Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Infectious diseases are extremely common worldwide. Among them, viral infections are important because of their high transmissibility and rapid replication. Recently, due to the COVID-19 pandemic and the spread of emerging viral diseases, timely diagnosis of viral infections has become very important. In addition to reducing clinical complications and preventing the spread of the disease, timely diagnosis of viral diseases also reduces the socio-economic consequences of the disease. Therefore, there is a remarkable demand to identify viruses in a rapid, accurate, and selective way. The development of highly sensitive, selective, and accessible biosensors based on nanoparticles and nanotubes for pathogenic virus detection has been a significant progress. Biosensors can be modified with various materials to enhance their electrochemical performance. Precious metals, such as gold, silver, and platinum, are commonly employed due to their ability to significantly increase the electrochemical current intensity. Additionally, other materials, including copper, carbon nanotubes, iron, and thiols, have been successfully utilized as modifying agents to improve biosensor sensitivity and selectivity. The aim of this review article is to analyse the prominent compounds that are widely used in the biosensor method to detect viruses and also to highlight their significance in improving electrode performance.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358036250303025326
2025-03-19
2025-10-30
Loading full text...

Full text loading...

References

  1. AlvarezM.M. AizenbergJ. AnalouiM. AndrewsA.M. BiskerG. BoydenE.S. KammR.D. KarpJ.M. MooneyD.J. OkluR. PeerD. StolzoffM. StranoM.S. Trujillo-de SantiagoG. WebsterT.J. WeissP.S. KhademhosseiniA. Emerging trends in micro-and nanoscale technologies in medicine: From basic discoveries to translation.ACS Nano.20171165195521410.1021/acsnano.7b0149328524668
    [Google Scholar]
  2. BlumenthalD. FowlerE.J. AbramsM. CollinsS.R. Covid-19—implications for the health care system.N. Engl. J. Med.20203831514831488
    [Google Scholar]
  3. HamidH. AbidZ. AmirA. RehmanT.U. AkramW. MehboobT. Current burden on healthcare systems in low- and middle-income countries: Recommendations for emergency care of COVID-19.Drugs Ther. Perspect.2020361046646810.1007/s40267‑020‑00766‑232837195
    [Google Scholar]
  4. TongS. RevillP. Overview of hepatitis B viral replication and genetic variability.J. Hepatol.2016641Suppl.S4S1610.1016/j.jhep.2016.01.02727084035
    [Google Scholar]
  5. SmithE.C. The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates.PLoS Pathog.2017134e100625410.1371/journal.ppat.100625428448634
    [Google Scholar]
  6. MukherjeeS. StrakovaP. RichteraL. AdamV. AshrafiA. Biosensors-based approaches for other viral infection detection.Adv. Bios. Virus Detect.2022839140510.1016/B978‑0‑12‑824494‑4.00013‑8
    [Google Scholar]
  7. YuwenL. ZhangS. ChaoJ. Recent advances in DNA nanotechnology-enabled biosensors for virus detection.Biosensors202313882210.3390/bios1308082237622908
    [Google Scholar]
  8. AlhajjM. ZubairM. FarhanaA. Enzyme linked immunosorbent assay.Treasure Island, FLStatPearls2023
    [Google Scholar]
  9. Alhajj, M.; Zubair, M.; Farhana, A. Enzyme Linked Immunosorbent Assay In: Statpearls, StatPearls Publishing: Treasure Island, FL, 2023.Available from: https://www.ncbi.nlm.nih.gov/books/NBK555922/
    [Google Scholar]
  10. BolatG. AbaciS. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite.Sensors201818377310.3390/s1803077329510525
    [Google Scholar]
  11. EbrahimS. El-RaeyR. HefnawyA. IbrahimH. SolimanM. Abdel-FattahT.M. Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion.Synth. Met.2014190131910.1016/j.synthmet.2014.01.021
