Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

SARS-CoV-2-induced COVID-19 has been a serious public health problem, resulting in millions of lives lost over the previous three years. Although the direct infection caused by virus invasion is important for the pathobiology of COVID-19, the hyperinflammatory response and tissue injury are major contributors in critically ill patients. As a host sensor, toll-like receptor 2 (TLR2) recognizes multiple pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), producing various inflammatory cytokines and inflammatory cell death signals, which are central to the inflammatory pathology observed in COVID-19. The objectives of this narrative review are to summarize the role of TLR2 activation during SARS-CoV-2 infection and emphasize the importance of SARS-CoV-2 viral proteins in TLR2 activation. Additionally, we presented some compounds related to TLR2 regulation clinically or experimentally, which may provide new insights into targets for pharmaceutical discovery and development.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327301241016063917
2024-10-31
2025-10-31
Loading full text...

Full text loading...

References

  1. TayM.Z. PohC.M. RéniaL. MacAryP.A. NgL.F.P. The trinity of COVID-19: immunity, inflammation and intervention.Nat. Rev. Immunol.202020636337410.1038/s41577‑020‑0311‑832346093
    [Google Scholar]
  2. Clinical Spectrum.2024Available from: https://www.COVID-19treatmentguidelines.nih.gov/overview/clinical-spectrum/(accessed on 2-10-2024)
  3. KevadiyaB.D. MachhiJ. HerskovitzJ. OleynikovM.D. BlombergW.R. BajwaN. SoniD. DasS. HasanM. PatelM. SenanA.M. GorantlaS. McMillanJ. EdagwaB. EisenbergR. GurumurthyC.B. ReidS.P.M. PunyadeeraC. ChangL. GendelmanH.E. Diagnostics for SARS-CoV-2 infections.Nat. Mater.202120559360510.1038/s41563‑020‑00906‑z33589798
    [Google Scholar]
  4. LeeS. ChannappanavarR. KannegantiT.D. Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines.Trends Immunol.202041121083109910.1016/j.it.2020.10.00533153908
    [Google Scholar]
  5. BaderS.M. CooneyJ.P. PellegriniM. DoerflingerM. Programmed cell death: the pathways to severe COVID-19?Biochem. J.2022479560962810.1042/BCJ2021060235244141
    [Google Scholar]
  6. Morais da SilvaM. Lira de LucenaA.S. Paiva JúniorS.S.L. Florêncio De CarvalhoV.M. Santana de OliveiraP.S. da RosaM.M. Barreto de Melo RegoM.J. PittaM.G.R. PereiraM.C. Cell death mechanisms involved in cell injury caused by SARS-CoV-2.Rev. Med. Virol.2022323e229210.1002/rmv.229234590761
    [Google Scholar]
  7. MeradM. MartinJ.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages.Nat. Rev. Immunol.202020635536210.1038/s41577‑020‑0331‑432376901
    [Google Scholar]
  8. JafarzadehA. ChauhanP. SahaB. JafarzadehS. NematiM. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions.Life Sci.202025711810210.1016/j.lfs.2020.11810232687918
    [Google Scholar]
  9. ZhouR. ToK.K.W. WongY.C. LiuL. ZhouB. LiX. HuangH. MoY. LukT.Y. LauT.T.K. YeungP. ChanW.M. WuA.K.L. LungK.C. TsangO.T.Y. LeungW.S. HungI.F.N. YuenK.Y. ChenZ. Acute SARS-CoV-2 infection impairs dendritic cell and t cell responses.Immunity2020534864877.e510.1016/j.immuni.2020.07.02632791036
    [Google Scholar]
  10. YeC.H. HsuW.L. PengG.R. YuW.C. LinW.C. HuS. YuS.H. Role of the immune microenvironment in SARS-CoV-2 infection.Cell Transplant.2021301063210.1177/0963689721101063233949207
    [Google Scholar]
  11. RagabD. Salah EldinH. TaeimahM. KhattabR. SalemR. The COVID-19 Cytokine Storm; What We Know So Far.Front. Immunol.202011144610.3389/fimmu.2020.0144632612617
    [Google Scholar]
  12. JamillouxY. HenryT. BelotA. VielS. FauterM. El JammalT. WalzerT. FrançoisB. SèveP. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions.Autoimmun. Rev.202019710256710.1016/j.autrev.2020.10256732376392
    [Google Scholar]
  13. LucasC. WongP. KleinJ. CastroT.B.R. SilvaJ. SundaramM. EllingsonM.K. MaoT. OhJ.E. IsraelowB. TakahashiT. TokuyamaM. LuP. VenkataramanA. ParkA. MohantyS. WangH. WyllieA.L. VogelsC.B.F. EarnestR. LapidusS. OttI.M. MooreA.J. MuenkerM.C. FournierJ.B. CampbellM. OdioC.D. Casanovas-MassanaA. ObaidA. Lu-CulliganA. NelsonA. BritoA. NunezA. MartinA. WatkinsA. GengB. KalinichC. HardenC. TodeasaC. JensenC. KimD. McDonaldD. ShepardD. CourchaineE. WhiteE.B. SongE. SilvaE. KudoE. DeIuliisG. RahmingH. ParkH-J. MatosI. NouwsJ. ValdezJ. FauverJ. LimJ. RoseK-A. AnastasioK. BrowerK. GlickL. SharmaL. SewananL. KnaggsL. MinasyanM. BatsuM. PetroneM. KuangM. NakahataM. CampbellM. LinehanM. AskenaseM.H. SimonovM. SmolgovskyM. SonnertN. NaushadN. VijayakumarP. MartinelloR. DattaR. HandokoR. BermejoS. ProphetS. BickertonS. VelazquezS. AlpertT. RiceT. Khoury-HanoldW. PengX. YangY. CaoY. StrongY. HerbstR. ShawA.C. MedzhitovR. SchulzW.L. GrubaughN.D. Dela CruzC. FarhadianS. KoA.I. OmerS.B. IwasakiA. Yale IMPACT Team Longitudinal analyses reveal immunological misfiring in severe COVID-19.Nature2020584782146346910.1038/s41586‑020‑2588‑y32717743
