Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cyclodextrin Metal-Organic Frameworks (CD MOFs) represent an innovative class of materials with remarkable properties and a broad range of applications. This review provides a comprehensive overview of the synthesis techniques, structural characterization, and diverse applications of CD-MOFs. By combining cyclodextrins (CDs) with metal-organic frameworks (MOFs), CD-MOFs are developed with enhanced functionality. The synthesis methods, including various metal sources, coordination modes, and post-synthesis modifications, are discussed alongside advanced structural characterization techniques like X-ray crystallography and spectroscopic methods. The unique characteristics of CD-MOFs, such as high specific surface area, tunable porosity, and customizable chemical structure, make them exceptional candidates for applications in gas adsorption, drug delivery, catalysis, sensing, and environmental remediation. Notably, CD-MOFs show significant promise as nanocarriers in drug delivery systems, offering improved therapeutic outcomes due to their efficient encapsulation and controlled release capabilities. The review highlights recent advancements and underscores the potential impact of CD-MOFs in driving future innovations across various scientific fields.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673328126241003092124
2024-10-21
2025-10-31
Loading full text...

Full text loading...

References

  1. RoyI. StoddartJ.F. Cyclodextrin metal–organic frameworks and their applications.Acc. Chem. Res.20215461440145310.1021/acs.accounts.0c0069533523626
    [Google Scholar]
  2. DummertS.V. SainiH. HussainM.Z. YadavaK. JayaramuluK. CasiniA. FischerR.A. Cyclodextrin metal–organic frameworks and derivatives: Recent developments and applications.Chem. Soc. Rev.202251125175521310.1039/D1CS00550B35670434
    [Google Scholar]
  3. MoscaL.P.L. GapanA.B. AngelesR.A. LopezE.C.R. Stability of metal–organic frameworks: Recent advances and future trends.Eng. Proc.202356114610.3390/ASEC2023‑16280
    [Google Scholar]
  4. LoftssonT. DuchêneD. Cyclodextrins and their pharmaceutical applications.Int. J. Pharm.20073291-211110.1016/j.ijpharm.2006.10.04417137734
    [Google Scholar]
  5. Del ValleE.M.M. Cyclodextrins and their uses: A review.Process Biochem.20043991033104610.1016/S0032‑9592(03)00258‑9
    [Google Scholar]
  6. SaengerW. Cyclodextrin inclusion compounds in research and industry.Angewandte Chem Int198019510.1002/anie.198003441
    [Google Scholar]
  7. HedgesA.R. Industrial applications of cyclodextrins.Chem Rev19989852035204410.1021/cr970014w
    [Google Scholar]
  8. UekamaK. HirayamaF. IrieT. Cyclodextrin drug carrier systems.Chem. Rev.19989852045207610.1021/cr970025p11848959
    [Google Scholar]
  9. Morin-CriniN. CriniG. Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers.Prog. Polym. Sci.201338234436810.1016/j.progpolymsci.2012.06.005
    [Google Scholar]
  10. ZhouH.C. LongJ.R. YaghiO.M. Introduction to metal-organic frameworks.Chem. Rev.2012112267367410.1021/cr300014x22280456
    [Google Scholar]
  11. YusufV.F. MalekN.I. KailasaS.K. Review on metal–organic framework classification, synthetic approaches, and influencing factors: Applications in energy, drug delivery, and wastewater treatment.ACS Omega2022749445074453110.1021/acsomega.2c0531036530292
    [Google Scholar]
  12. LeusK. MuylaertI. Van SpeybroeckV. MarinG.B. Van Der VoortP. A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity.Studies in Surface Science and CatalysisElsevier201032933210.1016/S0167‑2991(10)75053‑9
    [Google Scholar]
  13. HeS. WuL. LiX. SunH. XiongT. LiuJ. HuangC. XuH. SunH. ChenW. GrefR. ZhangJ. Metal-organic frameworks for advanced drug delivery.Acta Pharm. Sin. B.20211182362239510.1016/j.apsb.2021.03.01934522591
    [Google Scholar]
  14. SunQ. QinL. LaiC. LiuS. ChenW. XuF. MaD. LiY. QianS. ChenZ. ChenW. YeH. Constructing functional metal-organic frameworks by ligand design for environmental applications.J. Hazard. Mater.202344713084810.1016/j.jhazmat.2023.13084836696779
    [Google Scholar]
  15. QinL. SunQ. LaiC. LiuS. QinX. ChenW. FuY. ZhouX. XuF. MaD. Sulfonic acid metal-organic frameworks derived iron-doped carbon as novel heterogeneous electro-fenton catalysts for the degradation of tetracycline: Performance and mechanism investigation.Chem. Eng. J.202347414572210.1016/j.cej.2023.145722
    [Google Scholar]