    [Google Scholar]
  12. Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater.20193130e18067310.1002/adma.20180673931094032
    [Google Scholar]
  13. CastilloJ. GáspárS. LethS. NiculescuM. MortariA. BontideanI. SoukharevV. DorneanuS.A. RyabovA.D. CsöregiE. Biosensors for life quality.Sens. Actuators B Chem.2004102217919410.1016/j.snb.2004.04.084
    [Google Scholar]
  14. LeeY.D. LimC.K. SinghA. KohJ. KimJ. KwonI.C. KimS. Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide.ACS Nano.2012686759676610.1021/nn301490522747065
    [Google Scholar]
  15. LuoY. LiuH. RuiQ. TianY. Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c.Anal. Chem.20098183035304110.1021/ac802721x19290667
    [Google Scholar]
  16. EsfandiariA.H. FarkhaniH.H. JavanH.Z. VojdaniA. VelayatiM. MahakiH. MeshkatZ. ManoochehriH. AvanA. TanzadehpanahH. Biosensors for detection of hepatitis b virus: Review.Curr. Med. Chem.20243110.2174/010929867329547424053110031238860910
    [Google Scholar]
  17. BaiW. SpivakD.A. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract.Angew. Chem. Int. Ed.20145382095209810.1002/anie.20130946224453117
    [Google Scholar]
  18. BirnbaumerG. LieberzeitP. SchirrhaglR. MilneraM. BrücklH. ErtlP. Detection of viral contaminations using molecular imprinted polymers integrated on a Lab-on-a-Chip system.Lab Chip200993549355610.1039/b914738a20024035
    [Google Scholar]
  19. InanH. WangS. InciF. BadayM. ZangarR. KesirajuS. AndersonK.S. CunninghamB.T. DemirciU. Isolation, detection, and quantification of cancer biomarkers in HPV-associated malignancies.Sci. Rep.201771332210.1038/s41598‑017‑02672‑628607383
    [Google Scholar]
  20. JinC.E. LeeT.Y. KooB. SungH. KimS.H. ShinY. Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing.Sens. Actuators B Chem.20182552399240610.1016/j.snb.2017.08.197
    [Google Scholar]
  21. SainiA. KaurN. SinghN. A highly fluorescent sensor based on hybrid nanoparticles for selective determination of furosemide in aqueous medium.Sens. Actuators B Chem.201622822123010.1016/j.snb.2016.01.026
    [Google Scholar]
  22. ChangJ.E. LeeD.S. BanS.W. OhJ. JungM.Y. KimS.H. ParkS.J. PersaudK. JheonS. Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system.Sens. Actuators B Chem.201825580080710.1016/j.snb.2017.08.057
    [Google Scholar]
  23. SaylanY. AkgönüllüS. ÇimenD. DerazshamshirA. BereliN. YılmazF. DenizliA. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides.Sens. Actuators B Chem.201724144645410.1016/j.snb.2016.10.017
    [Google Scholar]
  24. JustinoC.I.L. Rocha-SantosT.A.P. CardosoS. DuarteA.C. Strategies for enhancing the analytical performance of nanomaterial-based sensors.Trends Analyt. Chem.201347273610.1016/j.trac.2013.02.00432287538
    [Google Scholar]
  25. LoyezM. LarrieuJ.C. ChevineauS. RemmelinkM. LeducD. BondueB. LambertP. DevièreJ. WattiezR. CaucheteurC. In situ cancer diagnosis through online plasmonics.Biosens. Bioelectron.201913110411210.1016/j.bios.2019.01.06230826644
    [Google Scholar]
  26. AbolhasanR. MehdizadehA. RashidiM.R. Aghebati- MalekiL. YousefiM. Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis.Biosens. Bioelectron.201912916417410.1016/j.bios.2019.01.00830708263
    [Google Scholar]
  27. JenikM. SchirhaglR. SchirkC. HaydenO. LieberzeitP. BlaasD. PaulG. DickertF.L. Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance.Anal. Chem.200981135320532610.1021/ac801956919469532
    [Google Scholar]
  28. ChengD. YuM. FuF. HanW. LiG. XieJ. SongY. SwihartM.T. SongE. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters.Anal. Chem.201688182082510.1021/acs.analchem.5b0332026641108
    [Google Scholar]