    [Google Scholar]
  14. AkiraS. UematsuS. TakeuchiO. Pathogen recognition and innate immunity.Cell2006124478380110.1016/j.cell.2006.02.01516497588
    [Google Scholar]
  15. CaoX. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease.Nat. Rev. Immunol.2016161355010.1038/nri.2015.826711677
    [Google Scholar]
  16. ChoudhuryA. MukherjeeS. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs.J. Med. Virol.202092102105211310.1002/jmv.2598732383269
    [Google Scholar]
  17. YuL. WangL. ChenS. Endogenous toll-like receptor ligands and their biological significance.J. Cell. Mol. Med.201014112592260310.1111/j.1582‑4934.2010.01127.x20629986
    [Google Scholar]
  18. WadaJ. MakinoH. Innate immunity in diabetes and diabetic nephropathy.Nat. Rev. Nephrol.2016121132610.1038/nrneph.2015.17526568190
    [Google Scholar]
  19. SangW. ZhongZ. LinghuK. XiongW. TseA.K.W. CheangW.S. YuH. WangY. Siegesbeckia pubescens Makino inhibits Pam3CSK4-induced inflammation in RAW 264.7 macrophages through suppressing TLR1/TLR2-mediated NF-κB activation.Chin. Med.20181313710.1186/s13020‑018‑0193‑x30002726
    [Google Scholar]
  20. LanF. YueX. RenG. LiH. PingL. WangY. XiaT. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-κB signaling pathway.Int. J. Radiat. Oncol. Biol. Phys.2015911738110.1016/j.ijrobp.2014.09.02125442346
    [Google Scholar]
  21. Śmiałek-BartyzelJ. BzowskaM. Mężyk-KopećR. KwissaM. MakP. BacSp222 bacteriocin as a novel ligand for TLR2/TLR6 heterodimer.Inflamm. Res.202372591592810.1007/s00011‑023‑01721‑336964784
    [Google Scholar]
  22. LuoX. BaoX. WengX. BaiX. FengY. HuangJ. LiuS. JiaH. YuB. The protective effect of quercetin on macrophage pyroptosis via TLR2/MYD88/NF-κB and ROS/AMPK pathway.Life Sci.202229112006410.1016/j.lfs.2021.12006434688696
    [Google Scholar]
  23. WangH. BiC. WangY. SunJ. MengX. LiJ. Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways.BMC Vet. Res.201814119710.1186/s12917‑018‑1508‑y29925372
    [Google Scholar]
  24. FangL. ShenQ. WuH. HeF. DingP. XuK. YanX. WangM. LiS. LiuR. TLR2 favors OVA-induced allergic airway inflammation in mice through JNK signaling pathway with activation of autophagy.Life Sci.202025611789610.1016/j.lfs.2020.11789632504758
    [Google Scholar]
  25. WilsonA.S. RandallK.L. PettittJ.A. EllyardJ.I. BlumenthalA. EndersA. QuahB.J. BoppT. ParishC.R. BrüstleA. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2.Nat. Commun.202213152810.1038/s41467‑022‑28172‑435082281
    [Google Scholar]
  26. SungP.S. YangS.P. PengY.C. SunC.P. TaoM.H. HsiehS.L. CLEC5A and TLR2 are critical in SARS-CoV-2-induced NET formation and lung inflammation.J. Biomed. Sci.20222915210.1186/s12929‑022‑00832‑z35820906
    [Google Scholar]
  27. AntoniA.C. PylaevaE. BudeusB. JablonskaJ. Klein-HitpaßL. DuddaM. FlohéS.B. TLR2-induced CD8+ T-cell deactivation shapes dendritic cell differentiation in the bone marrow during sepsis.Front. Immunol.20221394540910.3389/fimmu.2022.94540936148245
    [Google Scholar]
  28. ChenY. ZhouY. WangQ. ChenJ. ChenH. XieH. LiL. Conciliatory anti-allergic decoction attenuates pyroptosis in RSV-infected asthmatic mice and lipopolysaccharide (LPS)-induced 16HBE cells by inhibiting TLR3/NLRP3/NF-κB/IRF3 signaling pathway.J. Immunol. Res.2022202211610.1155/2022/180040136213326
    [Google Scholar]
  29. HuX. ChenL. LiT. ZhaoM. TLR3 is involved in paraquat-induced acute renal injury.Life Sci.201922310210910.1016/j.lfs.2019.03.02930876938
    [Google Scholar]
  30. YuQ. NieS.P. WangJ.Q. YinP.F. HuangD.F. LiW.J. XieM.Y. Toll-like receptor 4-mediated ROS signaling pathway involved in Ganoderma atrum polysaccharide-induced tumor necrosis factor-α secretion during macrophage activation.Food Chem. Toxicol.201466142210.1016/j.fct.2014.01.01824447977
    [Google Scholar]
  31. WuL. DuL. JuQ. ChenZ. MaY. BaiT. JiG. WuY. LiuZ. ShaoY. PengX. Silencing TLR4/MyD88/NF-κB signaling pathway alleviated inflammation of corneal epithelial cells infected by ISE.Inflammation202144263364410.1007/s10753‑020‑01363‑133174138
    [Google Scholar]
  32. ZhuK. ZhuX. SunS. YangW. LiuS. TangZ. ZhangR. LiJ. ShenT. HeiM. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats.Exp. Neurol.202134511382810.1016/j.expneurol.2021.11382834343528
    [Google Scholar]
  33. YanJ. ShenS. HeY. LiZ. TLR5 silencing reduced hyperammonaemia-induced liver injury by inhibiting oxidative stress and inflammation responses via inactivating NF-κB and MAPK signals.Chem. Biol. Interact.201929910211010.1016/j.cbi.2018.11.02630508503
    [Google Scholar]
  34. SharmaN. AkhadeA.S. QadriA. Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells.J. Leukoc. Biol.201393452152810.1189/jlb.071232823345392
    [Google Scholar]
  35. IfukuM. HinkelmannL. KuhrtL.D. EfeI.E. KumbolV. BuonfiglioliA. KrügerC. JordanP. FuldeM. NodaM. KettenmannH. LehnardtS. Activation of Toll-like receptor 5 in microglia modulates their function and triggers neuronal injury.Acta Neuropathol. Commun.20208115910.1186/s40478‑020‑01031‑332912327