  16. LiB. WenH.M. CuiY. ZhouW. QianG. ChenB. Emerging multifunctional metal–organic framework materials.Adv. Mater.201628408819886010.1002/adma.20160113327454668
    [Google Scholar]
  17. FurukawaH. CordovaK.E. O’KeeffeM. YaghiO.M. The chemistry and applications of metal-organic frameworks.Science20133416149123044410.1126/science.1230444
    [Google Scholar]
  18. XuY. RashwanA.K. OsmanA.I. Abd El-MonaemE.M. ElgarahyA.M. EltaweilA.S. OmarM. LiY. MehanniA.H.E. ChenW. RooneyD.W. Synthesis and potential applications of cyclodextrin-based metal–organic frameworks: A review.Environ. Chem. Lett.202321144747710.1007/s10311‑022‑01509‑736161092
    [Google Scholar]
  19. WangZ. CohenS.M. Postsynthetic modification of metal–organic frameworks.Chem. Soc. Rev.20093851315132910.1039/b802258p19384440
    [Google Scholar]
  20. HorcajadaP. SerreC. Vallet-RegíM. SebbanM. TaulelleF. FéreyG. Metal-organic frameworks as efficient materials for drug delivery.Angew Chem Int Ed Engl200645365974810.1002/anie.200601878
    [Google Scholar]
  21. Azizi VahedT. Naimi-JamalM.R. PanahiL. Alginate- coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release.J. Drug Deliv. Sci. Technol.20194957057610.1016/j.jddst.2018.12.022
    [Google Scholar]
  22. ChattopadhyayK. MandalM. MaitiD.K. A review on zirconium-based metal-organic frameworks: Synthetic approaches and biomedical applications.Mater Adv2024516710.1039/D3MA00735A
    [Google Scholar]
  23. Muñoz-SenmacheJ.C. Cruz-TatoP.E. NicolauE. Hernández-MaldonadoA.J. Confined space synthesis of chromium–based metal–organic frameworks in activated carbon: Synergistic effect on the adsorption of contaminants of emerging concern from water.J. Environ. Chem. Eng.202210210728210.1016/j.jece.2022.107282
    [Google Scholar]
  24. EL KassaouiM. LakhalM. AbdellaouiM. BenyoussefA. El KenzA. LoulidiM. Modeling hydrogen adsorption in the metal organic framework (MOF-5, connector): Zn4O(C8H4O4)3.Int. J. Hydrogen Energy20204558336633367410.1016/j.ijhydene.2020.03.168
    [Google Scholar]
  25. KangZ. WangS. FanL. ZhangM. KangW. PangJ. DuX. GuoH. WangR. SunD. In situ generation of intercalated membranes for efficient gas separation.Commun. Chem.201811310.1038/s42004‑017‑0002‑y
    [Google Scholar]
  26. XuR. AhnH. KimS. LeeJ.W. KangY.T. CO2 capture enhancement by encapsulation of nanoparticles in metal–organic frameworks suspended in physical absorbents.J. CO2 Utilization20236910239710.1016/j.jcou.2023.102397
    [Google Scholar]
  27. WangQ. GaoQ. Al-EniziA.M. NafadyA. MaS. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light.Inorg. Chem. Front.20207230033910.1039/C9QI01120J
    [Google Scholar]
  28. ChughtaiA.H. AhmadN. YounusH.A. LaypkovA. VerpoortF. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations.Chem. Soc. Rev.201544196804684910.1039/C4CS00395K25958955
    [Google Scholar]
  29. HannaS.L. RademacherD.X. HansonD.J. IslamogluT. OlszewskiA.K. NenoffT.M. FarhaO.K. Structural features of zirconium-based metal–organic frameworks affecting radiolytic stability.Ind. Eng. Chem. Res.202059167520752610.1021/acs.iecr.9b06820
    [Google Scholar]
  30. Krūkle-BērziņaK. MishnevA. Never-ending story: New cyclodextrin-based metal–organic framework crystal structures obtained using different crystallization methods.ACS Omega2023850482214823210.1021/acsomega.3c0742938144108
    [Google Scholar]
  31. CheJ. ChenK. SongJ. TuY. ReymickO.O. ChenX. TaoN. Fabrication of γ-cyclodextrin-based metal-organic frameworks as a carrier of cinnamaldehyde and its application in fresh-cut cantaloupes.Curr Res Food Sci202252114212410.1016/j.crfs.2022.10.02536387598
    [Google Scholar]
  32. HanY. LiuW. HuangJ. QiuS. ZhongH. LiuD. LiuJ. Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine.Pharmaceutics201810427110.3390/pharmaceutics1004027130545114
    [Google Scholar]
  33. MuslimM. AhmadM. Historical developments in synthesis approaches and photocatalytic perspectives of metal-organic frameworks.Photocatalysts - New PerspectivesIntechOpen202210.5772/intechopen.107119
    [Google Scholar]
  34. ZhangW. LiuH. QiuX. ZuoF. WangB. Mesoporous silica nanoparticles as a drug delivery mechanism.Open Life Sci.20241912022086710.1515/biol‑2022‑086738756857
    [Google Scholar]
  35. YoonM. SrirambalajiR. KimK. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis.Chem. Rev.201211221196123110.1021/cr200314722084838
    [Google Scholar]
