Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

PANoptosis plays an important role in many inflammatory diseases. However, there are no reports on the association between PANoptosis and CD.

Materials and Methods

This study used five machine learning algorithms - least absolute shrinkage and selection operator, support vector machine, random forest, decision tree and Gaussian mixture models - to construct CD’s PANoptosis signature. Unsupervised hierarchical clustering analysis was used to identify PANoptosis-associated subgroups of CD. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted to compare the PANoptosis-associated subgroups of CD among the potential biological mechanisms. Single sample GSEA was used to assess immune microenvironmental differences among the subgroups. The potential role of PANoptosis in CD was further explored using single-cell RNA-Seq (scRNA-Seq) for PANoptosis scoring, differential analysis, pseudotime analysis, cellular communication analysis and weighted gene co-expression network analysis (WGCNA) analysis.

Results

CD’s PANoptosis signature consisted of seven genes: , , , , , and . The PANoptosis signature in multiple cohorts had a strong ability to recognise CD. The levels of immune cell infiltration and the vigour of the immune responses significantly varied between the two subpopulations of CD associated with PANoptosis. Multiple lines of evidence from the GO, KEGG, GSEA, GSVA, scRNA-Seq and WGCNA analyses suggested that I-kappaB kinase/NF-kappaB signalling, mitogen-activated protein kinase (MAPK), leukocyte activation and leukocyte migration were mechanisms closely associated with PANoptosis in CD.

Conclusion

This study is the first to construct a PANoptosis signature with excellent efficacy in recognising CD. PANoptosis may mediate the process of CD through inflammatory and immune mechanisms, such as NF- kappaB, MAPK and leukocyte migration.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330894241008060309
2024-10-21
2025-10-27
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/42/CMC-32-42-10.html?itemId=/content/journals/cmc/10.2174/0109298673330894241008060309&mimeType=html&fmt=ahah

