Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Glycosylation is a post-translational modification process that plays a fundamental role in malignant transformation. Moreover, aberrant glycosylation is known to be associated with cancer progression. Thus, the characterization of cancer-specific protein glycosylation profiles might reveal important diagnostic and/or prognostic biomarkers for cancer.

Objective

In the present study, we have analysed serum protein and glycoprotein profiles during breast cancer progression using a mouse model. Specifically, 4T1 tumour cells were injected into the mammary fat pad of BALB/c mice to induce tumours.

Methods

Sera samples were subsequently collected weekly for four weeks and examined using two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis, followed by mass spectrometry.

Results

This glycoproteomic profiling identified eight differentially expressed proteins, of which alpha-1 protease inhibitor 2, contraption (CON), haptoglobin (HP), and kininogen-1 were significantly up-regulated during the first 4 weeks of tumour progression. Notably, aberrantly -glycosylated prothrombin was also detected in sera samples from all mice over the 4 weeks post-tumour injection. Additionally, -glycosylated alpha-2-macroglobulin, CON, and HP were detected in weeks 1 and 2, whereas -glycosylated alpha-2-HS-glycoprotein and CON were detected on weeks 3 and 4 post-implantation.

Conclusion

Our findings indicate that the combination of 2D-E with lectin-based chromatography represents an effective approach for identifying prognostic biomarkers for breast cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673360978250329065548
2025-04-29
2025-10-18
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. HathawayH.J. ButlerK.S. AdolphiN.L. LovatoD.M. BelfonR. FeganD. MonsonT.C. TrujilloJ.E. TessierT.E. BryantH.C. HuberD.L. LarsonR.S. FlynnE.R. Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors.Breast Cancer Res.2011135R10810.1186/bcr305022035507
    [Google Scholar]
  3. LeeJ.S. ParkS. ParkJ.M. ChoJ.H. KimS.I. ParkB.W. Elevated levels of serum tumor markers CA 15-3 and CEA are prognostic factors for diagnosis of metastatic breast cancers.Breast Cancer Res. Treat.2013141347748410.1007/s10549‑013‑2695‑724072270
    [Google Scholar]
  4. BalogC.I.A. StavenhagenK. FungW.L.J. KoelemanC.A. McDonnellL.A. VerhoevenA. MeskerW.E. TollenaarR.A.E.M. DeelderA.M. WuhrerM. N-glycosylation of colorectal cancer tissues: A liquid chromatography and mass spectrometry-based investigation.Mol. Cell. Proteomics201211957158510.1074/mcp.M111.01160122573871
    [Google Scholar]
  5. MeanyD.L. ZhangZ. SokollL.J. ZhangH. ChanD.W. Glycoproteomics for prostate cancer detection: Changes in serum PSA glycosylation patterns.J. Proteome Res.20098261361910.1021/pr800753919035787
    [Google Scholar]
  6. OhyamaC. Glycosylation in bladder cancer.Int. J. Clin. Oncol.200813430831310.1007/s10147‑008‑0809‑818704630
    [Google Scholar]
  7. CazetA. JulienS. BobowskiM. BurchellJ. DelannoyP. Tumour-associated carbohydrate antigens in breast cancer.Breast Cancer Res.201012320410.1186/bcr257720550729
    [Google Scholar]
  8. PulaskiB.A. Ostrand-RosenbergS. Mouse 4T1 Breast Tumor Model. Current Protocols in Immunology.Hoboken, New JerseyJohn Wiley & Sons.2001
    [Google Scholar]
  9. PanS. ChenR. TamuraY. CrispinD.A. LaiL.A. MayD.H. McIntoshM.W. GoodlettD.R. BrentnallT.A. Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma.J. Proteome Res.20141331293130610.1021/pr401018424471499
    [Google Scholar]