    [Google Scholar]
  36. IntoT. KiuraK. YasudaM. KataokaH. InoueN. HasebeA. TakedaK. AkiraS. ShibataK. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-κB activation.Cell. Microbiol.20046218719910.1046/j.1462‑5822.2003.00356.x14706104
    [Google Scholar]
  37. LuZ. ChangL. DuQ. HuangY. ZhangX. WuX. ZhangJ. LiR. ZhangZ. ZhangW. ZhaoX. TongD. Arctigenin induces an activation response in porcine alveolar macrophage through TLR6-NOX2-MAPKs signaling pathway.Front. Pharmacol.2018947510.3389/fphar.2018.0047529867481
    [Google Scholar]
  38. de MarckenM. DhaliwalK. DanielsenA.C. GautronA.S. Dominguez-VillarM. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection.Sci. Signal.201912605eaaw134710.1126/scisignal.aaw134731662487
    [Google Scholar]
  39. LiL. LiuX. SandersK.L. EdwardsJ.L. YeJ. SiF. GaoA. HuangL. HsuehE.C. FordD.A. HoftD.F. PengG. TLR8-mediated metabolic control of human treg function: A mechanistic target for cancer immunotherapy.Cell Metab.2019291103123.e510.1016/j.cmet.2018.09.02030344014
    [Google Scholar]
  40. LaiJ.H. WangM.Y. HuangC.Y. WuC.H. HungL.F. YangC.Y. KeP.Y. LuoS.F. LiuS.J. HoL.J. Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells.EMBO Rep.2018198e4618210.15252/embr.20184618229880709
    [Google Scholar]
  41. De NardoD. De NardoC.M. NguyenT. HamiltonJ.A. ScholzG.M. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages.J. Immunol.2009183128110811810.4049/jimmunol.090103119923461
    [Google Scholar]
  42. LeadbetterE.A. RifkinI.R. HohlbaumA.M. BeaudetteB.C. ShlomchikM.J. Marshak-RothsteinA. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors.Nature2002416688160360710.1038/416603a11948342
    [Google Scholar]
  43. HenrickB.M. YaoX.D. ZahoorM.A. AbimikuA. OsaweS. RosenthalK.L. TLR10 senses HIV-1 proteins and significantly enhances HIV-1 infection.Front. Immunol.20191048210.3389/fimmu.2019.0048230930906
    [Google Scholar]
  44. KirschningC.J. SchumannR.R. TLR2: cellular sensor for microbial and endogenous molecular patterns.Curr. Top. Microbiol. Immunol.200227012114410.1007/978‑3‑642‑59430‑4_812467248
    [Google Scholar]
  45. BrennanJ.J. GilmoreT.D. Evolutionary origins of toll- like receptor signaling.Mol. Biol. Evol.20183571576158710.1093/molbev/msy05029590394
    [Google Scholar]
  46. NarayananK.B. ParkH.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways.Apoptosis201520219620910.1007/s10495‑014‑1073‑125563856
    [Google Scholar]
  47. KangJ.Y. NanX. JinM.S. YounS.J. RyuY.H. MahS. HanS.H. LeeH. PaikS.G. LeeJ.O. Recognition of lipopeptide patterns by toll-like receptor 2-toll- like receptor 6 heterodimer.Immunity200931687388410.1016/j.immuni.2009.09.01819931471
    [Google Scholar]
  48. GongY. ZouL. FengY. LiD. CaiJ. ChenD. ChaoW. Importance of Toll-like receptor 2 in mitochondrial dysfunction during polymicrobial sepsis.Anesthesiology201412161236124710.1097/ALN.000000000000047025272245
    [Google Scholar]
  49. KumarS. DuanQ. WuR. HarrisE.N. SuQ. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis.Adv. Drug Deliv. Rev.202117611386910.1016/j.addr.2021.11386934280515
    [Google Scholar]
  50. SimsG.P. RoweD.C. RietdijkS.T. HerbstR. CoyleA.J. HMGB1 and RAGE in inflammation and cancer.Annu. Rev. Immunol.201028136738810.1146/annurev.immunol.021908.13260320192808
    [Google Scholar]
  51. KaufmannA. MussetB. LimbergS.H. ReniguntaV. SusR. DalpkeA.H. HeegK.M. RobayeB. HanleyP.J. “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes.J. Biol. Chem.200528037324593246710.1074/jbc.M50530120016030017
    [Google Scholar]
  52. TakedaK. AkiraS. TLR signaling pathways.Semin. Immunol.20041613910.1016/j.smim.2003.10.00314751757
    [Google Scholar]
  53. KawaiT. AkiraS. TLR signaling.Semin. Immunol.2007191243210.1016/j.smim.2006.12.00417275323
    [Google Scholar]
  54. LimK.H. StaudtL.M. Toll-like receptor signaling.Cold Spring Harb. Perspect. Biol.201351a01124710.1101/cshperspect.a01124723284045
    [Google Scholar]
  55. WangH. HuangX. XuP. LiuX. ZhouZ. WangF. LiJ. WangY. XianX. LiuG. HuangW. Apolipoprotein C3 aggravates diabetic nephropathy in type 1 diabetes by activating the renal TLR2/NF-κB pathway.Metabolism202111915474010.1016/j.metabol.2021.15474033639183
    [Google Scholar]
  56. HuangR. HuZ. ChenX. CaoY. LiH. ZhangH. LiY. LiangL. FengY. WangY. SuW. KongZ. MelgiriN.D. JiangL. LiX. DuJ. ChenY. The transcription factor SUB1 is a master regulator of the macrophage TLR response in atherosclerosis.Adv. Sci. (Weinh.)2021819200416210.1002/advs.20200416234378353
    [Google Scholar]
  57. SongZ. ChenJ. JiY. YangQ. ChenY. WangF. WuZ. Amuc attenuates high-fat diet-induced metabolic disorders linked to the regulation of fatty acid metabolism, bile acid metabolism, and the gut microbiota in mice.Int. J. Biol. Macromol.2023242Pt 212465010.1016/j.ijbiomac.2023.12465037119914
    [Google Scholar]