References

  1. KosinskyR.L. GonzalezM.M. SaulD. BarrosL.L. SagstetterM.R. FedyshynY. NairA. SunZ. HamdanF.H. GibbonsH.R. Perez PachonM.E. DrulinerB.R. JohnsenS.A. FaubionW.A. The FOXP3+ pro-inflammatory T cell: A potential therapeutic target in Crohn’s disease.Gastroenterology20241664631644.e1710.1053/j.gastro.2024.01.00738211712
    [Google Scholar]
  2. ImbriziM. MagroF. CoyC.S.R. Pharmacological therapy in inflammatory bowel diseases: A narrative review of the past 90 years.Pharmaceuticals2023169127210.3390/ph1609127237765080
    [Google Scholar]
  3. Rivera RodríguezR. JohnsonJ.J. Terpenes: Modulating anti-inflammatory signaling in inflammatory bowel disease.Pharmacol. Ther.202324810845610.1016/j.pharmthera.2023.10845637247693
    [Google Scholar]
  4. AgrawalM. JessT. Implications of the changing epidemiology of inflammatory bowel disease in a changing world.United European Gastroenterol. J.202210101113112010.1002/ueg2.1231736251359
    [Google Scholar]
  5. Seyed TabibN.S. MadgwickM. SudhakarP. VerstocktB. KorcsmarosT. VermeireS. Big data in IBD: Big progress for clinical practice.Gut20206981520153210.1136/gutjnl‑2019‑32006532111636
    [Google Scholar]
  6. SinopoulouV. GordonM. AkobengA.K. GasparettoM. SammaanM. VasiliouJ. DoveyT.M. Interventions for the management of abdominal pain in Crohn’s disease and inflammatory bowel disease.Cochrane Database Syst. Rev.20211111CD01353134844288
    [Google Scholar]
  7. LentiM.V. CococciaS. GhorayebJ. Di SabatinoA. SelingerC.P. Stigmatisation and resilience in inflammatory bowel disease.Intern. Emerg. Med.202015221122310.1007/s11739‑019‑02268‑031893346
    [Google Scholar]
  8. ShahS.C. ItzkowitzS.H. Colorectal cancer in inflammatory bowel disease: Mechanisms and management.Gastroenterology20221623715730.e310.1053/j.gastro.2021.10.03534757143
    [Google Scholar]
  9. MullerM. HansmannelF. ArnoneD. ChoukourM. NdiayeN.C. KoktenT. HoulgatteR. Peyrin-BirouletL. Genomic and molecular alterations in human inflammatory bowel disease-associated colorectal cancer.United European Gastroenterol. J.20208667568410.1177/205064062091925432268844
    [Google Scholar]
  10. HammoudiN. Lehmann-CheJ. LambertJ. AmoyelM. MaggioriL. SalfatiD. Tran MinhM. L. BaudryC. AsesioN. PoirotB. LourencoN. CorteH. AllezM. AparicioT. GornetJ. M. Prognosis and molecular characteristics of IBD-associated colorectal cancer: Experience from a French tertiary-care center.Dig. Liver Dis.202355912801287
    [Google Scholar]
  11. AgrawalM. SpencerE.A. ColombelJ.F. UngaroR.C. Approach to the management of recently diagnosed inflammatory bowel disease patients: A user’s guide for adult and pediatric gastroenterologists.Gastroenterology20211611476510.1053/j.gastro.2021.04.06333940007
    [Google Scholar]
  12. WangY. KannegantiT.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways.Comput. Struct. Biotechnol. J.2021194641465710.1016/j.csbj.2021.07.03834504660
    [Google Scholar]
  13. YangZ. KaoX. HuangN. YuanK. ChenJ. HeM. Identification and analysis of panoptosis-related genes in sepsis-induced lung injury by bioinformatics and experimental verification.J. Inflamm. Res.2024171941195610.2147/JIR.S45260838562657
    [Google Scholar]
  14. PandeyaA. KannegantiT.D. Therapeutic potential of PANoptosis: Innate sensors, inflammasomes, and RIPKs in PANoptosomes.Trends Mol. Med.2024301748810.1016/j.molmed.2023.10.00137977994
    [Google Scholar]
  15. SharmaB.R. KarkiR. RajeshY. KannegantiT.D. Immune regulator IRF1 contributes to ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosome activation and inflammatory cell death (PANoptosis).J. Biol. Chem.2023299910514110.1016/j.jbc.2023.10514137557956
