-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells.Clin. Cancer Res.200410270170710.1158/1078‑0432.CCR‑0953‑0314760093
    [Google Scholar]
  109. LiY. YangL. DongL. YangZ. ZhangJ. ZhangS. NiuM. XiaJ. GongY. ZhuN. ZhangX. ZhangY. WeiX. ZhangY. ZhangP. LiS. Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs.Acta Pharmacol. Sin.201940101322133310.1038/s41401‑019‑0272‑231316183
    [Google Scholar]
  110. RamseyK.M. ChenW. MarionJ.D. BergqvistS. KomivesE.A. Exclusivity and compensation in NFκB dimer distributions and IκB inhibition.Biochemistry201958212555256310.1021/acs.biochem.9b0000831033276
    [Google Scholar]
  111. LinC. LinP. LinH. YaoH. LiuS. HeR. ChenH. TengZ. HoffmanR.M. YeJ. ZhuG. SLC26A3/NHERF2-IκB/NFκB/p65 feedback loop suppresses tumorigenesis and metastasis in colorectal cancer.Oncogenesis20231214110.1038/s41389‑023‑00488‑w37573425
    [Google Scholar]
  112. LvC. RenC. YuY. YinH. HuangC. YangG. HongY. Wentilactone A reverses the NF-κB/ECM1 signaling-induced cisplatin resistance through inhibition of IKK/IκB in ovarian cancer cells.Nutrients20221418379010.3390/nu1418379036145166
    [Google Scholar]
  113. Palafox-MariscalL.A. Ortiz-LazarenoP.C. Jave-SuárezL.F. Aguilar-LemarroyA. Villaseñor-GarcíaM.M. Cruz-LozanoJ.R. González-MartínezK.L. Méndez-ClementeA.S. Bravo-CuellarA. Hernández-FloresG. Pentoxifylline inhibits TNF-α/TGF-β1-induced epithelial-mesenchymal transition via suppressing the NF-κB pathway and SERPINE1 expression in caski cells.Int. J. Mol. Sci.202324131059210.3390/ijms24131059237445768
    [Google Scholar]
  114. HeX. HuangZ. LiuP. LiQ. WangM. QiuM. XiongZ. YangS. Apatinib inhibits the invasion and metastasis of liver cancer cells by downregulating MMp-related proteins via regulation of the NF- κ B signaling pathway.BioMed Res. Int.202020201910.1155/2020/312618232685465
    [Google Scholar]
  115. ChiuY.W. LinT.H. HuangW.S. TengC.Y. LiouY.S. KuoW.H. LinW.L. HuangH.I. TungJ.N. HuangC.Y. LiuJ.Y. WangW.H. HwangJ.M. KuoH.C. Baicalein inhibits the migration and invasive properties of human hepatoma cells.Toxicol. Appl. Pharmacol.2011255331632610.1016/j.taap.2011.07.00821803068
    [Google Scholar]
  116. CaoX. YangY. ZhouW. WangY. WangX. GeX. WangF. ZhouF. DengX. MiaoL. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS and MAPK activation.BMC Cancer202323147110.1186/s12885‑023‑10954‑837221457
    [Google Scholar]
  117. LeeJ. LimJ.W. KimH. Astaxanthin inhibits matrix metalloproteinase expression by suppressing PI3K/AKT/mTOR activation in Helicobacter pylori-infected gastric epithelial cells.Nutrients20221416342710.3390/nu1416342736014933
    [Google Scholar]
  118. DzhalilovaD.S. MakarovaO.V. HIF-dependent mechanisms of relationship between hypoxia tolerance and tumor development.Biochemistry202186101163118010.1134/S000629792110001134903150
    [Google Scholar]
  119. GuzyR.D. HoyosB. RobinE. ChenH. LiuL. MansfieldK.D. SimonM.C. HammerlingU. SchumackerP.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.Cell Metab.20051640140810.1016/j.cmet.2005.05.00116054089
    [Google Scholar]
  120. JaskiewiczM. MoszynskaA. SerockiM. KróliczewskiJ. BartoszewskaS. CollawnJ.F. BartoszewskiR. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia.EXCLI J.20222145446935391921
    [Google Scholar]
  121. KarapetsasA. GiannakakisA. PavlakiM. PanayiotidisM. SandaltzopoulosR. GalanisA. Biochemical and molecular analysis of the interaction between ERK2 MAP kinase and hypoxia inducible factor-1α.Int. J. Biochem. Cell Biol.201143111582159010.1016/j.biocel.2011.07.00721807114
    [Google Scholar]
  122. DasB. YegerH. TsuchidaR. TorkinR. GeeM.F.W. ThornerP.S. ShibuyaM. MalkinD. BaruchelS. A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma.Cancer Res.200565167267727510.1158/0008‑5472.CAN‑04‑457516103078
    [Google Scholar]
