Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Traditional clinical evaluations based on pathological classification have shown limited effectiveness in predicting prognosis and guiding treatment for patients with hepatocellular carcinoma (HCC). This study aims to identify a robust molecular biomarker for improving prognosis and therapy in HCC.

Methods

The International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) provided expression data and clinicopathological information for several cohorts. First, Cox regression analysis and differentially expressed analysis were performed to identify robust prognostic genes. Next, machine learning algorithms, including 101 statistical models, were employed to pinpoint key genes in HCC. Single-cell sequencing analysis was conducted to explore the potential subcellular functions of each key gene. Based on these findings, an HCC Prognosis-Related Index (HPRI) was developed from the identified key genes, and HPRI-based nomogram models were validated across multiple cohorts. Additionally, tumor microenvironment analysis and drug sensitivity analysis were performed further to assess the clinical significance of the HPRI in HCC.

Results

A total of 36 robust prognostic genes with differential expression in HCC were identified, from which seven key genes-, , , , , , and -were filtered using machine learning algorithms. Except for , all these genes were highly expressed in malignant cells, followed by fibroblasts. Notably, we developed the HPRI based on the key genes and validated its clinical relevance. Results demonstrated that the HPRI and HPRI-derived nomogram models had good predictive performance across multiple cohorts. Following tumor microenvironment analysis revealed that a high HPRI was linked to a higher likelihood of immune evasion. Drug sensitivity analysis suggested that patients with a high HPRI might benefit from chemotherapeutic agents like sorafenib, as well as novel compounds such as ML323 and MK-1775.

Conclusion

Our study demonstrates a well-rounded approach by integrating gene expression, machine learning, tumor microenvironment analysis, and drug sensitivity profiling. HPRI may serve as a promising predictor for guiding prognosis and personalized treatment in HCC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673359092250304031435
2025-04-03
2025-12-25
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. SunL. YangY. LiY. LiY. ZhangB. ShiR. The past, present, and future of liver cancer research in China.Cancer Lett.202357421633410.1016/j.canlet.2023.21633437574184
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  4. LlovetJ.M. CastetF. HeikenwalderM. MainiM.K. MazzaferroV. PinatoD.J. PikarskyE. ZhuA.X. FinnR.S. Immunotherapies for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.202219315117210.1038/s41571‑021‑00573‑234764464
    [Google Scholar]
  5. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  6. RizzoA. RicciA.D. Challenges and future trends of hepatocellular carcinoma immunotherapy.Int. J. Mol. Sci.202223191136310.3390/ijms23191136336232663
    [Google Scholar]
  7. RizzoA. RicciA.D. BrandiG. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update.J. Pers. Med.20221211178810.3390/jpm1211178836579504
    [Google Scholar]
  8. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support Care Cancer20233112624
    [Google Scholar]
  9. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  10. HutterC. ZenklusenJ.C. The cancer genome atlas: Creating lasting value beyond its data.Cell2018173228328510.1016/j.cell.2018.03.04229625045
    [Google Scholar]
  11. Fonseca-MontañoM.A. BlancasS. Herrera-MontalvoL.A. Hidalgo-MirandaA. Cancer genomics.Arch. Med. Res.202253872373110.1016/j.arcmed.2022.11.01136460546
    [Google Scholar]