  10. LeeS.J. ParkK. OhY.K. KwonS.H. HerS. KimI.S. ChoiK. LeeS.J. KimH. LeeS.G. KimK. KwonI.C. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice.Biomaterials200930152929293910.1016/j.biomaterials.2009.01.05819254811
    [Google Scholar]
  11. VoonS.H. TiewS.X. KueC.S. LeeH.B. KiewL.V. MisranM. KamkaewA. BurgessK. ChungL.Y. Chitosan-coated poly(lactic-co-glycolic acid)- diiodinated boron-dipyrromethene nanoparticles improve tumor selectivity and stealth properties in photodynamic cancer therapy.J. Biomed. Nanotechnol.20161271431145210.1166/jbn.2016.226329336539
    [Google Scholar]
  12. CharanJ. KanthariaN.D. How to calculate sample size in animal studies?J. Pharmacol. Pharmacother.20134430330610.4103/0976‑500X.11972624250214
    [Google Scholar]
  13. WapnirI.L. BarnardN. WartenbergD. GrecoR.S. The inverse relationship between microvessel counts and tumor volume in breast cancer.Breast J.20017318418810.1046/j.1524‑4741.2001.007003184.x11469933
    [Google Scholar]
  14. TanA-A PhangW-M GopinathSC HashimOH KiewLV ChenY. Revealing glycoproteins in the secretome of MCF-7 human breast cancer cells.Biomed. Res. Int.2015201545328910.1155/2015/453289
    [Google Scholar]
  15. ChenY. PhangW.M. MuA.K.W. ChanC.K. LowB.S. SasidharanS. ChanK.L. Decreased expression of alpha-2-HS glycoprotein in the sera of rats treated with Eurycoma longifolia extract.Front. Pharmacol.2015621110.3389/fphar.2015.0021126441666
    [Google Scholar]
  16. HashimO.H. GendehG.S. JaafarM.I. Comparative analyses of IgA1 binding lectins from seeds of six distinct clones of Artocarpus integer.Biochem. Mol. Biol. Int.199329169768490570
    [Google Scholar]
  17. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.21119131956
    [Google Scholar]
  18. HuangD.W. ShermanB.T. LempickiR.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res.200937111310.1093/nar/gkn92319033363
    [Google Scholar]
  19. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia (Second Edition).Br. J. Cancer19987711010.1038/bjc.1998
    [Google Scholar]
  20. WorkmanP. AboagyeE.O. BalkwillF. BalmainA. BruderG. ChaplinD.J. DoubleJ.A. EverittJ. FarninghamD A H. GlennieM.J. KellandL.R. RobinsonV. StratfordI.J. TozerG.M. WatsonS. WedgeS.R. EcclesS.A. Guidelines for the welfare and use of animals in cancer research.Br. J. Cancer2010102111555157710.1038/sj.bjc.660564220502460
    [Google Scholar]
  21. GruysE. ToussaintM.J.M. NiewoldT.A. KoopmansS.J. Acute phase reaction and acute phase proteins.J. Zhejiang Univ. Sci. B20056111045105610.1631/jzus.2005.B104516252337
    [Google Scholar]
  22. VernonA.E. BakewellS.J. ChodoshL.A. Deciphering the molecular basis of breast cancer metastasis with mouse models.Rev. Endocr. Metab. Disord.20078319921310.1007/s11154‑007‑9041‑517657606
    [Google Scholar]
  23. BibbyM.C. Orthotopic models of cancer for preclinical drug evaluation.Eur. J. Cancer200440685285710.1016/j.ejca.2003.11.02115120041
    [Google Scholar]
  24. EcclesS.A. BoxG. CourtW. SandleJ. DeanC.J. Preclinical models for the evaluation of targeted therapies of metastatic disease.Cell Biophys.199424-251-327929110.1007/BF027892397736534
    [Google Scholar]
  25. HoffmanR.M. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic.Invest. New Drugs199917434336010.1023/A:100632620385810759402
    [Google Scholar]
  26. PulaskiB.A. Ostrand-RosenbergS. Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines.Cancer Res.1998587148614939537252
    [Google Scholar]
  27. BouquetF. PalA. PilonesK.A. DemariaS. HannB. AkhurstR.J. BabbJ.S. LonningS.M. DeWyngaertJ.K. FormentiS.C. Barcellos-HoffM.H. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo.Clin. Cancer Res.201117216754676510.1158/1078‑0432.CCR‑11‑054422028490
