Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

This study investigates the potential effects of elemene injection on pancreatic cancer using network pharmacology and experimental validation.

Methods

GEO database were used to acquire genes which are differentially expressed between pancreatic cancer tissue and normal tissue. The vigorous energetic ingredients were identified in research and the object genes were obtained from BATMAN-TCM. The key targets and signaling pathways of elemene injection were identified using compound-target network analysis, protein-protein interaction network analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. experiments were carried out to confirm the accuracy of the network pharmacology predictions.

Results

Two hundred and eleven target genes that may be involved in Elemene's impact on pancreatic cancer were identified. Bioinformatics analysis was conducted to determine the two active mixtures and one key target. GO and KEGG enrichment analyses indicated that elemene injection exerts therapeutic effects on pancreatic cancer, regulating the cell adhesion by ECM-receptor interaction pathway. The experiments verified that elemene injection suppressed the growth and movement of pancreatic cancer cell lines Panc02 and MiaPaca-2 and the mechanism is related to regulating ECM-receptor interaction pathway-related genes. FN1 was identified as core targets by bioinformatics analysis. The FN1 was downregulated by elemene injection and was validated by QPCR and Western Blot.

Conclusion

The findings of the current study emphasized that elemene injection might control cell attachment, decrease metastasis, and suppresses pancreatic cancer progress. FN1 might be a therapeutic target for pancreatic cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673351591241114101143
2025-01-20
2025-12-16
Loading full text...

Full text loading...

References

  1. CiporaE. PartykaO. PajewskaM. CzerwA. SygitK. SygitM. KaczmarskiM. MękalD. Krzych-FałtaE. JurczakA. Karakiewicz-KrawczykK. Wieder-HuszlaS. BanaśT. BandurskaE. CiećkoW. DeptałaA. Treatment costs and social burden of pancreatic cancer.Cancers2023156191110.3390/cancers1506191136980796
    [Google Scholar]
  2. SharmaN. AroraV. Strategies for drug targeting in pancreatic cancer.Pancreatology202222793795010.1016/j.pan.2022.08.00136055937
    [Google Scholar]
  3. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  4. ParkW. ChawlaA. O’ReillyE.M. Pancreatic cancer.JAMA2021326985186210.1001/jama.2021.1302734547082
    [Google Scholar]
  5. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in traditional chinese medicine: A narrative review.J. Tradit. Chin. Med.202242347948635610020
    [Google Scholar]
  6. LiL. WangZ. ZhangY. WuZ. Traditional Chinese medicine in pancreatic cancer treatment: From bench to bedside.Chin. Med.20221790
    [Google Scholar]
  7. GengY. LiuP. XieY. LiuY. ZhangX. HouX. ZhangL. Xanthatin suppresses pancreatic cancer cell growth via the ROS/RBL1 signaling pathway: In vitro and in vivo insights.Phytomedicine202311915500410.1016/j.phymed.2023.15500437562091
    [Google Scholar]
  8. JiJ. GuoJ. ChiY. SuF. Cancer pain management with traditional chinese medicine: Current status and future perspectives.Am. J. Chin. Med.202452112313510.1142/S0192415X2450005838281918
    [Google Scholar]