    [Google Scholar]
  16. ChenW. GullettJ.M. TweedellR.E. KannegantiT.D. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease.Eur. J. Immunol.20235311225023510.1002/eji.20225023536782083
    [Google Scholar]
  17. HeW. TangM. GuR. WuX. MuX. NieX. The role of p53 in regulating chronic inflammation and PANoptosis in diabetic wounds.Aging Dis.202416137338377027
    [Google Scholar]
  18. KarkiR. SharmaB.R. TuladharS. WilliamsE.P. ZalduondoL. SamirP. ZhengM. SundaramB. BanothB. MalireddiR.K.S. SchreinerP. NealeG. VogelP. WebbyR. JonssonC.B. KannegantiT.D. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes.Cell2021184114916810.1016/j.cell.2020.11.02533278357
    [Google Scholar]
  19. KarkiR. KannegantiT.D. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19.J. Transl. Med.202220154210.1186/s12967‑022‑03767‑z36419185
    [Google Scholar]
  20. Messaoud-NacerY. CulerierE. RoseS. MailletI. RouxelN. BriaultS. RyffelB. QuesniauxV.F.J. TogbeD. STING agonist diABZI induces PANoptosis and DNA mediated acute respiratory distress syndrome (ARDS).Cell Death Dis.202213326910.1038/s41419‑022‑04664‑535338116
    [Google Scholar]
  21. WangJ.M. YangJ. XiaW.Y. WangY.M. ZhuY.B. HuangQ. FengT. XieL.S. LiS.H. LiuS.Q. YuS.G. WuQ.F. Comprehensive analysis of panoptosis-related gene signature of ulcerative colitis.Int. J. Mol. Sci.202325134810.3390/ijms2501034838203518
    [Google Scholar]
  22. ZhaoJ. ZhaoZ. YingP. ZhouY. XuZ. WangH. TangL. METTL3-mediated m6A modification of circPRKAR1B promotes Crohn’s colitis by inducing pyroptosis via autophagy inhibition.Clin. Transl. Med.2023139e140510.1002/ctm2.140537679886
    [Google Scholar]
  23. ZhangJ. CenL. ZhangX. TangC. ChenY. ZhangY. YuM. LuC. LiM. LiS. LinB. ZhangT. SongX. YuC. WuH. ShenZ. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT.Redox Biol.20225610246910.1016/j.redox.2022.10246936126419
    [Google Scholar]
  24. YangX. LiG. LouP. ZhangM. YaoK. XiaoJ. ChenY. XuJ. TianS. DengM. PanY. LiM. WuX. LiuR. ShiX. TianY. YuL. KeH. JiaoB. CongY. PlikusM.V. LiuX. YuZ. LvC. Excessive nucleic acid R-loops induce mitochondria-dependent epithelial cell necroptosis and drive spontaneous intestinal inflammation.Proc. Natl. Acad. Sci. USA20241211e230739512010.1073/pnas.230739512038157451
    [Google Scholar]
  25. CheungT. S. GiacominiC. CeredaM. Avivar- ValderasA. CapeceD. BertolinoG. M. delaRosaO. HicksR. CiccocioppoR. FranzosoG. GalleuA. CiccarelliF. D. DazziF. Apoptosis in mesenchymal stromal cells activates an immunosuppressive secretome predicting clinical response in Crohn's disease.Mol. Ther.2023311235313544
    [Google Scholar]
  26. ZhuJ. HuangQ. PengX. LuoC. LiuZ. LiuD. YuanH. YuanR. ChengX. Identification of molecular subtypes based on PANoptosis-related genes and construction of a signature for predicting the prognosis and response to immunotherapy response in hepatocellular carcinoma.Front. Immunol.202314121866110.3389/fimmu.2023.121866137662906
    [Google Scholar]
  27. LiY. LuF. YinY. Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease.Sci. Rep.20221211134010.1038/s41598‑022‑15609‑535790774
    [Google Scholar]
  28. BaoW. WangL. LiuX. LiM. Predicting diagnostic biomarkers associated with immune infiltration in Crohn’s disease based on machine learning and bioinformatics.Eur. J. Med. Res.202328125510.1186/s40001‑023‑01200‑937496049
    [Google Scholar]
  29. LiY. PanJ. ZhouN. FuD. LianG. YiJ. PengY. LiuX. A random forest model predicts responses to infliximab in Crohn’s disease based on clinical and serological parameters.Scand. J. Gastroenterol.20215691030103910.1080/00365521.2021.193941134304688