  123. SuX. YangY. GuoC. ZhangR. SunS. WangY. QiaoQ. FuY. PangQ. NOX4-derived ROS mediates TGF-β1-induced metabolic reprogramming during epithelial-mesenchymal transition through the PI3K/ AKT/HIF-1α pathway in glioblastoma.Oxid. Med. Cell. Longev.2021202113010.1155/2021/554904734257808
    [Google Scholar]
  124. ZhengQ. LiP. ZhouX. QiangY. FanJ. LinY. ChenY. GuoJ. WangF. XueH. XiongJ. LiF. Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis.Theranostics202111188674869110.7150/thno.6023334522206
    [Google Scholar]
  125. FallahJ. RiniB.I. InhibitorsH.I.F. HIF inhibitors: Status of current clinical development.Curr. Oncol. Rep.2019211610.1007/s11912‑019‑0752‑z30671662
    [Google Scholar]
  126. ChuP.C. WuY.C. ChenC.Y. HungY.S. ChangC.S. Novel HIF-1α inhibitor CDMP-TQZ for cancer therapy.Future Med. Chem.202113121057107210.4155/fmc‑2020‑030733896195
    [Google Scholar]
  127. PandeyN. TyagiG. KaurP. PradhanS. RajamM.V. SrivastavaT. Allicin overcomes hypoxia mediated cisplatin resistance in lung cancer cells through ROS mediated cell death pathway and by suppressing hypoxia inducible factors.Cell. Physiol. Biochem.202054474876610.33594/00000025332809300
    [Google Scholar]
  128. IvanovV.N. WuJ. HeiT.K. Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways.Oncotarget2017843740687409510.18632/oncotarget.1824029088769
    [Google Scholar]
  129. SunD. LiX. NieS. LiuJ. WangS. Disorders of cancer metabolism: The therapeutic potential of cannabinoids.Biomed. Pharmacother.202315711399310.1016/j.biopha.2022.11399336379120
    [Google Scholar]
  130. WangP. LiT. NiuC. SunS. LiuD. ROS-activated MAPK/ERK pathway regulates crosstalk between Nrf2 and Hif-1α to promote IL-17D expression protecting the intestinal epithelial barrier under hyperoxia.Int. Immunopharmacol.202311610976310.1016/j.intimp.2023.10976336736221
    [Google Scholar]
  131. DeeksE.D. Belzutifan: First approval.Drugs202181161921192710.1007/s40265‑021‑01606‑x34613603
    [Google Scholar]
  132. KappelmannM. BosserhoffA. KuphalS. AP-1/c-Jun transcription factors: Regulation and function in malignant melanoma.Eur. J. Cell Biol.2014931-2768110.1016/j.ejcb.2013.10.00324315690
    [Google Scholar]
  133. AngelP. HattoriK. SmealT. KarinM. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1.Cell198855587588510.1016/0092‑8674(88)90143‑23142689
    [Google Scholar]
  134. DérijardB. HibiM. WuI.H. BarrettT. SuB. DengT. KarinM. DavisR.J. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain.Cell19947661025103710.1016/0092‑8674(94)90380‑88137421
    [Google Scholar]
  135. LianS. LiS. ZhuJ. XiaY. Do JungY. Nicotine stimulates IL-8 expression via ROS/NF-κB and ROS/MAPK/AP-1 axis in human gastric cancer cells.Toxicology202246615306210.1016/j.tox.2021.15306234890707
    [Google Scholar]
  136. LeiS. HeX. YangX. GuX. HeY. WangJ. A mechanism study of DUSP1 in inhibiting malignant progression of endometrial carcinoma by regulating ERK/AP-1 axis and dephosphorylation of EPHA2.J. Cancer202314463464510.7150/jca.8106937057290
    [Google Scholar]
  137. KimS.J. PhamT.H. BakY. RyuH.W. OhS.R. YoonD.Y. Orientin inhibits invasion by suppressing MMP-9 and IL-8 expression via the PKCα/ ERK/AP-1/STAT3-mediated signaling pathways in TPA-treated MCF-7 breast cancer cells.Phytomedicine201850354210.1016/j.phymed.2018.09.17230466990
    [Google Scholar]
  138. XiaY. LianS. KhoiP.N. YoonH.J. JooY.E. ChayK.O. KimK.K. Do JungY. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.PLoS One2015104e012400710.1371/journal.pone.012400725875631
    [Google Scholar]
  139. LiS. KhoiP.N. YinH. SahD.K. KimN.H. LianS. JungY.D. Sulforaphane suppresses the nicotine-induced expression of the matrix metalloproteinase-9 via inhibiting ROS-mediated AP-1 and NF-κB signaling in human gastric cancer cells.Int. J. Mol. Sci.2022239517210.3390/ijms2309517235563563
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309338240819063253
Loading
/content/journals/cmc/10.2174/0109298673309338240819063253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test