  9. XiaF. SunS. XiaL. XuX. HuG. WangH. ChenX. Traditional Chinese medicine suppressed cancer progression by targeting endoplasmic reticulum stress responses: A review.Medicine202210151e3239410.1097/MD.000000000003239436595834
    [Google Scholar]
  10. ShangL. WangY. LiJ. ZhouF. XiaoK. LiuY. ZhangM. WangS. YangS. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J. Ethnopharmacol.2023302Pt A11587610.1016/j.jep.2022.11587636343798
    [Google Scholar]
  11. WuK.C. ChuP.C. ChengY.J. LiC.I. TianJ. WuH.Y. WuS.H. LaiY.C. KaoH.H. HsuA.L. LinH.W. LinC.H. Development of a traditional Chinese medicine-based agent for the treatment of cancer cachexia.J. Cachexia Sarcopenia Muscle20221342073208710.1002/jcsm.1302835718751
    [Google Scholar]
  12. XiW. ZhaoC. WuZ. YeT. ZhaoR. JiangX. LingS. Brusatol’s anticancer activity and its molecular mechanism: A research update.J. Pharm. Pharmacol.202476775376210.1093/jpp/rgae01738394388
    [Google Scholar]
  13. XiangY. GuoZ. ZhuP. ChenJ. HuangY. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science.Cancer Med.2019851958197510.1002/cam4.210830945475
    [Google Scholar]
  14. HeX. WangN. ZhangY. HuangX. WangY. The therapeutic potential of natural products for treating pancreatic cancer.Front. Pharmacol.202213105195210.3389/fphar.2022.105195236408249
    [Google Scholar]
  15. LiuJ. ZhangY. QuJ. XuL. HouK. ZhangJ. QuX. LiuY. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis.BMC Cancer201111118310.1186/1471‑2407‑11‑18321595977
    [Google Scholar]
  16. LongJ. LiuZ. HuiL. Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma.BMC Complement. Altern. Med.201919113310.1186/s12906‑019‑2544‑231215421
    [Google Scholar]
  17. ZhaiB. ZengY. ZengZ. ZhangN. LiC. ZengY. YouY. WangS. ChenX. SuiX. XieT. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy.Int. J. Nanomedicine2018136279629610.2147/IJN.S17452730349250
    [Google Scholar]
  18. ChenY. ZhuZ. ChenJ. ZhengY. LimsilaB. LuM. GaoT. YangQ. FuC. LiaoW. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies.Biomed. Pharmacother.202113811135010.1016/j.biopha.2021.11135033721752
    [Google Scholar]
  19. QianT. WenxianT. AnbingH. β-elemene enhances cisplatin sensitivity of non-small cell lung cancer cells via the miR-17-5p/STAT3 axis.Chem. Biol. Drug Des.20241031e1439510.1111/cbdd.1439537973414
    [Google Scholar]
  20. ZhaoL.P. WangH.J. HuD. HuJ.H. GuanZ.R. YuL.H. JiangY.P. TangX.Q. ZhouZ.H. XieT. LouJ.S. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer.J. Adv. Res.20246225727210.1016/j.jare.2023.08.01837689240
    [Google Scholar]
  21. SongG.Q. WuP. DongX.M. ChengL.H. LuH.Q. LinY.Y. TangW.Y. XieT. ZhouJ.L. Elemene induces cell apoptosis via inhibiting glutathione synthesis in lung adenocarcinoma.J. Ethnopharmacol.202331111640910.1016/j.jep.2023.11640937003401
    [Google Scholar]
  22. XuC. JiangZ.B. ShaoL. ZhaoZ.M. FanX.X. SuiX. YuL.L. WangX.R. ZhangR.N. WangW.J. XieY.J. ZhangY.Z. NieX.W. XieC. HuangJ.M. WangJ. WangJ. LeungE.L.H. WuQ.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer.Pharmacol. Res.202319110673910.1016/j.phrs.2023.10673936948327
    [Google Scholar]
  23. BaiR. ZhuJ. BaiZ. MaoQ. ZhangY. HuiZ. LuoX. YeX.Y. XieT. Second generation β-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma.J. Enzyme Inhib. Med. Chem.202237137938510.1080/14756366.2021.201673435012394