  29. Grinsvenv.B. EerselsK. AkkermansO. EllermannS. KordekA. PeetersM. DeschaumeO. BarticC. DiliënH. RedekerS.E. WagnerP. CleijT.J. Label-free detection of Escherichia coli based on thermal transport through surface imprinted polymers.ACS Sens.2016191140114710.1021/acssensors.6b00435
    [Google Scholar]
  30. ShanbhagM.M. ManasaG. MascarenhasR.J. MondalK. ShettiN.P. Fundamentals of bio-electrochemical sensing.Chem. Eng. J. Adv.20231610051610.1016/j.ceja.2023.100516
    [Google Scholar]
  31. NareshV. LeeN. A review on biosensors and recent development of nanostructured materials-enabled biosensors.Sensors2021214110910.3390/s2104110933562639
    [Google Scholar]
  32. SmutokO. KatzE. Biosensors: Electrochemical devices—general concepts and performance.Biosensors20221314410.3390/bios1301004436671878
    [Google Scholar]
  33. MoralesM.A. HalpernJ.M. Guide to selecting a biorecognition element for biosensors.Bioconjug. Chem.201829103231323910.1021/acs.bioconjchem.8b0059230216055
    [Google Scholar]
  34. WangX. ZhouJ. WangH. Bioreceptors as the key components for electrochemical biosensing in medicine.Cell Rep. Phys. Sci.20245210180110.1016/j.xcrp.2024.101801
    [Google Scholar]
  35. VondrákJ. FaulknerL.R. Electrochemical methods: Fundamentals and applications.Surf. Technol.1983201919210.1016/0376‑4583(83)90080‑8
    [Google Scholar]
  36. BanakarM. HamidiM. KhurshidZ. ZafarM.S. SapkotaJ. AzizianR. RokayaD. Electrochemical biosensors for pathogen detection: An updated review.Biosensors2022121192710.3390/bios1211092736354437
    [Google Scholar]
  37. GuptaA. AkinD. BashirR. Single virus particle mass detection using microresonators with nanoscale thickness.Appl. Phys. Lett.200484111976197810.1063/1.1667011
    [Google Scholar]
  38. PumeraM. SánchezS. IchinoseI. TangJ. Electrochemical nanobiosensors.Sens. Actuators B Chem.200712321195120510.1016/j.snb.2006.11.016
    [Google Scholar]
  39. PehA.E.K. LiS.F.Y. Dengue virus detection using impedance measured across nanoporous aluminamembrane.Biosens. Bioelectron.20134239139610.1016/j.bios.2012.10.05423220066
    [Google Scholar]
  40. HongS.A. KwonJ. KimD. YangS. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus.Biosens. Bioelectron.20156433834410.1016/j.bios.2014.09.02525254625
    [Google Scholar]
  41. PatolskyF. LieberC.M. Nanowire nanosensors.Mater. Today200584202810.1016/S1369‑7021(05)00791‑1
    [Google Scholar]
  42. ParkheV.S. TiwariA.P. Gold nanoparticles-based biosensors: Pioneering solutions for bacterial and viral pathogen detection—a comprehensive review.World J. Microbiol. Biotechnol.202440926910.1007/s11274‑024‑04072‑139009934
    [Google Scholar]
  43. SicilianoG. AlsadigA. ChiriacòM.S. TurcoA. FoscariniA. FerraraF. GigliG. PrimiceriE. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications.Talanta2024268Pt 112528010.1016/j.talanta.2023.12528037862755
    [Google Scholar]
  44. BanerjeeA. MaityS. MastrangeloC.H. Nanostructures for biosensing, with a brief overview on cancer detection, IoT, and the role of machine learning in smart biosensors.Sensors2021214125310.3390/s2104125333578726
    [Google Scholar]
  45. GoodingJ.J. Biosensor technology for detecting biological warfare agents: Recent progress and future trends.Anal. Chim. Acta2006559213715110.1016/j.aca.2005.12.020
    [Google Scholar]
  46. KhanJ. RasmiY. KırboğaK.K. AliA. RudrapalM. PatekarR.R. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis.Beni. Suef Univ. J. Basic Appl. Sci.202211111110.1186/s43088‑022‑00293‑136092513
    [Google Scholar]
  47. ChenT. ShengA. HuY. MaoD. NingL. ZhangJ. Modularization of three-dimensional gold nanoparticles/ferrocene/liposome cluster for electrochemical biosensor.Biosens. Bioelectron.2019124-12511512110.1016/j.bios.2018.09.10130343154