  58. MorrisseyS.M. ZhangF. DingC. Montoya-DurangoD.E. HuX. YangC. WangZ. YuanF. FoxM. ZhangH. GuoH. TieriD. KongM. WatsonC.T. MitchellR.A. ZhangX. McMastersK.M. HuangJ. YanJ. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming.Cell Metab.2021331020402058.e1010.1016/j.cmet.2021.09.00234559989
    [Google Scholar]
  59. FengH. GuoZ. ChenX. LiuK. LiH. JiaW. WangC. LuoF. JiX. ZhangT. ZhaoR. ChengX. Excessive HSP70/TLR2 activation leads to remodeling of the tumor immune microenvironment to resist chemotherapy sensitivity of mFOLFOX in colorectal cancer.Clin. Immunol.202224510915710.1016/j.clim.2022.10915736244673
    [Google Scholar]
  60. HeY. LawlorN.T. NewburgD.S. Human milk components modulate toll-like receptor–mediated inflammation.Adv. Nutr.20167110211110.3945/an.115.01009026773018
    [Google Scholar]
  61. DiehlG.E. YueH.H. HsiehK. KuangA.A. HoM. MoriciL.A. LenzL.L. CadoD. RileyL.W. WinotoA. TRAIL-R as a negative regulator of innate immune cell responses.Immunity200421687788910.1016/j.immuni.2004.11.00815589175
    [Google Scholar]
  62. ZhangG. GhoshS. Negative regulation of toll-like receptor-mediated signaling by Tollip.J. Biol. Chem.200227797059706510.1074/jbc.M10953720011751856
    [Google Scholar]
  63. WuH.M. ZhaoC.C. XieQ.M. XuJ. FeiG.H. TLR2-melatonin feedback loop regulates the activation of NLRP3 inflammasome in murine allergic airway inflammation.Front. Immunol.20201117210.3389/fimmu.2020.0017232117301
    [Google Scholar]
  64. Carreto-BinaghiL.E. HerreraM.T. Guzmán-BeltránS. JuárezE. SarabiaC. Salgado-CantúM.G. Juarez-CarmonaD. Guadarrama-PérezC. GonzálezY. Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients.Biomedicines2023114107810.3390/biomedicines1104107837189696
    [Google Scholar]
  65. AlhabibiA.M. HassanA.S. Abd ElbakyN.M. EidH.A.III KhalifaM.A.A.A. WahabM.A. AlthoqapyA.A. AbdouA.E. ZakariaD.M. NassefE.M. KasimS.A. SalehO.I. ElsheikhA.A. LotfyM. SayedA. Impact of toll-like receptor 2 and 9 gene polymorphisms on COVID-19: Susceptibility, severity, and thrombosis.J. Inflamm. Res.20231666567510.2147/JIR.S39492736825132
    [Google Scholar]
  66. SalamaikinaS. KarnaushkinaM. KorchaginV. LitvinovaM. MironovK. AkimkinV. TLRs gene polymorphisms associated with pneumonia before and during COVID-19 pandemic.Diagnostics (Basel)202213112110.3390/diagnostics1301012136611413
    [Google Scholar]
  67. FortmannS.D. PattonM.J. FreyB.F. TipperJ.L. ReddyS.B. VieiraC.P. HanumanthuV.S. SterrettS. FloydJ.L. PrasadR. ZuckerJ.D. CrouseA.B. HulsF. ChkheidzeR. LiP. ErdmannN.B. HarrodK.S. GaggarA. GoepfertP.A. GrantM.B. MightM. Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19.Blood Adv.20237154200421410.1182/bloodadvances.202200902236920790
    [Google Scholar]
  68. Bagheri-HosseinabadiZ. Mohammadizadeh RanjbarF. NassiriM. AmiriA. AbbasifardM. Nasopharyngeal epithelial cells from patients with coronavirus disease 2019 express abnormal levels of Toll-like receptors.Pathog. Glob. Health2023117440140810.1080/20477724.2023.216637836651678
    [Google Scholar]
  69. MilaraJ. Martínez-ExpósitoF. MonteroP. RogerI. BayarriM.A. RiberaP. Oishi-KonariM.N. Alba-GarcíaJ.R. ZapaterE. CortijoJ. N-acetylcysteine reduces inflammasome activation induced by SARS-CoV-2 proteins in vitro.Int. J. Mol. Sci.202223231451810.3390/ijms23231451836498845
    [Google Scholar]
  70. Beltrán-CamachoL. Eslava-AlcónS. Rojas-TorresM. Sánchez-MorilloD. Martinez-NicolásM.P. Martín-BermejoV. de la TorreI.G. BerrocosoE. MorenoJ.A. Moreno-LunaR. Durán-RuizM.C. The serum of COVID-19 asymptomatic patients up-regulates proteins related to endothelial dysfunction and viral response in circulating angiogenic cells ex-vivo.Mol. Med.20222814010.1186/s10020‑022‑00465‑w35397534
    [Google Scholar]
  71. SultanR.H. ElesawyB.H. AliT.M. AbdallahM. AssalH.H. AhmedA.E. AhmedO.M. Correlations between kidney and heart function bioindicators and the expressions of toll-like, ACE2, and NRP-1 receptors in COVID-19.Vaccines (Basel)2022107110610.3390/vaccines1007110635891270
    [Google Scholar]
  72. DotanA. MullerS. KanducD. DavidP. HalpertG. ShoenfeldY. The SARS-CoV-2 as an instrumental trigger of autoimmunity.Autoimmun. Rev.202120410279210.1016/j.autrev.2021.10279233610751
    [Google Scholar]
  73. CambierS. MetzemaekersM. de CarvalhoA.C. NooyensA. JacobsC. VanderbekeL. Malengier-DevliesB. GouwyM. HeylenE. MeerssemanP. HermansG. WautersE. WilmerA. ScholsD. MatthysP. OpdenakkerG. MarquesR.E. WautersJ. VandoorenJ. ProostP. CONTAGIOUS Consortium A typical response to bacterial coinfection and persistent neutrophilic bronchoalveolar inflammation distinguish critical COVID-19 from influenza.JCI Insight202271e15505510.1172/jci.insight.15505534793331
    [Google Scholar]
  74. MarchandL. PecquetM. LuytonC. Type 1 diabetes onset triggered by COVID-19.Acta Diabetol.202057101265126610.1007/s00592‑020‑01570‑032653960
    [Google Scholar]
  75. Root-BernsteinR. From co-infections to autoimmune disease via hyperactivated innate immunity: COVID-19 autoimmune coagulopathies, autoimmune myocarditis and multisystem inflammatory syndrome in children.Int. J. Mol. Sci.2023243300110.3390/ijms2403300136769320