    [Google Scholar]
  24. ZhangX. ChenY. YaoJ. ZhangY. LiM. YuB. WangK. β-elemene combined with temozolomide in treatment of brain glioma.Biochem. Biophys. Rep.20212810114410.1016/j.bbrep.2021.10114434622038
    [Google Scholar]
  25. CaiS. XiongQ. ZhaoL. JiY. LuoZ. MaZ. β-elemene triggers ROS-dependent apoptosis in glioblastoma cells through suppressing STAT3 signaling pathway.Pathol. Oncol. Res.20212759429910.3389/pore.2021.59429934257541
    [Google Scholar]
  26. XuH.B. ChenX.Z. ZhuS.Y. XueF. ZhangY.B. A study on molecular mechanism of Xihuang pill in the treatment of glioblastoma based on network pharmacology and validation in vitro and in vivo.J. Ethnopharmacol.202432311767510.1016/j.jep.2023.11767538159819
    [Google Scholar]
  27. ZhangY. WangY. XinE. ZhangZ. MaD. LiuT. GaoF. BianT. SunY. WangM. WangZ. YanX. LiY. Network pharmacology and experimental verification reveal the mechanism of Hedysari Radix and Curcumae Rhizoma with the optimal compatibility ratio against colitis-associated colorectal cancer.J. Ethnopharmacol.202432211755510.1016/j.jep.2023.11755538110130
    [Google Scholar]
  28. YiB. LvF. ZhangN. LinJ. XuK. LiC. LiP. ZhaoM. Exploring the pharmacological mechanisms of Biyan Qingdu Granula in the treatment after nasopharyngeal carcinoma radiotherapy based on UPLC/Q-TOF MS, network pharmacology and molecular docking.J. Pharm. Biomed. Anal.202423911583010.1016/j.jpba.2023.11583038096633
    [Google Scholar]
  29. LiuY. BaiY. ZhangJ. Silva-FilhoR. ZhuQ. LeiZ. Utilizing network pharmacology and experimental validation to explore the potential molecular mechanisms of raw Pinellia ternate in treating esophageal cancer.J. Gastrointest. Oncol.20231452006201710.21037/jgo‑23‑68437969842
    [Google Scholar]
  30. ZhiJ. YinL. ZhangZ. LvY. WuF. YangY. ZhangE. LiH. LuN. ZhouM. HuQ. Network pharmacology-based analysis of Jin-Si-Wei on the treatment of Alzheimer’s disease.J. Ethnopharmacol.2024319Pt 311729110.1016/j.jep.2023.11729137925002
    [Google Scholar]
  31. NaqviW. SinghA. GargP. SrivastavaP. Network biology: A promising approach for drug target identification against neurodevelopmental disorders.Biocell20234781675168710.32604/biocell.2023.029624
    [Google Scholar]
  32. GuanH. LiB. ZhangZ. WuH. HeX. DongY. SuJ. LvG. ChenS. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Bailing capsule on polycystic ovary syndrome.BMC Complement. Med. Ther.202323145810.1186/s12906‑023‑04280‑638102584
    [Google Scholar]
  33. XiaoW. XuY. BaakJ.P. DaiJ. JingL. ZhuH. GanY. ZhengS. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer.BMC Complement. Med. Ther.202323134510.1186/s12906‑023‑04148‑937770919
    [Google Scholar]
  34. YuX. QinW. CaiH. RenC. HuangS. LinX. TangL. ShanZ. AL-AmeerW.H.A. WangL. YanH. ChenM. Analyzing the molecular mechanism of xuefuzhuyu decoction in the treatment of pulmonary hypertension with network pharmacology and bioinformatics and verifying molecular docking.Comput. Biol. Med.202416910786310.1016/j.compbiomed.2023.10786338199208
    [Google Scholar]
  35. Le-xinC. Ming-junL. Chun-qiX. Jia-xinZ. Jing-yaY. Li-xinN. Mei-qiW. En-xinZ. Xiao-junZ. Yi Qi Chu Tan Formula (YQCTF) inhibited the progress of lung cancer via regulating tumor-associated neutrophil: An integrated study of network pharmacology, proteomics and pharmacodynamics.J. Ethnopharmacol.2024318Pt B11694310.1016/j.jep.2023.11694337532072