    [Google Scholar]
  30. ZengJ. HuaiM. GeW. YangZ. PanX. Development and validation of diagnosis model for inflammatory bowel diseases based on a serologic biomarker panel: A decision tree model study.Arab J. Gastroenterol.2024
    [Google Scholar]
  31. ScruccaL. FopM. MurphyT.B. RafteryA.E. mclust 5: Clustering, classification and density estimation using gaussian finite mixture models.R J.20168128931710.32614/RJ‑2016‑02127818791
    [Google Scholar]
  32. ZengD. YeZ. ShenR. YuG. WuJ. XiongY. ZhouR. QiuW. HuangN. SunL. LiX. BinJ. LiaoY. ShiM. LiaoW. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures.Front. Immunol.20211268797510.3389/fimmu.2021.68797534276676
    [Google Scholar]
  33. HuangQ. LiuY. DuY. GarmireL.X. Evaluation of cell type annotation r packages on single-cell RNA-seq data.Genom Proteom Bioinform.202119226728110.1016/j.gpb.2020.07.00433359678
    [Google Scholar]
  34. WuH. Gonzalez VillalobosR. YaoX. ReillyD. ChenT. RankinM. MyshkinE. BreyerM.D. HumphreysB.D. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies.Cell Metab.202234710641078.e610.1016/j.cmet.2022.05.01035709763
    [Google Scholar]
  35. DongC. ZhaoL. LiuX. DangL. ZhangX. Single- cell analysis reveals landscape of endometrial cancer response to estrogen and identification of early diagnostic markers.PLoS One2024193e030112810.1371/journal.pone.030112838517922
    [Google Scholar]
  36. JinS. Guerrero-JuarezC.F. ZhangL. ChangI. RamosR. KuanC.H. MyungP. PlikusM.V. NieQ. Inference and analysis of cell-cell communication using CellChat.Nat. Commun.2021121108810.1038/s41467‑021‑21246‑933597522
    [Google Scholar]
  37. QiuX. MaoQ. TangY. WangL. ChawlaR. PlinerH.A. TrapnellC. Reversed graph embedding resolves complex single-cell trajectories.Nat. Methods2017141097998210.1038/nmeth.440228825705
    [Google Scholar]
  38. MorabitoS. ReeseF. RahimzadehN. MiyoshiE. SwarupV. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data.Cell Rep. Methods202336100498
    [Google Scholar]
  39. LiuY. YangX. GanJ. ChenS. XiaoZ.X. CaoY. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting.Nucleic Acids Res.202250W1W159W16410.1093/nar/gkac39435609983
    [Google Scholar]
  40. SinghS. MuradM.H. FumeryM. SedanoR. JairathV. PanaccioneR. SandbornW.J. MaC. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: A systematic review and network meta-analysis.Lancet Gastroenterol. Hepatol.20216121002101410.1016/S2468‑1253(21)00312‑534688373
    [Google Scholar]
  41. YuanY. FuM. LiN. YeM. Identification of immune infiltration and cuproptosis-related subgroups in Crohn’s disease.Front. Immunol.202213107427110.3389/fimmu.2022.107427136466876
    [Google Scholar]
  42. SunW. LiP. WangM. XuY. ShenD. ZhangX. LiuY. Molecular characterization of PANoptosis-related genes with features of immune dysregulation in systemic lupus erythematosus.Clin. Immunol.202325310966010.1016/j.clim.2023.10966037295541
    [Google Scholar]
  43. YangQ. SongW. RehemanH. WangD. QuJ. LiY. PANoptosis, an indicator of COVID-19 severity and outcomes.Brief. Bioinform.2024253bbae12410.1093/bib/bbae12438555477
    [Google Scholar]
  44. HeY. Q. DengJ. L. ZhouC. C. JiangS. G. ZhangF. TaoX. ChenW. S. Ursodeoxycholic acid alleviates sepsis-induced lung injury by blocking PANoptosis via STING pathway.Int. Immunopharmacol.2023125Pt B11116110.1016/j.intimp.2023.111161
    [Google Scholar]
  45. PanZ. LinH. FuY. ZengF. GuF. NiuG. FangJ. GuB. Identification of gene signatures associated with ulcerative colitis and the association with immune infiltrates in colon cancer.Front. Immunol.202314108689810.3389/fimmu.2023.108689836742294