    [Google Scholar]
  76. Al-kuraishyH.M. Al-GareebA.I. AlkazmiL. HabottaO.A. BatihaG.E.S. High-mobility group box 1 (HMGB1) in COVID-19: extrapolation of dangerous liaisons.Inflammopharmacology202230381182010.1007/s10787‑022‑00988‑y35471628
    [Google Scholar]
  77. SungP.S. HuangT.F. HsiehS.L. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2.Nat. Commun.2019101240210.1038/s41467‑019‑10360‑431160588
    [Google Scholar]
  78. SungP.S. HsiehS.L. C-type lectins and extracellular vesicles in virus-induced NETosis.J. Biomed. Sci.20212814610.1186/s12929‑021‑00741‑734116654
    [Google Scholar]
  79. Salehi-VaziriM. FazlalipourM. Seyed KhorramiS.M. AzadmaneshK. PouriayevaliM.H. JalaliT. ShojaZ. MalekiA. The ins and outs of SARS-CoV-2 variants of concern (VOCs).Arch. Virol.2022167232734410.1007/s00705‑022‑05365‑235089389
    [Google Scholar]
  80. KayeshM.E.H. KoharaM. Tsukiyama-KoharaK. An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of TLR agonists as SARS-CoV-2 vaccine adjuvants.Viruses20211311230210.3390/v1311230234835108
    [Google Scholar]
  81. Priyangi KuruppuarachchiK.A.P. JangY. SeoS.H. Comparison of the pathogenicity of SARS-CoV-2 delta and omicron variants by analyzing the expression patterns of immune response genes in K18-hACE2 transgenic mice.Frontiers in Bioscience-Landmark2022271131610.31083/j.fbl271131636472114
    [Google Scholar]
  82. KircheisR. PlanzO. Could a lower toll-like receptor (TLR) and NF-κB activation due to a changed charge distribution in the spike protein be the reason for the lower pathogenicity of omicron?Int. J. Mol. Sci.20222311596610.3390/ijms2311596635682644
    [Google Scholar]
  83. KircheisR. In silico analyses indicate a lower potency for dimerization of TLR4/MD-2 as the reason for the lower pathogenicity of omicron compared to wild-type virus and earlier SARS-CoV-2 variants.Int. J. Mol. Sci.20242510545110.3390/ijms2510545138791489
    [Google Scholar]
  84. LiD. WuM. Pattern recognition receptors in health and diseases.Signal Transduct. Target. Ther.20216129110.1038/s41392‑021‑00687‑034344870
    [Google Scholar]
  85. YadavR. ChaudharyJ.K. JainN. ChaudharyP.K. KhanraS. DhamijaP. SharmaA. KumarA. HanduS. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19.Cells202110482110.3390/cells1004082133917481
    [Google Scholar]
  86. ZhengM. KarkiR. WilliamsE.P. YangD. FitzpatrickE. VogelP. JonssonC.B. KannegantiT.D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines.Nat. Immunol.202122782983810.1038/s41590‑021‑00937‑x33963333
    [Google Scholar]
  87. HuangH. LiX. ZhaD. LinH. YangL. WangY. XuL. WangL. LeiT. ZhouZ. XiaoY.F. XinH.B. FuM. QianY. SARS-CoV-2 E protein-induced THP-1 pyroptosis is reversed by Ruscogenin.Biochem. Cell Biol.2023101430331210.1139/bcb‑2022‑035936927169
    [Google Scholar]
  88. van der SluisR.M. ChamL.B. Gris-OliverA. GammelgaardK.R. PedersenJ.G. IdornM. AhmadovU. HernandezS.S. CémalovicE. GodskS.H. ThyrstedJ. GunstJ.D. NielsenS.D. JørgensenJ.J. BjergT.W. LaustsenA. ReinertL.S. OlagnierD. BakR.O. KjolbyM. HolmC.K. TolstrupM. PaludanS.R. KristensenL.S. SøgaardO.S. JakobsenM.R. TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS-CoV-2 infection.EMBO J.20224110e10962210.15252/embj.202110962235178710
    [Google Scholar]
  89. GiannakopoulosS. StrangeD.P. JiyaromB. AbdelaalO. BradshawA.W. NerurkarV.R. WardM.A. BakseJ. YapJ. VanapruksS. BoisvertW.A. TallquistM.D. ShikumaC. Sadri-ArdekaniH. ClappP. MurphyS.V. VermaS. In vitro evidence against productive SARS-CoV-2 infection of human testicular cells: Bystander effects of infection mediate testicular injury.PLoS Pathog.2023195e101140910.1371/journal.ppat.101140937200377
    [Google Scholar]
  90. MendenH.L. MabryS.M. VenkatramanA. XiaS. DeFrancoD.B. YuW. SampathV. The SARS-CoV-2 E protein induces Toll-like receptor 2-mediated neonatal lung injury in a model of COVID-19 viremia that is rescued by the glucocorticoid ciclesonide.Am. J. Physiol. Lung Cell. Mol. Physiol.20233245L722L73610.1152/ajplung.00410.202236976925
    [Google Scholar]
  91. SuW. JuJ. GuM. WangX. LiuS. YuJ. MuD. SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice.J. Neuroinflammation202320111010.1186/s12974‑023‑02786‑x37158916
    [Google Scholar]
  92. PlanèsR. BertJ.B. TairiS. BenMohamedL. BahraouiE. SARS-CoV-2 envelope (E) protein binds and activates TLR2 pathway: A novel molecular target for COVID-19 interventions.Viruses202214599910.3390/v1405099935632741
    [Google Scholar]
  93. KhanS. ShafieiM.S. LongoriaC. SchogginsJ.W. SavaniR.C. ZakiH. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway.eLife202110e6856310.7554/eLife.6856334866574
    [Google Scholar]
  94. UmarS. PalasiewiczK. MeyerA. KumarP. PrabhakarB.S. VolinM.V. RahatR. Al-AwqatiM. ChangH.J. ZomorrodiR.K. RehmanJ. ShahraraS. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming.Cell. Mol. Life Sci.202279630110.1007/s00018‑022‑04329‑835588018