    [Google Scholar]
  36. XiaT. XuW.J. HuY.N. LuoZ.Y. HeW. LiuC.S. TanX.M. Simiao Wan and its ingredients alleviate type 2 diabetes mellitus via IRS1/AKT2/FOXO1/GLUT2 signaling.Front. Nutr.20239101296110.3389/fnut.2022.101296136698459
    [Google Scholar]
  37. ChenD.J. LaiC.H. Exploring the mechanisms of magnolol in the treatment of periodontitis by integrating network pharmacology and molecular docking.Biocell20234761317132710.32604/biocell.2023.028883
    [Google Scholar]
  38. XinY. SangY. JiX. TangM. ChenL. HaoY. LuJ. Explore the constituents and mechanism of traditional Chinese medicine preparation Zhachong Shisan Pills based on HPLC-QTOF-MS and network pharmacology.Curr. Pharm. Anal.202319971273410.2174/0115734129259758230924070432
    [Google Scholar]
  39. LiuK.Q. BaiX. ChenJ.L. ChenG.J. Ameen JamalM. HeY.Q. Molecular network mechanism of Shexiang Huayu Xingnao granules in treating intracerebral hemorrhage.Ibrain202410217218510.1002/ibra.1213138915950
    [Google Scholar]
  40. LiuC. HuW. FengX. QuF. Network pharmacology analysis of a patented Chinese herbal medicine for alleviating anxiety disorder in vitro fertilization-embryo transfer.J. Tradit. Complement. Med.202414219120210.1016/j.jtcme.2023.10.00338481549
    [Google Scholar]
  41. SongZ. YuJ. WangM. ShenW. WangC. LuT. ShanG. DongG. WangY. ZhaoJ. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.202318669370110.32604/chd.2024.048081
    [Google Scholar]
  42. TakhshaF.S. VangestelC. TancM. De BruyckerS. BergM. PintelonI. StroobantsS. De MeyerG.R.Y. Van Der VekenP. MartinetW. W. ATG4B inhibitor UAMC-2526 potentiates the chemotherapeutic effect of gemcitabine in a Panc02 mouse model of pancreatic ductal adenocarcinoma.Front. Oncol.20211175025910.3389/fonc.2021.75025934868951
    [Google Scholar]
  43. CaiH. RenL. WangY. ZhangY. HuangT. YuJ. ChenJ. SuiX. XieX. Beta-elemene reduces the malignancy of non-small cell lung cancer by enhancing C3orf21 expression.Front. Oncol.20211157147610.3389/fonc.2021.57147634026596
    [Google Scholar]
  44. AlizadaM. LiJ. AslamiH. YangD. KorchuganovaT. XuY.H. β-Elemene inhibits the proliferation and migration of human glioblastoma cell lines via suppressing ring finger protein 135.Balkan J. Med. Genet.2020231434910.2478/bjmg‑2020‑000232953408
    [Google Scholar]
  45. WangC. LiuZ.Y. HuangW.G. YangZ.J. LanQ.Y. FangA.P. HouM.J. LuoX.L. ZhangY.J. ChenS. ZhuH.L. Choline suppresses hepatocellular carcinoma progression by attenuating AMPK/mTOR-mediated autophagy via choline transporter SLC5A7 activation.Hepatobiliary Surg. Nutr.202413339341110.21037/hbsn‑22‑47638911213
    [Google Scholar]
  46. LiC. FuY. HeY. HuangN. YueJ. MiaoY. LvJ. XiaoY. DengR. ZhangC. HuangM. Knockdown of LINC00511 enhances radiosensitivity of lung adenocarcinoma via regulating miR-497-5p/SMAD3.Cancer Biol. Ther.2023241216589610.1080/15384047.2023.216589636861928
    [Google Scholar]
  47. BozzaA. BernardiM. CatanzaroD. ChieregatoK. MerloA. AstoriG. Enalaprilat and losartan decrease erythroid precursors frequency in cells from patients with polycythemia vera.Hematology2023281218205610.1080/16078454.2023.218205636856520
    [Google Scholar]
  48. ZhouD. WuX. LiuX. HeS. NiJ. ChenB. MuD. The pharmacological mechanism of β-elemene in the treatment of esophageal cancer revealed by network pharmacology and experimental verification.Sci. Rep.20231311216010.1038/s41598‑023‑38755‑w37500660