    [Google Scholar]
  48. HuL. FuX. KongG. YinY. MengH.M. KeG. ZhangX.B. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging.J. Mater. Chem. B Mater. Biol. Med.20208419449946510.1039/D0TB01750G32955066
    [Google Scholar]
  49. SenningA. Senning, A. A Review of:“Patai/Rappoport (Eds.), Supplement S, The chemistry of sulphur-containing functional groups, John Wiley & Sons, Chichester etc., 1993, ISBN 0 471 93046 6, 1122 pages, £ 320.00.”Sulfur Rep.199415339539710.1080/01961779408050636
    [Google Scholar]
  50. WhiteP.C. LawrenceN.S. DavisJ. ComptonR.G. Electrochemical determination of thiols: A perspective. Electroanalysis.Inter. J. Devot. Fund. Pract. Aspec. Electro.20021428998
    [Google Scholar]
  51. HamdyM.E. CarloD.M. HusseinH.A. SalahT.A. El-DeebA.H. EmaraM.M. PezzoniG. CompagnoneD. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus.J. Nanobiotechnol.20181614810.1186/s12951‑018‑0374‑x29751767
    [Google Scholar]
  52. ZhangH.J. LuY.H. LongY.J. WangQ.L. HuangX.X. ZhuR. WangX-L. LiangL-P. TengP. ZhengH-Z. An aptamer-functionalized gold nanoparticle biosensor for the detection of prion protein.Anal. Methods2014692982298710.1039/C3AY42207K
    [Google Scholar]
  53. KarakuşE. ErdemirE. DemirbilekN. LivL. Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor.Anal. Chim. Acta.2021118233893910.1016/j.aca.2021.33893934602210
    [Google Scholar]
  54. SteinmetzM. LimaD. VianaA.G. FujiwaraS.T. PessôaC.A. EttoR.M. WohnrathK. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection.Biosens. Bioelectron.201914111135110.1016/j.bios.2019.11135131176113
    [Google Scholar]
  55. CajigasS. AlzateD. OrozcoJ. Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus.Mikrochim. Acta20201871159410.1007/s00604‑020‑04568‑133026568
    [Google Scholar]
  56. HuaZ. YuT. LiuD. XianyuY. Recent advances in gold nanoparticles-based biosensors for food safety detection.Biosens. Bioelectron.202117911307610.1016/j.bios.2021.11307633601132
    [Google Scholar]
  57. LeeH.E. KangY.O. ChoiS.H. Electrochemical-DNA biosensor development based on a modified carbon electrode with gold nanoparticles for influenza A (H1N1) detection: Effect of spacer.Int. J. Electrochem. Sci.20149126793680810.1016/S1452‑3981(23)10930‑8
    [Google Scholar]
  58. AdnaneA. Electrochemical biosensors for virus detection.Biosensors for Health, Environment and BiosecurityIntechOpen201110.5772/17620
    [Google Scholar]
  59. BiałobrzeskaW. FirganekD. CzerkiesM. LipniackiT. SkwareckaM. DziąbowskaK. CebulaZ. MalinowskaN. BigusD. BięgaE. PyrćK. PalaK. ŻołędowskaS. NidzworskiD. Electrochemical immunosensors based on screen-printed gold and glassy carbon electrodes: Comparison of performance for respiratory syncytial virus detection.Biosensors2020101117510.3390/bios1011017533202922
    [Google Scholar]
  60. DiouaniM.F. HelaliS. HafaidI. HassenW.M. SnoussiM.A. GhramA. Jaffrezic-RenaultN. AbdelghaniA. Miniaturized biosensor for avian influenza virus detection.Mater. Sci. Eng. C2008285-658058310.1016/j.msec.2007.10.043
    [Google Scholar]
  61. HyderA. BulediJ.A. NawazM. RajparD.B. ShahZ.H. OroojiY. YolaM.L. Karimi-MalehH. LinH. SolangiA.R. Identification of heavy metal ions from aqueous environment through gold, silver and copper nanoparticles: An excellent colorimetric approach.Environ. Res.202220511247510.1016/j.envres.2021.11247534863692
    [Google Scholar]
  62. LiM. CushingS.K. WuN. Plasmon-enhanced optical sensors: A review.Analyst2015140238640610.1039/C4AN01079E25365823
    [Google Scholar]
  63. LiuB. YanH. ChenS. GuanY. WuG. JinR. LiL. Stable and controllable synthesis of silver nanowires for transparent conducting film.Nanoscale Res. Lett.201712121210.1186/s11671‑017‑1963‑628340521