    [Google Scholar]
  28. TaoK. FangM. AlroyJ. SahagianG.G. Imagable 4T1 model for the study of late stage breast cancer.BMC Cancer20088122810.1186/1471‑2407‑8‑22818691423
    [Google Scholar]
  29. Chavez-MacGregorM. LiuS. De Melo-GagliatoD. ChenH. DoK.A. PusztaiL. SymmansF.W. NairL. HortobagyiG.N. MillsG.B. Meric-BernstamF. Gonzalez-AnguloA.M. Differences in gene and protein expression and the effects of race/ethnicity on breast cancer subtypes.Cancer Epidemiol. Biomarkers Prev.201423231632310.1158/1055‑9965.EPI‑13‑092924296856
    [Google Scholar]
  30. LiC.Y. ShanS. HuangQ. BraunR.D. LanzenJ. HuK. LinP. DewhirstM.W. Initial stages of tumor cell-induced angiogenesis: Evaluation via skin window chambers in rodent models.J. Natl. Cancer Inst.200092214314710.1093/jnci/92.2.14310639516
    [Google Scholar]
  31. McKallipR.J. NagarkattiM. NagarkattiP.S. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response.J. Immunol.200517463281328910.4049/jimmunol.174.6.328115749859
    [Google Scholar]
  32. CarmelietP. VEGF as a key mediator of angiogenesis in cancer.Oncology200569Suppl. 341010.1159/00008847816301830
    [Google Scholar]
  33. JandialR. Metastatic cancer: Clinical and biological perspectives.Austin, TexasLandes Bioscience2013
    [Google Scholar]
  34. MadsenC.B. PetersenC. LavrsenK. HarndahlM. BuusS. ClausenH. PedersenA.E. WandallH.H. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response.PLoS One2012711e5013910.1371/journal.pone.005013923189185
    [Google Scholar]
  35. ToldoS. SeropianI.M. MezzaromaE. TassellV.B.W. SalloumF.N. LewisE.C. VoelkelN. DinarelloC.A. AbbateA. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury.J. Mol. Cell. Cardiol.201151224425110.1016/j.yjmcc.2011.05.00321600901
    [Google Scholar]
  36. HamritaB. ChahedK. TrimecheM. GuillierC.L. HammannP. ChaïebA. KorbiS. ChouchaneL. Proteomics-based identification of α1-antitrypsin and haptoglobin precursors as novel serum markers in infiltrating ductal breast carcinomas.Clin. Chim. Acta2009404211111810.1016/j.cca.2009.03.03319306859
    [Google Scholar]
  37. ZeyadJ. Abu-AwadA.M. ShararaA.M. KhaderY.S. The importance of alpha-1 antitrypsin (α1-AT) and neopterin serum levels in the evaluation of non-small cell lung and prostate cancer patients.Neuro Endocrinol. Lett.2010311113116
    [Google Scholar]
  38. MickscheM. KokronO. Serum levels of alpha1-antitrypsin and alpha2-macroglobulin in lung cancer.Osterr. Z. Onkol.197735-611611967586
    [Google Scholar]
  39. WuC. XuZ. XieF. SchepmoesA. FillmoreT. ChuR. SlyszG. MonroeM. MooreR. ShenY. TolicN. PayneS. CampD.I. LiuT. SmithR.D. Distinct degradome signature in triple negative breast cancer revealed by largescale comparative peptidomic analysis.62nd ASMS Conference on Mass Spectrometry and Allied TopicsMaryland, 2014.2014
    [Google Scholar]
  40. TakaharaH. SinoharaH. Mouse plasma trypsin inhibitors. Isolation and characterization of alpha-1-antitrypsin and contrapsin, a novel trypsin inhibitor.J. Biol. Chem.198225752438244610.1016/S0021‑9258(18)34943‑36977540
    [Google Scholar]
  41. HuangC.M. AnanthaswamyH.N. BarnesS. MaY. KawaiM. ElmetsC.A. Mass spectrometric proteomics profiles of in vivo tumor secretomes: Capillary ultrafiltration sampling of regressive tumor masses.Proteomics20066226107611610.1002/pmic.20060028717051643
    [Google Scholar]
  42. YamamotoK. SuzukiY. SinoharaH. Synthesis of contrapsin and alpha-1-antiproteinase in inflamed and tumor-bearing mice.Biochem. Int.19881659219283262344
    [Google Scholar]
  43. KordulaT. BugnoM. LasonW. PrzewlockiR. KojA. Rat contrapsins are the type II acute phase proteins: Regulation by interleukin 6 on the mRNA level.Biochem. Biophys. Res. Commun.1994201122222710.1006/bbrc.1994.16927515232