    [Google Scholar]
  95. Al-QahtaniA.A. PantaziI. AlhamlanF.S. AlothaidH. Matou-NasriS. SourvinosG. VergadiE. TsatsanisC. SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type II cells via PI3K/AKT pathway.Front. Immunol.202213102062410.3389/fimmu.2022.102062436389723
    [Google Scholar]
  96. RahmanM. IrmlerM. KeshavanS. IntronaM. BeckersJ. PalmbergL. JohansonG. GangulyK. UpadhyayS. Differential effect of SARS-CoV-2 spike glycoprotein 1 on human bronchial and alveolar lung mucosa models: Implications for pathogenicity.Viruses20211312253710.3390/v1312253734960806
    [Google Scholar]
  97. TyrkalskaS.D. Martínez-LópezA. PedotoA. CandelS. CayuelaM.L. MuleroV. The Spike protein of SARS-CoV-2 signals via Tlr2 in zebrafish.Dev. Comp. Immunol.202314010462610.1016/j.dci.2022.10462636587712
    [Google Scholar]
  98. FrankM.G. NguyenK.H. BallJ.B. HopkinsS. KelleyT. BarattaM.V. FleshnerM. MaierS.F. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties.Brain Behav. Immun.202210026727710.1016/j.bbi.2021.12.00734915155
    [Google Scholar]
  99. QianY. LeiT. PatelP.S. LeeC.H. Monaghan-NicholsP. XinH.B. QiuJ. FuM. Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by simvastatin.J. Virol.20219523e01396-2110.1128/JVI.01396‑2134549987
    [Google Scholar]
  100. BoodhooN. Matsuyama-katoA. ShojadoostB. BehboudiS. SharifS. The severe acute respiratory syndrome coronavirus 2 non-structural proteins 1 and 15 proteins mediate antiviral immune evasion.Curr. Res. Virol. Sci.2022310002110.1016/j.crviro.2022.10002135187506
    [Google Scholar]
  101. CaoY. YangR. LeeI. ZhangW. SunJ. WangW. MengX. Characterization of the SARS-CoV -2 E Protein: Sequence, Structure, Viroporin, and Inhibitors.Protein Sci.20213061114113010.1002/pro.407533813796
    [Google Scholar]
  102. CubukJ. AlstonJ.J. InciccoJ.J. SinghS. Stuchell-BreretonM.D. WardM.D. ZimmermanM.I. VithaniN. GriffithD. WagonerJ.A. BowmanG.R. HallK.B. SorannoA. HolehouseA.S. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA.Nat. Commun.2021121193610.1038/s41467‑021‑21953‑333782395
    [Google Scholar]
  103. ShuaibM. AdroubS. MourierT. MfarrejS. ZhangH. EsauL. AlsomaliA. AlofiF.S. AhmadA.N. ShamsanA. KhogeerA. HashemA.M. AlmontashiriN.A.M. HalaS. PainA. Impact of the SARS-CoV-2 nucleocapsid 203K/204R mutations on the inflammatory immune response in COVID-19 severity.Genome Med.20231515410.1186/s13073‑023‑01208‑037475040
    [Google Scholar]
  104. XiaJ. WangJ. YingL. HuangR. ZhangK. ZhangR. TangW. XuQ. LaiD. ZhangY. HuY. ZhangX. ZangR. FanJ. ShuQ. XuJ. RAGE is a receptor for SARS-CoV-2 N protein and mediates N protein–induced acute lung injury.Am. J. Respir. Cell Mol. Biol.202369550852010.1165/rcmb.2022‑0351OC37478333
    [Google Scholar]
  105. LaiD. ZhuK. LiS. XiaoY. XuQ. SunY. YaoP. MaD. ShuQ. SARS-CoV-2 N protein triggers acute lung injury via modulating macrophage activation and infiltration in in vitro and in vivo.J. Inflamm. Res.2023161867187710.2147/JIR.S40572237143821
    [Google Scholar]
  106. GaoT. ZhuL. LiuH. ZhangX. WangT. FuY. LiH. DongQ. HuY. ZhangZ. JinJ. LiuZ. YangW. LiuY. JinY. LiK. XiaoY. LiuJ. ZhaoH. LiuY. LiP. SongJ. ZhangL. GaoY. KangS. ChenS. MaQ. BianX. ChenW. LiuX. MaoQ. CaoC. Highly pathogenic coronavirus N protein aggravates inflammation by MASP-2-mediated lectin complement pathway overactivation.Signal Transduct. Target. Ther.20227131810.1038/s41392‑022‑01133‑536100602
    [Google Scholar]
  107. Blanco-MeloD. Nilsson-PayantB.E. LiuW.C. UhlS. HoaglandD. MøllerR. JordanT.X. OishiK. PanisM. SachsD. WangT.T. SchwartzR.E. LimJ.K. AlbrechtR.A. tenOeverB.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19.Cell2020181510361045.e910.1016/j.cell.2020.04.02632416070
    [Google Scholar]
  108. ZhouS.H. ZhangR.Y. ZhangH.W. LiuY.L. WenY. WangJ. LiY.T. YouZ.W. YinX.G. QiuH. GongR. YangG.F. GuoJ. RBD conjugate vaccine with a built-in TLR1/2 agonist is highly immunogenic against SARS-CoV-2 and variants of concern.Chem. Commun. (Camb.)202258132120212310.1039/D1CC06520C35040862
    [Google Scholar]
  109. QiaoY. ZhanY. ZhangY. DengJ. ChenA. LiuB. ZhangY. PanT. ZhangW. ZhangH. HeX. Pam2CSK4-adjuvanted SARS-CoV-2 RBD nanoparticle vaccine induces robust humoral and cellular immune responses.Front. Immunol.20221399206210.3389/fimmu.2022.99206236569949
    [Google Scholar]
  110. DialloB.K. Ní ChasaideC. WongT.Y. SchmittP. LeeK.S. WeaverK. MillerO. CooperM. JazayeriS.D. DamronF.H. MillsK.H.G. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection.NPJ Vaccines2023816810.1038/s41541‑023‑00665‑337179389
    [Google Scholar]
  111. AshhurstA.S. JohansenM.D. MaxwellJ.W.C. StockdaleS. AshleyC.L. AggarwalA. SiddiqueeR. MiemczykS. NguyenD.H. MackayJ.P. CounoupasC. ByrneS.N. TurvilleS. SteainM. TriccasJ.A. HansbroP.M. PayneR.J. BrittonW.J. Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice.Nat. Commun.2022131697210.1038/s41467‑022‑34297‑336379950