    [Google Scholar]
  64. RoyS. AjmalM.C. BaikS. KimJ. Silver nanoflowers for single-particle SERS with 10 pM sensitivity.Nanotechnology2017284646570510.1088/1361‑6528/aa8c5728901949
    [Google Scholar]
  65. ChangQ. ShiX. LiuX. TongJ. LiuD. WangZ. Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region.Nanophotonics2017651151116010.1515/nanoph‑2017‑0010
    [Google Scholar]
  66. AliW. ShabaniV. LinkeM. SayinS. GebertB. AltinpinarS. HildebrandtM. GutmannJ.S. Mayer-GallT. Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM.RSC Advances2019984553456210.1039/C8RA04594A35520192
    [Google Scholar]
  67. LiM. CushingS.K. LiangH. SuriS. MaD. WuN. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA.Anal. Chem.20138542072207810.1021/ac303387a23320458
    [Google Scholar]
  68. CaoQ. TengY. YangX. WangJ. WangE. A label-free fluorescent molecular beacon based on DNA-Ag nanoclusters for the construction of versatile Biosensors.Biosens. Bioelectron.20157431832110.1016/j.bios.2015.06.04426159151
    [Google Scholar]
  69. AbbasA. AminH.M.A. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective.Microchem. J.202217510716610.1016/j.microc.2021.107166
    [Google Scholar]
  70. YenC.W. Puigd.H. TamJ.O. Gómez-MárquezJ. BoschI. Hamad-SchifferliK. GehrkeL. Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and Ebola viruses.Lab Chip20151571638164110.1039/C5LC00055F25672590
    [Google Scholar]
  71. KurdekarA.D. ChunduriL.A.A. ChelliS.M. HaleyurgirisettyM.K. BulagondaE.P. ZhengJ. HewlettI.K. KamisettiV. Fluorescent silver nanoparticle based highly sensitive immunoassay for early detection of HIV infection.RSC Adv.2017732198631987710.1039/C6RA28737A
    [Google Scholar]
  72. ChoiG. KimE. ParkE. LeeJ.H. A cost-effective chemiluminescent biosensor capable of early diagnosing cancer using a combination of magnetic beads and platinum nanoparticles.Talanta2017162384510.1016/j.talanta.2016.09.06127837844
    [Google Scholar]
  73. WangL. LiuD. SunY. SuJ. JinB. GengL. SongY.Y. HuangX. YangM. Signal-on electrochemiluminescence of self-ordered molybdenum oxynitride nanotube arrays for label-free cytosensing.Anal. Chem.20189018108581086410.1021/acs.analchem.8b0219630126272
    [Google Scholar]
  74. SinghalC. PundirC.S. NarangJ. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites.Biosens. Bioelectron.201797758210.1016/j.bios.2017.05.04728577500
    [Google Scholar]
  75. GanganboinaA.B. KhorisI.M. ChowdhuryA.D. LiT.C. ParkE.Y. Ultrasensitive detection of the hepatitis E virus by electrocatalytic water oxidation using Pt-Co3O4 hollow cages.ACS Appl. Mater. Interf.20201245502125022110.1021/acsami.0c1324732967416
    [Google Scholar]
  76. RaiV HapuarachchiH.C. NgL.C. SohS.H. LeoY.S. TohC-S. Ultrasensitive c DNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor.PLoS One.201278e42346
    [Google Scholar]
  77. NguyenB.T.T. KohG. LimH.S. ChuaA.J.S. NgM.M.L. TohC.S. Membrane-based electrochemical nanobiosensor for the detection of virus.Anal. Chem.200981177226723410.1021/ac900761a19663392
    [Google Scholar]
  78. BolourinezhadM. RezayiM. MeshkatZ. SoleimanpourS. MojarradM. ZibadiF. Aghaee-BakhtiariS.H. TaghdisiS.M. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19.Talanta202326512480410.1016/j.talanta.2023.12480437329753
    [Google Scholar]
  79. BüyüksünetçiT.Y. AnikÜ. Graphene-based nanomaterial electrochemical biosensors for the determination of the H3N2 virus.Anal. Lett.2023571511610.1080/00032719.2023.2297407
    [Google Scholar]
  80. TianJ. LiangZ. HuO. HeQ. SunD. ChenZ. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein.Electrochim. Acta202138713855310.1016/j.electacta.2021.138553