  36. LiuB. HeY. HanL. SinghV. XuX. GuoT. MengF. XuX. YorkP. LiuZ. ZhangJ. Microwave-assisted rapid synthesis of γ-cyclodextrin metal–organic frameworks for size control and efficient drug loading.Cryst. Growth Des.20171741654166010.1021/acs.cgd.6b01658
    [Google Scholar]
  37. ShenM. LiuD. DingT. Cyclodextrin-metal-organic frameworks (CD-MOFs): Main aspects and perspectives in food applications.Curr. Opin. Food Sci.20214181510.1016/j.cofs.2021.02.008
    [Google Scholar]
  38. ShenM. ZhouJ. ElhadidyM. XianyuY. FengJ. LiuD. DingT. Cyclodextrin metal–organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application.Ultrason. Sonochem.20228610600310.1016/j.ultsonch.2022.10600335429899
    [Google Scholar]
  39. TianB. LiuJ. Cyclodextrin-metal-organic frameworks in molecular delivery, detection, separation, and capture: An updated critical review.Carbohydr. Polym.202330612059810.1016/j.carbpol.2023.12059836746588
    [Google Scholar]
  40. HajraS. SahuM. PadhanA.M. LeeI.S. YiD.K. AlagarsamyP. NandaS.S. KimH.J. A green metal–organic framework-cyclodextrin MOF: A novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting.Adv. Funct. Mater.20213128210182910.1002/adfm.202101829
    [Google Scholar]
  41. QiuC. WangJ. QinY. FanH. XuX. JinZ. Green synthesis of cyclodextrin-based metal–organic frameworks through the seed-mediated method for the encapsulation of hydrophobic molecules.J. Agric. Food Chem.201866164244425010.1021/acs.jafc.8b0040029621398
    [Google Scholar]
  42. ZhaoR. ZhuB. XuY. YuS. WangW. LiuD. HuJ. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems.Carbohydr. Polym.202331912119810.1016/j.carbpol.2023.12119837567724
    [Google Scholar]
  43. HardenR. SommervilleE. Synthesis of ɣ-cyclodextrin metal organic frameworks and the encapsulation of caffeine and theophylline.2018
    [Google Scholar]
  44. KoshevoyE.I. SamsonenkoD.G. BerezinA.S. FedinV.P. Metal-organic coordination polymers formed from γ-cyclodextrin and divalent metal ions.Eur. J. Inorg. Chem.2019201939-404321432710.1002/ejic.201900398
    [Google Scholar]
  45. SchneiderH.-J. HacketF. RüdigerV. IkedaH. NMR studies of cyclodextrins and cyclodextrin complexes.Chem Rev19989851755178610.1021/cr970019t
    [Google Scholar]
  46. LiH. ShiL. LiC. FuX. HuangQ. ZhangB. Metal–organic framework based on α-cyclodextrin gives high ethylene gas adsorption capacity and storage stability.ACS Appl. Mater. Interfaces20201230340953410410.1021/acsami.0c0859432627528
    [Google Scholar]
  47. KeD. FengJ.F. WuD. HouJ.B. ZhangX.Q. LiB.J. ZhangS. Facile stabilization of a cyclodextrin metal–organic framework under humid environment via hydrogen sulfide treatment.RSC Advances2019932182711827610.1039/C9RA03079D35515259
    [Google Scholar]
  48. LiY. HuangH. DingC. ZhouX. LiH. β-Cyclodextrin-based metal-organic framework as a carrier for zero-order drug delivery.Mater. Lett.202130012976610.1016/j.matlet.2021.129766
    [Google Scholar]
  49. HamediA. AnceschiA. PatruccoA. HasanzadehM. A γ-cyclodextrin-based metal–organic framework (γ-CD- MOF): A review of recent advances for drug delivery application.J. Drug Target.202230438139310.1080/1061186X.2021.201268334847807
    [Google Scholar]
  50. JingC. ZhangY. ZhengJ. GeS. LinJ. PanD. NaikN. GuoZ. In situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue.Particuology20226911112210.1016/j.partic.2021.11.013
    [Google Scholar]
  51. LiJ. ZhaoY.X. WuQ. YangH. LuJ. MaH.Y. WangS.N. LiY.W. A CD-MOF fluorescence sensor with dual functional sites for efficient detection of metal ions in multifarious water environments.CrystEngComm202123478392840310.1039/D1CE01308D
    [Google Scholar]
  52. WenC. LiR. ChangX. LiN. Metal-organic frameworks-based optical nanosensors for analytical and bioanalytical applications.Biosensors (Basel)202313112810.3390/bios1301012836671963
    [Google Scholar]
  53. LiB. SuoT. XieS. XiaA. MaY. HuangH. ZhangX. HuQ. Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors.Trends Analyt. Chem.202113511616310.1016/j.trac.2020.116163
    [Google Scholar]
  54. JonesD.R. DiScenzaD.J. MakoT.L. LevineM. Environmental application of cyclodextrin metal–organic frameworks in an undergraduate teaching laboratory.J. Chem. Educ.20189591636164110.1021/acs.jchemed.8b00357
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673328126241003092124
Loading
/content/journals/cmc/10.2174/0109298673328126241003092124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test