    [Google Scholar]
  112. DeliyannisG. GherardinN.A. WongC.Y. GrimleyS.L. CooneyJ.P. RedmondS.J. EllenbergP. DavidsonK.C. MordantF.L. SmithT. GillardM. LopezE. McAuleyJ. TanC.W. WangJ.J. ZengW. LittlejohnM. ZhouR. Fuk-Woo ChanJ. ChenZ. HartwigA.E. BowenR. MackenzieJ.M. VincanE. TorresiJ. KedzierskaK. PoutonC.W. GordonT.P. WangL. KentS.J. WheatleyA.K. LewinS.R. SubbaraoK. ChungA.W. PellegriniM. MunroT. NolanT. RockmanS. JacksonD.C. PurcellD.F.J. GodfreyD.I. Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine.EBioMedicine20239210457410.1016/j.ebiom.2023.10457437148585
    [Google Scholar]
  113. MaoL. LiuC. LiuJ.Y. JinZ.L. JinZ. XueR.Y. FengR. LiG.C. DengY. ChengH. ZouQ.M. LiH.B. Novel synthetic lipopeptides as potential mucosal adjuvants enhanced SARS-CoV-2 rRBD-induced immune response.Front. Immunol.20221383341810.3389/fimmu.2022.83341835356002
    [Google Scholar]
  114. KhanK. KhanS.A. JalalK. Ul-HaqZ. UddinR. Immunoinformatic approach for the construction of multi-epitopes vaccine against omicron COVID-19 variant.Virology2022572284310.1016/j.virol.2022.05.00135576833
    [Google Scholar]
  115. JiangF. LiuY. XueY. ChengP. WangJ. LianJ. GongW. Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: A reverse vaccinology analysis.Int. Immunopharmacol.202311510972810.1016/j.intimp.2023.10972836652758
    [Google Scholar]
  116. IzquierdoJ.L. SorianoJ.B. GonzálezY. LumbrerasS. AncocheaJ. EcheverryC. RodríguezJ.M. Use of N-Acetylcysteine at high doses as an oral treatment for patients hospitalized with COVID-19.Sci. Prog.202210510036850422107457410.1177/0036850422107457435084258
    [Google Scholar]
  117. de AlencarJ.C.G. MoreiraC.L. MüllerA.D. ChavesC.E. FukuharaM.A. da SilvaE.A. MiyamotoM.F.S. PintoV.B. BuenoC.G. Lazar NetoF. Gomez GomezL.M. MenezesM.C.S. MarchiniJ.F.M. MarinoL.O. Brandão NetoR.A. SouzaH.P. ValenteF.S. RahhalH. PereiraJ.B.R. PadrãoE.M.H. WanderleyA.P.B. MarquesB. GomezL.M.G. D’SouzaE.A. BellintaniA.P. MiléoR.C. ToccoliR.W. SilvaF.M.F. BaptistaJ.M. SilvaM.O. CostaG.B. LunaR.B. dos SantosH.T. De CalasansM.M.G.C. SanchesM.P. TakamuneD.J. BoscoloL. SimõesP.A.A. PandolfiM.C.A. FantinattiB.L. TravessiniG. de FariaM.F.L. LimaL.T. NicolaoB.R. EscudeiroG.P.M. NascimentoJ.P.A. CaldeiraB.T. CamposL.G. MedeirosV.M.B. MonsalvargaT.C. OmoriI.H. GuidotteD.V. BortolottoA.L. AbreuR.S. MartinsN.A.B. JuckC.E.U. UtiyamaL.O. BortoletoF.M. TinelR.D. AndreolaG.M. CardosoN.P. ClaureO.S. LopesJ.V.Z. da Costa RibeiroS.C. COVID Register Group Double-blind, randomized, placebo-controlled trial with N-acetylcysteine for treatment of severe acute respiratory syndrome caused by coronavirus disease 2019 (COVID-19).Clin. Infect. Dis.20217211e736e74110.1093/cid/ciaa144332964918
    [Google Scholar]
  118. AlamdariD.H. MoghaddamA.B. AminiS. KeramatiM.R. ZarmehriA.M. AlamdariA.H. DamsazM. BanpourH. YarahmadiA. KoliakosG. Application of methylene blue -vitamin C –N-acetyl cysteine for treatment of critically ill COVID-19 patients, report of a phase-I clinical trial.Eur. J. Pharmacol.202088517349410.1016/j.ejphar.2020.17349432828741
    [Google Scholar]
  119. DushianthanA. ClarkH. MadsenJ. MoggR. MatthewsL. BerryL. de la SernaJ.B. BatchelorJ. BrealeyD. HussellT. PorterJ. DjukanovicR. FeelischM. PostleA. GrocottM.P.W. Nebulised surfactant for the treatment of severe COVID-19 in adults (COV-Surf): A structured summary of a study protocol for a randomized controlled trial.Trials2020211101410.1186/s13063‑020‑04944‑533302976
    [Google Scholar]
  120. OngE.Z. YeeJ.X. OoiJ.S.G. SyeninaA. de AlwisR. ChenS. SimJ.X.Y. KalimuddinS. LeongY.S. ChanY.F.Z. SekulovichR. SullivanB.M. LindertK. SullivanS.B. ChivukulaP. HughesS.G. LowJ.G. OoiE.E. ChanK.R. Immune gene expression analysis indicates the potential of a self-amplifying COVID-19 mRNA vaccine.NPJ Vaccines20227115410.1038/s41541‑022‑00573‑y36443317
    [Google Scholar]
  121. ProudP.C. TsitouraD. WatsonR.J. ChuaB.Y. AramM.J. BewleyK.R. CavellB.E. CobbR. DowallS. FotheringhamS.A. HoC.M.K. LucasV. NgaboD. RaynerE. RyanK.A. SlackG.S. ThomasS. WandN.I. YeatesP. DemaisonC. ZengW. HolmesI. JacksonD.C. BartlettN.W. MercuriF. CarrollM.W. Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model.EBioMedicine20216310315310.1016/j.ebiom.2020.10315333279857
    [Google Scholar]
  122. MaganaM. PushpanathanM. SantosA.L. LeanseL. FernandezM. IoannidisA. GiulianottiM.A. ApidianakisY. BradfuteS. FergusonA.L. CherkasovA. SeleemM.N. PinillaC. de la Fuente-NunezC. LazaridisT. DaiT. HoughtenR.A. HancockR.E.W. TegosG.P. The value of antimicrobial peptides in the age of resistance.Lancet Infect. Dis.2020209e216e23010.1016/S1473‑3099(20)30327‑332653070
    [Google Scholar]
  123. Cortés-CirianoI. GulhanD.C. LeeJ.J.K. MelloniG.E.M. ParkP.J. Computational analysis of cancer genome sequencing data.Nat. Rev. Genet.202223529831410.1038/s41576‑021‑00431‑y34880424
    [Google Scholar]