  12. XieH. ShiM. LiuY. ChengC. SongL. DingZ. JinH. CuiX. WangY. YaoD. WangP. YaoM. ZhangH. Identification of m6A- and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma.Front. Immunol.20221391497710.3389/fimmu.2022.91497736032107
    [Google Scholar]
  13. ChenY. HuangW. OuyangJ. WangJ. XieZ. Identification of anoikis-related subgroups and prognosis model in liver hepatocellular carcinoma.Int. J. Mol. Sci.2023243286210.3390/ijms2403286236769187
    [Google Scholar]
  14. SuY. MengL. GeC. LiuY. ZhangC. YangY. TianW. TianH. PSMD9 promotes the malignant progression of hepatocellular carcinoma by interacting with c-Cbl to activate EGFR signaling and recycling.J. Exp. Clin. Cancer Res.202443114210.1186/s13046‑024‑03062‑338745188
    [Google Scholar]
  15. ZhengdongA. XiaoyingX. ShuhuiF. RuiL. ZehuiT. GuanbinS. LiY. XiT. WanqianL. Identification of fatty acids synthesis and metabolism-related gene signature and prediction of prognostic model in hepatocellular carcinoma.Cancer Cell Int.202424113010.1186/s12935‑024‑03306‑438584256
    [Google Scholar]
  16. DeoR.C. Machine learning in medicine.Circulation2015132201920193010.1161/CIRCULATIONAHA.115.00159326572668
    [Google Scholar]
  17. Peiffer-SmadjaN. RawsonT.M. AhmadR. BuchardA. GeorgiouP. LescureF.X. BirgandG. HolmesA.H. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications.Clin Microbiol Infect2020265584595
    [Google Scholar]
  18. BanerjeeJ. TaroniJ.N. AllawayR.J. PrasadD.V. GuinneyJ. GreeneC. Machine learning in rare disease.Nat. Methods202320680381410.1038/s41592‑023‑01886‑z37248386
    [Google Scholar]
  19. SwansonK. WuE. ZhangA. AlizadehA.A. ZouJ. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.Cell202318681772179110.1016/j.cell.2023.01.03536905928
    [Google Scholar]
  20. RoesslerS. JiaH.L. BudhuA. ForguesM. YeQ.H. LeeJ.S. ThorgeirssonS.S. SunZ. TangZ.Y. QinL.X. WangX.W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients.Cancer Res.20107024102021021210.1158/0008‑5472.CAN‑10‑260721159642
    [Google Scholar]
  21. YeY. GuoJ. XiaoP. NingJ. ZhangR. LiuP. YuW. XuL. ZhaoY. YuJ. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma.Cancer Lett.202046931032210.1016/j.canlet.2019.11.00131705929
    [Google Scholar]
  22. ColapricoA. SilvaT.C. OlsenC. GarofanoL. CavaC. GaroliniD. SabedotT.S. MaltaT.M. PagnottaS.M. CastiglioniI. CeccarelliM. BontempiG. NoushmehrH. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data.Nucleic Acids Res.2016448e7110.1093/nar/gkv150726704973
    [Google Scholar]
  23. DavisS. MeltzerP.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor.Bioinformatics200723141846184710.1093/bioinformatics/btm25417496320
    [Google Scholar]
  24. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  25. LiuZ. LiuL. WengS. GuoC. DangQ. XuH. WangL. LuT. ZhangY. SunZ. HanX. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.Nat. Commun.202213181610.1038/s41467‑022‑28421‑635145098
    [Google Scholar]
  26. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  27. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.11830341162
    [Google Scholar]
  28. HanY. WangY. DongX. SunD. LiuZ. YueJ. WangH. LiT. WangC. TISCH2: Expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment.Nucleic Acids Res.202351D1D1425D143110.1093/nar/gkac95936321662
    [Google Scholar]
  29. WilkersonM.D. HayesD.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq17020427518
    [Google Scholar]
  30. BlancheP. DartiguesJ.F. Jacqmin-GaddaH. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks.Stat. Med.201332305381539710.1002/sim.595824027076
    [Google Scholar]
  31. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  32. ZengD. YeZ. ShenR. YuG. WuJ. XiongY. ZhouR. QiuW. HuangN. SunL. LiX. BinJ. LiaoY. ShiM. LiaoW. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures.Front. Immunol.20211268797510.3389/fimmu.2021.68797534276676
    [Google Scholar]