    [Google Scholar]
  44. GhesquièreB. DammeV.J. MartensL. VandekerckhoveJ. GevaertK. Proteome-wide characterization of N-glycosylation events by diagonal chromatography.J. Proteome Res.2006592438244710.1021/pr060186m16944957
    [Google Scholar]
  45. BernhardO.K. KappE.A. SimpsonR.J. Enhanced analysis of the mouse plasma proteome using cysteine-containing tryptic glycopeptides.J. Proteome Res.20076398799510.1021/pr060455917330941
    [Google Scholar]
  46. CidM.C. GrantD.S. HoffmanG.S. AuerbachR. FauciA.S. KleinmanH.K. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis.J. Clin. Invest.199391397798510.1172/JCI1163197680672
    [Google Scholar]
  47. KleijnD.P.V. SmeetsM.B. KemmerenP.P.C.W. LimS.K. MiddelaarB.J. VelemaE. SchoneveldA. PasterkampG. BorstC. Acute-phase protein haptoglobin is a cell migration factor involved in arterial restructuring.FASEB J.20021691123112510.1096/fj.02‑0019fje12039846
    [Google Scholar]
  48. TabassumU. ReddyO. MukherjeeG. Elevated serum haptoglobin is associated with clinical outcome in triple-negative breast cancer patients.Asian Pac. J. Cancer Prev.20121394541454410.7314/APJCP.2012.13.9.454123167376
    [Google Scholar]
  49. HägglundP. MatthiesenR. ElortzaF. HøjrupP. RoepstorffP. JensenO.N. BunkenborgJ. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins.J. Proteome Res.2007683021303110.1021/pr070060517636988
    [Google Scholar]
  50. WilsonN.L. SchulzB.L. KarlssonN.G. PackerN.H. Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins.J. Prot. Res.20021652152910.1021/pr025538d12645620
    [Google Scholar]
  51. DobryszyckaW. Katnik-PrastowskaI. GerberJ. LemańskaK. UtkoK. RozdolskiK. Serum haptoglobin, CA 125 and interleukin 6 levels in malignant and non-malignant tumors of the ovary.Arch. Immunol. Ther. Exp. (Warsz.)199947422923610483871
    [Google Scholar]
  52. FujimuraT. ShinoharaY. TissotB. PangP.C. KurogochiM. SaitoS. AraiY. SadilekM. MurayamaK. DellA. NishimuraS.I. HakomoriS. Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects.Int. J. Cancer20081221394910.1002/ijc.2295817803183
    [Google Scholar]
  53. ThompsonS. DarganE. TurnerG.A. Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer.Cancer Lett.1992661434810.1016/0304‑3835(92)90278‑41451094
    [Google Scholar]
  54. LalmanachG. NaudinC. LecailleF. FritzH. Kininogens: More than cysteine protease inhibitors and kinin precursors.Biochimie201092111568157910.1016/j.biochi.2010.03.01120346387
    [Google Scholar]
  55. WangJ. WangX. LinS. ChenC. WangC. MaQ. JiangB. Identification of kininogen-1 as a serum biomarker for the early detection of advanced colorectal adenoma and colorectal cancer.PLoS One201387e7051910.1371/journal.pone.007051923894665
    [Google Scholar]
  56. ChoW. JungK. RegnierF.E. Use of glycan targeting antibodies to identify cancer-associated glycoproteins in plasma of breast cancer patients.Anal. Chem.200880145286529210.1021/ac800867518558770
    [Google Scholar]
  57. WuJ. AkaikeT. HayashidaK. OkamotoT. OkuyamaA. MaedaH. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases.Jpn. J. Cancer Res.200192443945110.1111/j.1349‑7006.2001.tb01114.x11346467
    [Google Scholar]
  58. WuJ. AkaikeT. MaedaH. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger.Cancer Res.19985811591659426072
    [Google Scholar]
  59. KimB.K. LeeJ.W. ParkP.J. ShinY.S. LeeW.Y. LeeK.A. YeS. HyunH. KangK.N. YeoD. KimY. OhnS.Y. NohD.Y. KimC.W. The multiplex bead array approach to identifying serum biomarkers associated with breast cancer.Breast Cancer Res.2009112R2210.1186/bcr224719400944