  124. NazA. ShahidF. ButtT.T. AwanF.M. AliA. MalikA. Designing multi-epitope vaccines to combat emerging coronavirus disease 2019 (COVID-19) by employing immuno-informatics approach.Front. Immunol.202011166310.3389/fimmu.2020.0166332754160
    [Google Scholar]
  125. YaseenA.R. SulemanM. QadriA.S. AsgharA. ArshadI. KhanD.M. Development of conserved multi-epitopes based hybrid vaccine against SARS-CoV-2 variants: an immunoinformatic approach.In Silico Pharmacol.20231111810.1007/s40203‑023‑00156‑237519944
    [Google Scholar]
  126. FarhaniI. YamchiA. MadanchiH. KhazaeiV. BehrouzikhahM. AbbasiH. SalehiM. MoradiN. SanamiS. Designing a multi-epitope vaccine against the SARS-CoV-2 variant based on an immunoinformatics approach.Curr Comput Aided Drug Des.202320327429010.2174/1573409919666230612125440
    [Google Scholar]
  127. SahuL.K. SinghK. Cross-variant proof predictive vaccine design based on SARS-CoV-2 spike protein using immunoinformatics approach.Beni. Suef Univ. J. Basic Appl. Sci.2023121510.1186/s43088‑023‑00341‑436644779
    [Google Scholar]
  128. EzzemaniW. KettaniA. SappatiS. KondakaK. El OssmaniH. Tsukiyama-KoharaK. AltawalahH. SaileR. KoharaM. BenjellounS. EzzikouriS. Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants.J. Biomol. Struct. Dyn.2022411112210.1080/07391102.2022.207546835549819
    [Google Scholar]
  129. RafiM.O. Al-KhafajiK. SarkerM.T. Taskin-TokT. RanaA.S. RahmanM.S. Design of a multi-epitope vaccine against SARS-CoV-2: immunoinformatic and computational methods.RSC Advances20221274288431010.1039/D1RA06532G35425433
    [Google Scholar]
  130. SabaA.A. AdibaM. SahaP. HosenM.I. ChakrabortyS. NabiA.H.M.N. An in-depth in silico and immunoinformatics approach for designing a potential multi-epitope construct for the effective development of vaccine to combat against SARS-CoV-2 encompassing variants of concern and interest.Comput. Biol. Med.202113610470310.1016/j.compbiomed.2021.10470334352457
    [Google Scholar]
  131. AkpınarS. OranM. DoğanM. ÇelikkolA. ErdemI. TurgutB. The role of oxidized phospholipids in COVID-19-associated hypercoagulopathy.Eur. Rev. Med. Pharmacol. Sci.202125165304530910.26355/eurrev_202108_2655134486706
    [Google Scholar]
  132. MaZ. LiJ. YangL. MuY. XieW. PittB. LiS. Inhibition of LPS- and CpG DNA-induced TNF-α response by oxidized phospholipids.Am. J. Physiol. Lung Cell. Mol. Physiol.20042864L808L81610.1152/ajplung.00220.200314644758
    [Google Scholar]
  133. NonasS. MillerI. KawkitinarongK. ChatchavalvanichS. GorshkovaI. BochkovV.N. LeitingerN. NatarajanV. GarciaJ.G.N. BirukovK.G. Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury.Am. J. Respir. Crit. Care Med.2006173101130113810.1164/rccm.200511‑1737OC16514111
    [Google Scholar]
  134. MokhtariV. AfsharianP. ShahhoseiniM. KalantarS.M. MoiniA. A review on various uses of N-Acetyl cysteine.Cell J.2017191111728367412
    [Google Scholar]
  135. IslamA.B.M.M.K. KhanM.A.A.K. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy.Sci. Rep.20201011939510.1038/s41598‑020‑76404‑833173052
    [Google Scholar]
  136. JiJ. SunL. LuoZ. ZhangY. XianzhengW. LiaoY. TongX. ShanJ. Potential therapeutic applications of pulmonary surfactant lipids in the host defence against respiratory viral infections.Front. Immunol.20211273002210.3389/fimmu.2021.73002234646269
    [Google Scholar]
  137. BollagW.B. GonzalesJ.N. Phosphatidylglycerol and surfactant: A potential treatment for COVID-19?Med. Hypotheses202014411027710.1016/j.mehy.2020.11027733254581
    [Google Scholar]
  138. NumataM. VoelkerD.R. Anti-inflammatory and anti-viral actions of anionic pulmonary surfactant phospholipids.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20221867615913910.1016/j.bbalip.2022.15913935240310
    [Google Scholar]
  139. NumataM. ChuH.W. DakhamaA. VoelkerD.R. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus–induced inflammation and infection.Proc. Natl. Acad. Sci. USA2010107132032510.1073/pnas.090936110720080799
    [Google Scholar]
  140. SatoM. SanoH. IwakiD. KudoK. KonishiM. TakahashiH. TakahashiT. ImaizumiH. AsaiY. KurokiY. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A.J. Immunol.2003171141742510.4049/jimmunol.171.1.41712817025
    [Google Scholar]
  141. FajgenbaumD.C. JuneC.H. Cytokine Storm.N. Engl. J. Med.2020383232255227310.1056/NEJMra202613133264547
    [Google Scholar]
  142. NumataM. KandasamyP. VoelkerD.R. The anti-inflammatory and antiviral properties of anionic pulmonary surfactant phospholipids.Immunol. Rev.2023317116618610.1111/imr.1320737144896
    [Google Scholar]
  143. TakanoH. Pulmonary surfactant itself must be a strong defender against SARS-CoV-2.Med. Hypotheses202014411002010.1016/j.mehy.2020.11002032590326
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327301241016063917
Loading
/content/journals/cmc/10.2174/0109298673327301241016063917
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; inflammatory response; SARS-CoV-2; therapeutic target; TLR2; viral proteins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test