  33. SturmG. FinotelloF. PetitprezF. ZhangJ.D. BaumbachJ. FridmanW.H. ListM. AneichykT. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.Bioinformatics20193514i436i44510.1093/bioinformatics/btz36331510660
    [Google Scholar]
  34. HuF.F. LiuC.J. LiuL.L. ZhangQ. GuoA.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response.Brief. Bioinform.2021223bbaa17610.1093/bib/bbaa17632814346
    [Google Scholar]
  35. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  36. ThorssonV. GibbsD.L. BrownS.D. WolfD. BortoneD.S. Ou YangT.H. Porta-PardoE. GaoG.F. PlaisierC.L. EddyJ.A. ZivE. CulhaneA.C. PaullE.O. SivakumarI.K.A. GentlesA.J. MalhotraR. FarshidfarF. ColapricoA. ParkerJ.S. MoseL.E. VoN.S. LiuJ. LiuY. RaderJ. DhankaniV. ReynoldsS.M. BowlbyR. CalifanoA. CherniackA.D. AnastassiouD. BedognettiD. MokrabY. NewmanA.M. RaoA. ChenK. KrasnitzA. HuH. MaltaT.M. NoushmehrH. PedamalluC.S. BullmanS. OjesinaA.I. LambA. ZhouW. ShenH. ChoueiriT.K. WeinsteinJ.N. GuinneyJ. SaltzJ. HoltR.A. RabkinC.S. LazarA.J. SerodyJ.S. DemiccoE.G. DisisM.L. VincentB.G. ShmulevichI. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. Stretch SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. The immune landscape of cancer.Immunity2018484812830.e1410.1016/j.immuni.2018.03.02329628290
    [Google Scholar]
  37. MaeserD. GruenerR.F. HuangR.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data.Brief. Bioinform.2021226bbab26010.1093/bib/bbab26034260682
    [Google Scholar]
  38. SingalA.G. NehraM. Adams-HuetB. YoppA.C. TiroJ.A. MarreroJ.A. LokA.S. LeeW.M. Detection of hepatocellular carcinoma at advanced stages among patients in the HALT-C trial: Where did surveillance fail?Am. J. Gastroenterol.2013108342543210.1038/ajg.2012.44923337478
    [Google Scholar]
  39. WeiS. XingJ. ChenJ. ChenL. LvJ. ChenX. LiT. YuT. WangH. WangK. YuW. DCAF13 inhibits the p53 signaling pathway by promoting p53 ubiquitination modification in lung adenocarcinoma.J Exp Clin Cancer Res.20244313
    [Google Scholar]
  40. WeiS. LuK. XingJ. YuW. A multidimensional pan-cancer analysis of DCAF13 and its protumorigenic effect in lung adenocarcinoma.FASEB J.2023374e2284910.1096/fj.202201022RRR36884358
    [Google Scholar]
  41. HassanM.K. KumarD. NaikM. DixitM. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers.PLoS One2018131e019137710.1371/journal.pone.019137729342219
    [Google Scholar]
  42. HanR. FengP. PangJ. ZouD. LiX. GengC. LiL. MinJ. ShiJ. A novel HCC prognosis predictor EEF1E1 is related to immune infiltration and may be involved in EEF1E1/ATM/p53 signaling.Front. Oncol.20211170097210.3389/fonc.2021.70097234282404
    [Google Scholar]
  43. YinL. HeN. ChenC. ZhangN. LinY. XiaQ. Identification of novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma.Artif. Cells Nanomed. Biotechnol.20194711908191610.1080/21691401.2019.161342131072138
    [Google Scholar]
  44. GuoH. LuF. LuR. HuangM. LiX. YuanJ. WangF. A novel tumor 4-driver gene signature for the prognosis of hepatocellular carcinoma.Heliyon202396e1705410.1016/j.heliyon.2023.e1705437484410
    [Google Scholar]
  45. HuangS. ZhangC. SunC. HouY. ZhangY. TamN.L. WangZ. YuJ. HuangB. ZhuangH. ZhouZ. MaZ. SunZ. HeX. ZhouQ. HouB. WuL. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma.Aging20201233025304110.18632/aging.10279732045367
    [Google Scholar]
  46. XuQ. KongN. ZhaoY. WuQ. WangX. XunX. GaoP. Pan-cancer analyses reveal oncogenic and immunological role of PLOD2.Front. Genet.20221386465510.3389/fgene.2022.86465535586565
    [Google Scholar]
  47. NodaT. YamamotoH. TakemasaI. YamadaD. UemuraM. WadaH. KobayashiS. MarubashiS. EguchiH. TanemuraM. UmeshitaK. DokiY. MoriM. NaganoH. PLOD2 induced under hypoxia is a novel prognostic factor for hepatocellular carcinoma after curative resection.Liver Int2012321110118
    [Google Scholar]
  48. YuFengZ. MingQ. Expression and prognostic roles of PABPC1 in hepatocellular carcinoma.Int. J. Surg.20208431210.1016/j.ijsu.2020.10.00433080414