    [Google Scholar]
  60. SuttieJ.W. JacksonC.M. Prothrombin structure, activation, and biosynthesis.Physiol. Rev.197757117010.1152/physrev.1977.57.1.1319462
    [Google Scholar]
  61. ShiX. GangadharanB. BrassL.F. RufW. MuellerB.M. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis.Mol. Cancer Res.20042739540210.1158/1541‑7786.395.2.715280447
    [Google Scholar]
  62. Even-RamS. UzielyB. CohenP. Grisaru-GranovskyS. MaozM. GinzburgY. ReichR. VlodavskyI. Bar-ShavitR. Thrombin receptor overexpression in malignant and physiological invasion processes.Nat. Med.19984890991410.1038/nm0898‑9099701242
    [Google Scholar]
  63. HenriksonK.P. SalazarS.L. FentonJ.W.II PentecostB.T. Role of thrombin receptor in breast cancer invasiveness.Br. J. Cancer1999793-440140610.1038/sj.bjc.669006310027305
    [Google Scholar]
  64. JiangM-S. PassanitiA. PennoM.B. HartG.W. Adrenal carcinoma tumor progression and penultimate cell surface oligosaccharides.Cancer Res.1992528222222271559226
    [Google Scholar]
  65. MackiewiczA. KushnerI. BaumannH. Acute Phase Proteins Molecular Biology, Biochemistry, and Clinical Applications.Boca RatonCRC Press1993700
    [Google Scholar]
  66. BorthW. α 2 “Macroglobulin, a multifunctional binding protein with targeting characteristics.FASEB J.19926153345335310.1096/fasebj.6.15.12814571281457
    [Google Scholar]
  67. SmorenburgS.M. GriffiniP. TiggelmanA. MoormanA.F. BoersW. NoordenV.C.J. α2-Macroglobulin is mainly produced by cancer cells and not by hepatocytes in rats with colon carcinoma metastases in liver.Hepatology199623356057010.1002/hep.5102303238617438
    [Google Scholar]
  68. SwallowC.J. PartridgeE.A. MacmillanJ.C. TajirianT. DiGuglielmoG.M. HayK. SzwerasM. Jahnen-DechentW. WranaJ.L. RedstonM. GallingerS. DennisJ.W. α2HS-glycoprotein, an antagonist of transforming growth factor β in vivo, inhibits intestinal tumor progression.Cancer Res.200464186402640910.1158/0008‑5472.CAN‑04‑111715374947
    [Google Scholar]
  69. YiJ.K. ChangJ.W. HanW. LeeJ.W. KoE. KimD.H. BaeJ.Y. YuJ. LeeC. YuM.H. NohD.Y. Autoantibody to tumor antigen, alpha 2-HS glycoprotein: A novel biomarker of breast cancer screening and diagnosis.Cancer Epidemiol. Biomark. Prev.20091851357136410.1158/1055‑9965.EPI‑08‑069619423516
    [Google Scholar]
  70. DowlingP. ClarkeC. HennessyK. Torralbo-LopezB. BallotJ. CrownJ. KiernanI. O’ByrneK.J. KennedyM.J. LynchV. ClynesM. Analysis of acute-phase proteins, AHSG, C3, CLI, HP and SAA, reveals distinctive expression patterns associated with breast, colorectal and lung cancer.Int. J. Cancer2012131491192310.1002/ijc.2646221953030
    [Google Scholar]
  71. ComunaleM.A. LowmanM. LongR.E. KrakoverJ. PhilipR. SeeholzerS. EvansA.A. HannH.W.L. BlockT.M. MehtaA.S. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma.J. Proteome Res.20065230831510.1021/pr050328x16457596
    [Google Scholar]
  72. LebretonJ.P. JoiselF. RaoultJ.P. LannuzelB. RogezJ.P. HumbertG. Serum concentration of human alpha 2 HS glycoprotein during the inflammatory process: Evidence that alpha 2 HS glycoprotein is a negative acute-phase reactant.J. Clin. Invest.19796441118112910.1172/JCI10955190057
    [Google Scholar]
  73. DaveauM. DavrincheC. DjelassiN. LemetayerJ. JulenN. HironM. ArnaudP. LebretonJ.P. Partial hepatectomy and mediators of inflammation decrease the expression of liver α 2 -HS glycoprotein gene in rats.FEBS Lett.19902731-2798110.1016/0014‑5793(90)81055‑S2226868
    [Google Scholar]