    [Google Scholar]
  49. Prashanth N Meghana P JainS.K. RajaputR.P.S. SatyanarayanS.N.D. RajaR.N.H. KumaraswamyK.H.M. Sandeep Kumar Jain R Pooja S Rajaput Satyanarayan N D Raja Naika H Kumaraswamy H M Nicotine promotes epithelial to mesenchymal transition and gemcitabine resistance via hENT1/RRM1 signalling in pancreatic cancer and chemosensitizing effects of Embelin-a naturally occurring benzoquinone.Sci. Total Environ.202491416972710.1016/j.scitotenv.2023.16972738163613
    [Google Scholar]
  50. ZhangH. LiS. BaoJ. GeN. HongF. QianL. β-elemene inhibits non-small cell lung cancer cell migration and invasion by inactivating the FAK-Src pathway.Exp. Ther. Med.2021224109510.3892/etm.2021.1052934504549
    [Google Scholar]
  51. LvX. LinY. ZhuX. CaiX. Isoalantolactone suppresses gallbladder cancer progression via inhibiting the ERK signalling pathway.Pharm. Biol.202361155656710.1080/13880209.2023.219164536994917
    [Google Scholar]
  52. FangC. WuW. NiZ. LiuY. LuoJ. ZhouY. GongC. HuD. YaoC. ChenX. WangL. ZhuS. Ailanthone inhibits non-small cell lung cancer growth and metastasis through targeting UPF1/GAS5/ULK1 signaling pathway.Phytomedicine202412815533310.1016/j.phymed.2023.15533338518633
    [Google Scholar]
  53. LiuY. ShenM. WuY. LuoK. ZhangJ. WangZ. ChenZ. LiJ. WuS. LinN. ZhangC. LiY. Triacanthine enhances the sensitivity of colorectal cancer cells to 5-fluorouracil by regulating RRM2.Phytomedicine202412615520410.1016/j.phymed.2023.15520438342015
    [Google Scholar]
  54. XuH. ChenG. NiuQ. SongK. FengZ. HanZ. Spindle and kinetochore-associated complex 3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2022134559961410.1016/j.oooo.2022.06.01036123287
    [Google Scholar]
  55. SindhujaS. AmuthalakshmiS. NaliniC.N. A review on PCR and POC-PCR - A boon in the diagnosis of COVID-19.Curr. Pharm. Anal.202218113916
    [Google Scholar]
  56. LiuY. JiangZ.Y. ZhouY.L. QiuH.H. WangG. LuoY. LiuJ.B. LiuX.W. BuW.Q. SongJ. CuiL. JiaX.B. FengL. β-elemene regulates endoplasmic reticulum stress to induce the apoptosis of NSCLC cells through the PERK/IRE1α/ATF6 pathway.Biomed. Pharmacother.201793490497
    [Google Scholar]
  57. BaoJ. LuW. DuanH. YeY. LiJ. LiaoW. LiY. SunY. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower- grade gliomas.Front. Immunol.20221393397310.3389/fimmu.2022.93397336045691
    [Google Scholar]
  58. FrancoC.J.P. FerreiraO.O. Antônio Barbosa de MoraesÂ. VarelaE.L.P. NascimentoL.D. PercárioS. de OliveiraM.S. AndradeE.H.A. Chemical composition and antioxidant activity of essential oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., leaf of family Myrtaceae.Molecules20212611329210.3390/molecules2611329234072598
    [Google Scholar]
  59. FuJ. GaoY. XingX. Preliminary study on phytochemical constituents and biological activities of essential oil from Myriactis nepalensis less.Molecules20222714463110.3390/molecules2714463135889501
    [Google Scholar]
  60. XuX. ZhangJ. WangT. LiJ. RongY. WangY. BaiC. YanQ. RanX. WangY. ZhangT. SunJ. JiangQ. Emerging non-antibody‒drug conjugates (non-ADCs) therapeutics of toxins for cancer treatment.Acta Pharm. Sin. B20241441542155910.1016/j.apsb.2023.11.02938572098
    [Google Scholar]