    [Google Scholar]
  49. LinM. HuL. ShenS. LiuJ. LiuY. XuY. ChenH. SugimotoK. LiJ. KamitsukasaI. HiwasaT. WangH. XuA. Atherosclerosis-related biomarker PABPC1 predicts pan-cancer events.Stroke Vasc. Neurol.20249210812510.1136/svn‑2022‑00224637311641
    [Google Scholar]
  50. YangZ. LiJ. SongH. MeiZ. JiaX. TianX. YanC. HanY. Unraveling the molecular links between benzopyrene exposure, NASH, and HCC: An integrated bioinformatics and experimental study.Sci. Rep.20231312052010.1038/s41598‑023‑46440‑137993485
    [Google Scholar]
  51. ZhangQ. XiongL. WeiT. LiuQ. YanL. ChenJ. DaiL. ShiL. ZhangW. YangJ. RoesslerS. LiuL. Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma.Oncogene202342191509152310.1038/s41388‑023‑02665‑y36932115
    [Google Scholar]
  52. WangL. YanK. HeX. ZhuH. SongJ. ChenS. CaiS. ZhaoY. WangL. LRP1B or TP53 mutations are associated with higher tumor mutational burden and worse survival in hepatocellular carcinoma.J. Cancer202112121722310.7150/jca.4898333391418
    [Google Scholar]
  53. LiuH.J. DuH. KhabibullinD. ZareiM. WeiK. FreemanG.J. KwiatkowskiD.J. HenskeE.P. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion.Nat. Commun.2023141121410.1038/s41467‑023‑36881‑736869048
    [Google Scholar]
  54. KontosF. MichelakosT. KurokawaT. SadagopanA. SchwabJ.H. FerroneC.R. FerroneS. B7-H3: An attractive target for antibody-based immunotherapy.Clin. Cancer Res.20212751227123510.1158/1078‑0432.CCR‑20‑258433051306
    [Google Scholar]
  55. van DuijnA. Van der BurgS.H. ScheerenF.A. CD47/SIRPα axis: Bridging innate and adaptive immunity.J. Immunother. Cancer2022107e00458910.1136/jitc‑2022‑00458935831032
    [Google Scholar]
  56. LasserS.A. Ozbay KurtF.G. ArkhypovI. UtikalJ. UmanskyV. Myeloid-derived suppressor cells in cancer and cancer therapy.Nat. Rev. Clin. Oncol.202421214716410.1038/s41571‑023‑00846‑y38191922
    [Google Scholar]
  57. TangW. ChenZ. ZhangW. ChengY. ZhangB. WuF. WangQ. WangS. RongD. ReiterF.P. De ToniE.N. WangX. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects.Signal Transduct. Target. Ther.2020518710.1038/s41392‑020‑0187‑x32532960
    [Google Scholar]
  58. ChenJ. JiaX. LiZ. SongW. JinC. ZhouM. XieH. ZhengS. SongP. Targeting WEE1 by adavosertib inhibits the malignant phenotypes of hepatocellular carcinoma.Biochem. Pharmacol.202118811449410.1016/j.bcp.2021.11449433684390
    [Google Scholar]
  59. WangY. LiH. LiangQ. LiuB. MeiX. MaY. Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepatocellular carcinoma.Tumour Biol.20153631561156610.1007/s13277‑014‑2722‑225371070
    [Google Scholar]
  60. RimassaL. FinnR.S. SangroB. Combination immunotherapy for hepatocellular carcinoma.J. Hepatol.202379250651510.1016/j.jhep.2023.03.00336933770
    [Google Scholar]
  61. WangS. WangR. HuD. ZhangC. CaoP. HuangJ. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy.npj Precis. Onc.2024814910.1038/s41698‑024‑00538‑5
    [Google Scholar]
  62. SunY. WuP. ZhangZ. WangZ. ZhouK. SongM. JiY. ZangF. LouL. RaoK. WangP. GuY. GuJ. LuB. ChenL. PanX. ZhaoX. PengL. LiuD. ChenX. WuK. LinP. WuL. SuY. DuM. HouY. YangX. QiuS. ShiY. SunH. ZhouJ. HuangX. PengD.H. ZhangL. FanJ. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma.Cancer Cell2024421135156.e1710.1016/j.ccell.2023.11.01038101410
    [Google Scholar]
  63. WuX. LiW. TuH. Big data and artificial intelligence in cancer research.Trends Cancer202410214716010.1016/j.trecan.2023.10.00637977902
    [Google Scholar]
  64. ParkJ. LeeY.T. AgopianV.G. LiuJ.S. KoltsovaE.K. YouS. ZhuY. TsengH.R. YangJ.D. Liquid biopsy in hepatocellular carcinoma: Challenges, advances, and clinical implications.Clin. Mol. Hepatol.20242831(Supply) S25510.3350/cmh.2024.054139604328
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673359092250304031435
Loading
/content/journals/cmc/10.2174/0109298673359092250304031435
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test