    [Google Scholar]
  81. ManivannanS. LeeD. KangD.K. KimK. M13 virus-templated open mouth-like platinum nanostructures prepared by electrodeposition: Influence of M13-virus on structure and electrocatalytic activity.J. Electroanal. Chem.202087911475510.1016/j.jelechem.2020.114755
    [Google Scholar]
  82. MokhtarzadehA. Eivazzadeh-KeihanR. PashazadehP. HejaziM. GharaatifarN. HasanzadehM. BaradaranB. de la GuardiaM. Nanomaterial-based biosensors for detection of pathogenic virus.Trends Analyt. Chem.20179744545710.1016/j.trac.2017.10.00532287543
    [Google Scholar]
  83. MeskherH. MustansarH.C. ThakurA.K. SathyamurthyR. LynchI. SinghP. HanT.K. SaidurR. Recent trends in carbon nanotube (CNT)-based biosensors for the fast and sensitive detection of human viruses: A critical review.Nanoscale Adv.202354992101010.1039/D2NA00236A36798507
    [Google Scholar]
  84. LiuF. XiangG. ZhangL. JiangD. LiuL. LiY. LiuC. PuX. A novel label free long non-coding RNA electrochemical biosensor based on green l -cysteine electrodeposition and Au–Rh hollow nanospheres as tags.RSC Adv.2015564519905199910.1039/C5RA07904G
    [Google Scholar]
  85. SinghR. SharmaA. HongS. JangJ. Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1.Analyst2014139215415542110.1039/C4AN01335B25232557
    [Google Scholar]
  86. ShiL. YuY. ChenZ. ZhangL. HeS. ShiQ. YangH. A label-free hemin/G-quadruplex DNAzyme biosensor developed on electrochemically modified electrodes for detection of a HBV DNA segment.RSC Adv.2015515115411154810.1039/C4RA09936B
    [Google Scholar]
  87. FarzinL. SadjadiS. ShamsipurM. SheibaniS. Electrochemical genosensor based on carbon nanotube/amine-ionic liquid functionalized reduced graphene oxide nanoplatform for detection of human papillomavirus (HPV16)-related head and neck cancer.J. Pharm. Biomed. Anal.202017911298910.1016/j.jpba.2019.11298931767223
    [Google Scholar]
  88. PirzadaM. AltintasZ. Nanomaterials for virus sensing and tracking.Chem. Soc. Rev.202251145805584110.1039/D1CS01150B35735186
    [Google Scholar]
  89. HasanzadehM. ShadjouN. de la GuardiaM. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing.Trends Analyt. Chem.2015721910.1016/j.trac.2015.03.016
    [Google Scholar]
  90. WeiH. WangE. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: A review.Luminescence2011262778510.1002/bio.127921400654
    [Google Scholar]
  91. OmidiniaE. ShadjouN. HasanzadehM. (Fe3O4)- graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine.Mater. Sci. Eng. C20133384624463210.1016/j.msec.2013.07.02324094169
    [Google Scholar]
  92. Jaffrezic-RenaultN. MarteletC. ChevolotY. CloarecJ.P. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads.Sensors20077458961410.3390/s7040589
    [Google Scholar]
  93. HsingI.M. XuY. ZhaoW. Micro-and nano-magnetic particles for applications in biosensing. Electroanalysis.Inter. J. Devot. Fund. Pract. Aspects. Electro.2007197-8755768
    [Google Scholar]
  94. KetabiK. AryanE. DarroudiM. FarsianiH. HooshyarA. DamavandiM.S. Comparison of PEG interferon loaded and non-loaded iron oxide nanoparticles on hepatitis C virus replication in cell culture system.Iran. J. Virol.20171131926
    [Google Scholar]
  95. NouraniS. GhourchianH. BoutorabiS.M. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen.Anal. Biochem.201344111710.1016/j.ab.2013.06.01123831477
    [Google Scholar]
  96. KumarR. NayakM. SahooG.C. PandeyK. SarkarM.C. AnsariY. DasV.N.R. TopnoR.K. Bhawna MadhukarM. DasP. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus.J. Infect. Chemother.201925532532910.1016/j.jiac.2018.12.00630770182
    [Google Scholar]
  97. MagdassiS. GrouchkoM. KamyshnyA. Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability.Materials2010394626463810.3390/ma309462628883344