  61. CaugheyB.A. StricklerJ.H. Targeting KRAS-mutated gastrointestinal malignancies with small-molecule inhibitors: A new generation of breakthrough therapies.Drugs2024841274410.1007/s40265‑023‑01980‑838109010
    [Google Scholar]
  62. HasselbeckS. ChengX. Molecular marvels: Small molecules paving the way for enhanced gene therapy.Pharmaceuticals20231714110.3390/ph1701004138256875
    [Google Scholar]
  63. XiaoQ. LiX. LiuC. JiangY. HeY. ZhangW. AzevedoH.S. WuW. XiaY. HeW. Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator.Acta Pharm. Sin. B20231383503351710.1016/j.apsb.2022.07.01237655330
    [Google Scholar]
  64. ZhuZ. TangW. QiuX. XinX. ZhangJ. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics.Eur. J. Med. Chem.202426311596710.1016/j.ejmech.2023.11596738000211
    [Google Scholar]
  65. ChengH.Y. SuG.L. WuY.X. ChenG. YuZ.L. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects.J. Pharm. Anal.202414710092010.1016/j.jpha.2023.12.01039104866
    [Google Scholar]
  66. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.04129071215
    [Google Scholar]
  67. CaoL. ZhuY. WangW. WangG. ZhangS. ChengH. Emerging nano-based strategies against drug resistance in tumor chemotherapy.Front. Bioeng. Biotechnol.2021979888210.3389/fbioe.2021.79888234950650
    [Google Scholar]
  68. LiQ.Q. WangG. ReedE. HuangL. CuffC.F. Evaluation of cisplatin in combination with β-elemene as a regimen for prostate cancer chemotherapy.Basic Clin. Pharmacol. Toxicol.2010107586887610.1111/j.1742‑7843.2010.00592.x22545969
    [Google Scholar]
  69. DengM. LiuB. SongH. YuR. ZouD. ChenY. MaY. LvF. XuL. ZhangZ. LvQ. YangX. CheX. QuX. LiuY. ZhangY. HuX. β-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway.Phytomedicine20206915318410.1016/j.phymed.2020.15318432199253
    [Google Scholar]
  70. BaiZ. YaoC. ZhuJ. XieY. YeX.Y. BaiR. XieT. Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification.Molecules2021266149910.3390/molecules2606149933801899
    [Google Scholar]
  71. JiangX. HidruT.H. ZhangZ. BaiY. KongL. LiX. Evidence of elemene injection combined radiotherapy in lung cancer treatment among patients with brain metastases.Medicine20179621e696310.1097/MD.000000000000696328538391
    [Google Scholar]
  72. YangS. ZhengL. SunY. LiZ. Effect of network-based positive psychological nursing model combined with elemene injection on negative emotions, immune function, and quality of life in lung cancer patients undergoing chemotherapy in the era of big data.Front. Public Health20221089753510.3389/fpubh.2022.89753535602129
    [Google Scholar]
  73. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad51838197310
    [Google Scholar]
  74. LvS. WangQ. ZhangX. NingF. LiuW. CuiM. XuY. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review.Phytomedicine202412315523110.1016/j.phymed.2023.15523138007992
    [Google Scholar]
  75. WangB. ZhouW. ZhangH. WangW. ZhangB. LiS. Exploring the effect of Weifuchun capsule on the toll- like receptor pathway mediated HES6 and immune regulation against chronic atrophic gastritis.J. Ethnopharmacol.202330311593010.1016/j.jep.2022.11593036403744
    [Google Scholar]
  76. ZhangZ. ZhengY. ChenN. XuC. DengJ. FengX. LiuW. MaC. ChenJ. CaiT. XuY. WangS. CaoY. GeG. JiaC. CaoY. San Huang Xiao Yan recipe modulates the HMGB1-mediated abnormal inflammatory microenvironment and ameliorates diabetic foot by activating the AMPK/Nrf2 signalling pathway.Phytomedicine202311815493110.1016/j.phymed.2023.15493137364421