  74. GuilloryB. SakweA.M. SariaM. ThompsonP. AdhiamboC. KoumangoyeR. BallardB. BinhazimA. ConeC. Jahanen-DechentW. OchiengJ. Lack of fetuin-A (alpha2-HS-glycoprotein) reduces mammary tumor incidence and prolongs tumor latency via the transforming growth factor-beta signaling pathway in a mouse model of breast cancer.Am. J. Pathol.201017752635264410.2353/ajpath.2010.10017720847285
    [Google Scholar]
  75. BeretovJ. WasingerV.C. MillarE.K.A. SchwartzP. GrahamP.H. LiY. Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach.PLoS One20151011e014187610.1371/journal.pone.014187626544852
    [Google Scholar]
  76. SakweA.M. KoumangoyeR. GoodwinS.J. OchiengJ. Fetuin-A (α2HS-glycoprotein) is a major serum adhesive protein that mediates growth signaling in breast tumor cells.J. Biol. Chem.201028553418274183510.1074/jbc.M110.12892620956534
    [Google Scholar]
  77. StanS. DelvinE. LambertM. SeidmanE. LevyE. Apo A-IV: An update on regulation and physiologic functions.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20031631217718710.1016/S1388‑1981(03)00004‑012633684
    [Google Scholar]
  78. VowinkelT. MoriM. KrieglsteinC.F. RussellJ. SaijoF. BharwaniS. TurnageR.H. DavidsonW.S. TsoP. GrangerD.N. KalogerisT.J. Apolipoprotein A-IV inhibits experimental colitis.J. Clin. Invest.2004114226026910.1172/JCI20042123315254593
    [Google Scholar]
  79. WongW.M.R. GerryA.B. PuttW. RobertsJ.L. WeinbergR.B. HumphriesS.E. LeakeD.S. TalmudP.J. Common variants of apolipoprotein A-IV differ in their ability to inhibit low density lipoprotein oxidation.Atherosclerosis2007192226627410.1016/j.atherosclerosis.2006.07.01716945374
    [Google Scholar]
  80. AroraD. MahmoodZ. GeorgeJ. YadavA.K. KumarS. SinghU.S. ShuklaY. Plasma protein profiling of breast cancer patients of north indian population: A potential approach to early detection.J. Proteomics Bioinform.201365889810.4172/jpb.1000267
    [Google Scholar]
  81. HaimanM. SalvenmoserW. ScheiberK. LingenhelA. RudolphC. SchmitzG. KronenbergF. DieplingerH. Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue.Kidney Int.20056831130113610.1111/j.1523‑1755.2005.00519.x16105043
    [Google Scholar]
  82. DieplingerH. AnkerstD.P. BurgesA. LenhardM. LingenhelA. FinederL. BuchnerH. StieberP. Afamin and apolipoprotein A-IV: Novel protein markers for ovarian cancer.Cancer Epidemiol. Biomark. Prev.20091841127113310.1158/1055‑9965.EPI‑08‑065319336561
    [Google Scholar]
  83. TsoP. LiuM. KalogerisT.J. The role of apolipoprotein A-IV in food intake regulation.J. Nutr.199912981503150610.1093/jn/129.8.150310419981
    [Google Scholar]
  84. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  85. PangW.W. Abdul-RahmanP.S. Wan-IbrahimW.I. HashimO.H. Can the acute-phase reactant proteins be used as cancer biomarkers?Int. J. Biol. Markers201025111110.1177/17246008100250010120155712
    [Google Scholar]
  86. KolevM. TownerL. DonevR. Complement in cancer and cancer immunotherapy.Arch. Immunol. Ther. Exp.201159640741910.1007/s00005‑011‑0146‑x21960413
    [Google Scholar]
  87. RicklesF.R. PatiernoS. FernandezP.M. Tissue factor, thrombin, and cancer.Chest20031243Suppl.58S68S10.1378/chest.124.3_suppl.58S12970125
    [Google Scholar]
  88. Milde-LangoschK. KarnT. SchmidtM. EulenburgZ.C. Oliveira-FerrerL. WirtzR.M. SchumacherU. WitzelI. SchützeD. MüllerV. Prognostic relevance of glycosylation-associated genes in breast cancer.Breast Cancer Res. Treat.2014145229530510.1007/s10549‑014‑2949‑z24737166
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673360978250329065548
Loading
/content/journals/cmc/10.2174/0109298673360978250329065548
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 4T1 model; Breast cancer; glycoproteomic; glycosylation; haptoglobin; lectin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test