    [Google Scholar]
  98. EkiciR. BozdoğanB. DenkbaşE.B. Development of electrochemical biosensor platforms for determination of environmental viral structures.Appl. Sci.202212241297110.3390/app122412971
    [Google Scholar]
  99. TahirM.A. BajwaS.Z. MansoorS. BriddonR.W. KhanW.S. SchefflerB.E. AminI. Evaluation of carbon nanotube based copper nanoparticle composite for the efficient detection of agroviruses.J. Hazard. Mater.2018346273510.1016/j.jhazmat.2017.12.00729232614
    [Google Scholar]
  100. MikułaE. SilvaC.E. KoperaE. ZdanowskiK. RadeckiJ. RadeckaH. Highly sensitive electrochemical biosensor based on redox - active monolayer for detection of anti-hemagglutinin antibodies against swine-origin influenza virus H1N1 in sera of vaccinated mice.BMC Vet. Res.201814132810.1186/s12917‑018‑1668‑930400888
    [Google Scholar]
  101. RahmatiZ. RoushaniM. HosseiniH. ChoobinH. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate.Bioelectrochemistry202214610810610.1016/j.bioelechem.2022.10810635339949
    [Google Scholar]
  102. GanN. LuoN-X. LiT-H. ZhengL. NiM-J. A non-enzyme amperometric immunosensor for rapid determination of human immunodeficiency virus p24 based on magnetism controlled carbon nanotubes modified printed electrode.Chin. J. Anal. Chem.201038111556156210.1016/S1872‑2040(09)60076‑1
    [Google Scholar]
  103. HuangJ. XieZ. HuangY. XieL. LuoS. FanQ. ZengT. ZhangY. WangS. ZhangM. XieZ. DengX. Electrochemical immunosensor with Cu(I)/Cu(II)-chitosan-graphene nanocomposite-based signal amplification for the detection of newcastle disease virus.Sci. Rep.20201011386910.1038/s41598‑020‑70877‑332807824
    [Google Scholar]
  104. RoohizadehA. GhaffarinejadA. SalahandishR. OmidiniaE. Label-free RNA-based electrochemical nanobiosensor for detection of Hepatitis C.Curr. Res. Biotechnol.2020218719210.1016/j.crbiot.2020.11.004
    [Google Scholar]
  105. GanN. LiT-H. LeiJ-P. WangL-Y. YangX. Electrochemical immunosensor for human immunodeficiency virus p24 antigen based on Mercapto succinic acid hydrazide copper monolayer modified gold electrode.Chin. J. Anal. Chem.20083691167117110.1016/S1872‑2040(08)60064‑X
    [Google Scholar]
  106. LiJ. LiY. ZhaiX. CaoY. ZhaoJ. TangY. HanK. Sensitive electrochemical detection of hepatitis C virus subtype based on nucleotides assisted magnetic reduced graphene oxide-copper nano-composite.Electrochem. Commun.202011010660110.1016/j.elecom.2019.106601
    [Google Scholar]
  107. BarkadeS.S. PinjariD.V. SinghA.K. GogateP.R. NaikJ.B. SonawaneS.H. AshokkumarM. PanditA.B. Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing.Ind. Eng. Chem. Res.201352237704771210.1021/ie301698g
    [Google Scholar]
  108. ChenC.Y. LiuY.R. LinS.S. HsuL.J. TsaiS.L. Role of annealing temperature on the formation of aligned zinc oxide nanorod arrays for efficient photocatalysts and photodetectors.Sci. Adv. Mater.20168122197220310.1166/sam.2016.3005
    [Google Scholar]
  109. AhmadR. TripathyN. ParkJ.H. HahnY.B. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea.Chem. Commun.20155160119681197110.1039/C5CC03656A26111656
    [Google Scholar]
  110. MazaheriM. AashuriH. SimchiA. Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors.Sens. Actuators B Chem.201725146247110.1016/j.snb.2017.05.062
    [Google Scholar]
  111. FooK.L. HashimU. MuhammadK. VoonC.H. Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application.Nanoscale Res. Lett.20149142910.1186/1556‑276X‑9‑42925221458
    [Google Scholar]
  112. TakM. GuptaV. TomarM. Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection.Biosens. Bioelectron.20145920020710.1016/j.bios.2014.03.03624727606
    [Google Scholar]