    [Google Scholar]
  77. ZhuJ. LiB. JiY. ZhuL. ZhuY. ZhaoH. β-elemene inhibits the generation of peritoneum effusion in pancreatic cancer via suppression of the HIF1A-VEGFA pathway based on network pharmacology.Oncol. Rep.20194262561257110.3892/or.2019.736031638231
    [Google Scholar]
  78. YangP. XuP. ChengC. JiaoJ. WuY. DongS. XieJ. ZhuX. Integrating network pharmacology and experimental models to investigate the efficacy of QYHJ on pancreatic cancer.J. Ethnopharmacol.202229711551610.1016/j.jep.2022.11551635817247
    [Google Scholar]
  79. PanY. WangW. HuangS. NiW. WeiZ. CaoY. YuS. JiaQ. WuY. ChaiC. ZhengQ. ZhangL. WangA. SunZ. HuangS. WangS. ChenW. LuY. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation.J. Cell. Mol. Med.201923106846685810.1111/jcmm.1456831343107
    [Google Scholar]
  80. GaoT.H. LiaoW. LinL.T. ZhuZ.P. LuM.G. FuC.M. XieT. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications.Phytomedicine202210215409010.1016/j.phymed.2022.15409035580439
    [Google Scholar]
  81. ChenP. LiX. ZhangR. LiuS. XiangY. ZhangM. ChenX. PanT. YanL. FengJ. DuanT. WangD. ChenB. JinT. WangW. ChenL. HuangX. ZhangW. SunY. LiG. KongL. ChenX. LiY. YangZ. ZhangQ. ZhuoL. SuiX. XieT. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation.Theranostics202010115107511910.7150/thno.4470532308771
    [Google Scholar]
  82. DengH. ChenG. ZhangJ. β-Elemene regulates epithelial-mesenchymal transformation and inhibits invasion and metastasis of colorectal cancer cells.J. Complement. Integr. Med.202320242543010.1515/jcim‑2022‑029536480470
    [Google Scholar]
  83. XiaomengF. LeiL. JinghongA. JuanJ. QiY. DandanY. Treatment with β-elemene combined with paclitaxel inhibits growth, migration, and invasion and induces apoptosis of ovarian cancer cells by activation of STAT-NF-κB pathway.Braz. J. Med. Biol. Res.2020536e888510.1590/1414‑431x2020888532401925
    [Google Scholar]
  84. SieniawskaE. MichelP. MroczekT. GranicaS. Skalicka-WoźniakK. Nigella damascena L. essential oil and its main constituents, damascenine and β-elemene modulate inflammatory response of human neutrophils ex vivo.Food Chem. Toxicol.201912516116910.1016/j.fct.2018.12.05730610933
    [Google Scholar]
  85. LiangY. LiS. β-elemene suppresses migration of esophageal squamous cell carcinoma by modulating expression of MMP9 through the PI3K/Akt/NF-κB pathway.Comb. Chem. High Throughput Screen.202326132304232010.2174/138620732666623030312051436872359
    [Google Scholar]
  86. WangZ. WangZ. DuC. ZhangY. TaoB. XianH. β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha.J. Nat. Med.202175365566310.1007/s11418‑021‑01516‑y33861415
    [Google Scholar]
  87. WangZ. ChenY. YangL. YaoD. ShenY. Combinative effects of β-elemene and propranolol on the proliferation, migration, and angiogenesis of hemangioma.PeerJ202311e1564310.7717/peerj.1564337456875
    [Google Scholar]
  88. LuoH. VongC.T. ChenH. GaoY. LyuP. QiuL. ZhaoM. LiuQ. ChengZ. ZouJ. YaoP. GaoC. WeiJ. UngC.O.L. WangS. ZhongZ. WangY. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine.Chin. Med.20191414810.1186/s13020‑019‑0270‑931719837
    [Google Scholar]
  89. ChengG. LiL. LiQ. LianS. ChuH. DingY. LiC. LengY. β-elemene suppresses tumor metabolism and stem cell-like properties of non-small cell lung cancer cells by regulating PI3K/AKT/mTOR signaling.Am. J. Cancer Res.20221241535155535530288
    [Google Scholar]
  90. ChenC. ChenY. HsiY.T. ChangC.S. HuangL.F. HoC.T. WayT.D. KaoJ.Y. Chemical constituents and anticancer activity of Curcuma zedoaria roscoe essential oil against non-small cell lung carcinoma cells in vitro and in vivo.J. Agric. Food Chem.20136147114181142710.1021/jf402618424199734
    [Google Scholar]
  91. WangG. LiX. HuangF. ZhaoJ. DingH. CunninghamC. CoadJ.E. FlynnD.C. ReedE. LiQ.Q. Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death.Cell. Mol. Life Sci.2005627-888189310.1007/s00018‑005‑5017‑315868411
    [Google Scholar]
  92. WangY. XuH. ZhuB. QiuZ. LinZ. Systematic identification of the key candidate genes in breast cancer stroma.Cell. Mol. Biol. Lett.20182314410.1186/s11658‑018‑0110‑430237810
    [Google Scholar]
  93. MachackovaT. Vychytilova-FaltejskovaP. SouckovaK. TrachtovaK. BrchnelovaD. SvobodaM. KissI. ProchazkaV. KalaZ. SlabyO. MiR-215-5p reduces liver metastasis in an experimental model of colorectal cancer through regulation of ECM-receptor interactions and focal adhesion.Cancers20201212351810.3390/cancers1212351833255928
    [Google Scholar]
  94. ZhaoQ. XieJ. XieJ. ZhaoR. SongC. WangH. RongJ. YanL. SongY. WangF. XieY. Weighted correlation network analysis identifies FN1, COL1A1 and SERPINE1 associated with the progression and prognosis of gastric cancer.Cancer Biomark.2021311597510.3233/CBM‑20059433780362
    [Google Scholar]
  95. BüttnerP. UeberhamL. ShoemakerM.B. RodenD.M. DinovB. HindricksG. BollmannA. HusserD. Identification of central regulators of calcium signaling and ECM–receptor interaction genetically associated with the progression and recurrence of atrial fibrillation.Front. Genet.2018916210.3389/fgene.2018.0016229868113
    [Google Scholar]
  96. XiaoJ. YangW. XuB. ZhuH. ZouJ. SuC. RongJ. WangT. ChenZ. Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration.BMC Cancer201818197610.1186/s12885‑018‑4850‑330314454
    [Google Scholar]
  97. ChenT. SongP. HeM. RuiS. DuanX. MaY. ArmstrongD.G. DengW. Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway.Burns Trauma202311tkad00310.1093/burnst/tkad00337251708
    [Google Scholar]
  98. CaiX. LiuC. ZhangT.N. ZhuY.W. DongX. XueP. Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion.J. Cell. Biochem.201811964717472810.1002/jcb.2665129274284
    [Google Scholar]
  99. HuamanJ. OgunwobiO.O. Circulating tumor cell migration requires fibronectin acting through integrin B1 or SLUG.Cells202097159410.3390/cells907159432630254
    [Google Scholar]
  100. HipkeK. PitterB. HruschaA. van BebberF. ModicM. BansalV. LewandowskiS.A. OrozcoD. EdbauerD. BonnS. HaassC. PohlU. MontanezE. SchmidB. Loss of TDP-43 causes ectopic endothelial sprouting and migration defects through increased fibronectin, vcam 1 and integrin α4/β1. Front. Cell Dev. Biol.202311116996210.3389/fcell.2023.116996237384248
    [Google Scholar]
  101. MulthauptH.A.B. LeitingerB. GullbergD. CouchmanJ.R. Extracellular matrix component signaling in cancer.Adv. Drug Deliv. Rev.201697284010.1016/j.addr.2015.10.01326519775
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673351591241114101143
Loading
/content/journals/cmc/10.2174/0109298673351591241114101143
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test