  113. GengJ. SongG.H. JiaX.D. ChengF.F. ZhuJ.J. Fast one-step synthesis of biocompatible ZnO/Au nanocomposites with hollow doughnut-like and other controlled morphologies.J. Phys. Chem. C201211674517452510.1021/jp212092h
    [Google Scholar]
  114. SimãoE.P. SilvaD.B.S. CordeiroM.T. GilL.H.V. AndradeC.A.S. OliveiraM.D.L. Nanostructured impedimetric lectin-based biosensor for arboviruses detection.Talanta202020812033810.1016/j.talanta.2019.12033831816752
    [Google Scholar]
  115. BiasottoG. CostaJ.P.C. CostaP.I. ZagheteM.A. ZnO nanorods-gold nanoparticle-based biosensor for detecting hepatitis C.Appl. Phys. Mater. Sci. Process.20191251282110.1007/s00339‑019‑3128‑1
    [Google Scholar]
  116. SharmaP. HasanM.R. KhanujaM. NarangJ. Carbon ink printed flexible glove-based aptasensor for rapid and point of care detection of Chikungunya virus.Process Biochem.202313311010.1016/j.procbio.2023.08.002
    [Google Scholar]
  117. WuD. DongW. YinT. JieG. ZhouH. PCN-224/nano-zinc oxide nanocomposite-based electrochemiluminescence biosensor for HPV-16 detection by multiple cycling amplification and hybridization chain reaction.Sens. Actuators B Chem.202237213265910.1016/j.snb.2022.132659
    [Google Scholar]
  118. HasanM.R. SinghS. SharmaP. PundirC.S. BhallaK. AbdinM.Z. NarangJ. Paper-based aptasensor for electrochemical detection of polyvalent antigen of dengue virus.Int. J. Environ. Anal. Chem.202411710.1080/03067319.2024.2357248
    [Google Scholar]
  119. SongX. FredjZ. ZhengY. ZhangH. RongG. BianS. SawanM. Biosensors for waterborne virus detection: Challenges and strategies.J. Pharm. Anal.202313111252126810.1016/j.jpha.2023.08.02038174120
    [Google Scholar]
  120. ChenW. UwitonzeN. HeF. SartinM.M. CaiJ. ChenY.X. Effect of mass transfer and solution composition on the quantification of reaction kinetics by differential electrochemical mass spectrometry.J. Ener. Chem.20215641241910.1016/j.jechem.2020.08.006
    [Google Scholar]
  121. GrieshaberD. MacKenzieR. VörösJ. ReimhultE. Electrochemical biosensors - sensor principles and architectures.Sensors2008831400145810.3390/s8031400027879772
    [Google Scholar]
  122. SongM. LinX. PengZ. XuS. JinL. ZhengX. LuoH. Materials and methods of biosensor interfaces with stability.Front. Mater.2021758373910.3389/fmats.2020.583739
    [Google Scholar]
  123. ZhaoZ. HuangC. HuangZ. LinF. HeQ. TaoD. Jaffrezic-RenaultN. GuoZ. Advancements in electrochemical biosensing for respiratory virus detection: A review.Trends Analyt. Chem.202113911625310.1016/j.trac.2021.11625333727755
    [Google Scholar]
  124. PhanQ.A. TruongL.B. Medina-CruzD. DincerC. MostafaviE. CRISPR/Cas-powered nanobiosensors for diagnostics.Biosens. Bioelectron.202219711373210.1016/j.bios.2021.11373234741959
    [Google Scholar]
  125. ChangY. WangY. ZhangJ. XingY. LiG. DengD. LiuL. Overview on the design of magnetically assisted electrochemical biosensors.Biosensors2022121195410.3390/bios1211095436354462
    [Google Scholar]
  126. SiavashyS. SoltaniM. RahimiS. HosseinaliM. GuilandokhtZ. RaahemifarK. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques.Biosensors and Bioelectronics: X20241910048910.1016/j.biosx.2024.100489
    [Google Scholar]
  127. CostanzoH. GoochJ. FrascioneN. Nanomaterials for optical biosensors in forensic analysis.Talanta202325312394510.1016/j.talanta.2022.12394536191514
    [Google Scholar]
  128. NakhjavaniA.S. MirzajaniH. CarraraS. OnbaşlıM.C. Advances in biosensor technologies for infectious diseases detection.Trends Analyt. Chem.202418011797910.1016/j.trac.2024.117979
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358036250303025326
Loading
/content/journals/cmc/10.2174/0109298673358036250303025326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test