    [Google Scholar]
  46. KeitaÅ.V. AlkaissiL.Y. HolmE.B. HeilS.D.S. ChassaingB. Darfeuille-MichaudA. McKayD.M. SöderholmJ.D. Enhanced E. coli LF82 translocation through the follicle-associated epithelium in Crohn’s disease is dependent on long polar fimbriae and CEACAM6 expression, and increases paracellular permeability.J. Crohn’s Colitis202014221622910.1093/ecco‑jcc/jjz14431393983
    [Google Scholar]
  47. ZhouR. QiuP. WangH. YangH. YangX. YeM. WangF. ZhaoQ. Identification of microRNA-16-5p and microRNA-21-5p in feces as potential noninvasive biomarkers for inflammatory bowel disease.Aging20211334634464610.18632/aging.20242833535181
    [Google Scholar]
  48. Todd KuenstnerJ. KaliM. WelchC. Whole exome sequencing of patients who resolved Crohn’s disease and complex regional pain syndrome following treatment for paratuberculosis.Gut Pathog.20191113410.1186/s13099‑019‑0311‑z31249631
    [Google Scholar]
  49. WuF. DassopoulosT. CopeL. MaitraA. BrantS.R. HarrisM.L. BaylessT.M. ParmigianiG. ChakravartiS. Genome-wide gene expression differences in Crohnʼs disease and ulcerative colitis from endoscopic pinch biopsies: Insights into distinctive pathogenesis.Inflamm. Bowel Dis.200713780782110.1002/ibd.2011017262812
    [Google Scholar]
  50. Krzystek-KorpackaM. DiakowskaD. BaniaJ. GamianA. Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: Implications for finding suitable normalizers for inflammatory bowel disease studies.Inflamm. Bowel Dis.20142071147115610.1097/MIB.000000000000006724859296
    [Google Scholar]
  51. HaoY. YangB. YangJ. ShiX. YangX. ZhangD. ZhaoD. YanW. ChenL. ZhengH. ZhangK. LiuX. ZBP1: A powerful innate immune sensor and double-edged sword in host immunity.Int. J. Mol. Sci.202223181022410.3390/ijms23181022436142136
    [Google Scholar]
  52. LiuX. TangA.L. ChenJ. GaoN. ZhangG. XiaoC. RIPK1 in the inflammatory response and sepsis: Recent advances, drug discovery and beyond.Front. Immunol.202314111410310.3389/fimmu.2023.111410337090690
    [Google Scholar]
  53. ZhouR. YingJ. QiuX. YuL. YueY. LiuQ. ShiJ. LiX. QuY. MuD. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy.Chin. Med. J.2022135121474148510.1097/CM9.000000000000201035261352
    [Google Scholar]
  54. ZhouS. YuJ. Crohn’s disease and breast cancer: A literature review of the mechanisms and treatment.Intern. Emerg. Med.20231851303131610.1007/s11739‑023‑03281‑037138170
    [Google Scholar]
  55. YinJ. HuT. XuL. ZhangL. ZhuJ. YeY. PangZ. Hsa_circRNA_103124 upregulation in Crohn’s disease promoted macrophage M1 polarization to maintain an inflammatory microenvironment via activation of the AKT2 and TLR4/NF-κB pathways.Int. Immunopharmacol.202312311076310.1016/j.intimp.2023.11076337567009
    [Google Scholar]
  56. ZhouL. ZhuL. WuX. HuS. ZhangS. NingM. YuJ. ChenM. Decreased TMIGD1 aggravates colitis and intestinal barrier dysfunction via the BANF1-NF-κB pathway in Crohn’s disease.BMC Med.202321128710.1186/s12916‑023‑02989‑237542259
    [Google Scholar]
  57. SongX. WenH. ZuoL. GengZ. NianJ. WangL. JiangY. TaoJ. ZhuZ. WuX. WangZ. ZhangX. YuL. ZhaoH. XiangP. LiJ. ShenL. HuJ. Epac-2 ameliorates spontaneous colitis in Il-10 −/− mice by protecting the intestinal barrier and suppressing NF-κB/MAPK signalling.J. Cell. Mol. Med.202226121622710.1111/jcmm.1707734862717
    [Google Scholar]
  58. Reza LahimchiM. EslamiM. YousefiB. Interleukin-35 and interleukin-37 anti-inflammatory effect on inflammatory bowel disease: Application of non-coding RNAs in IBD therapy.Int. Immunopharmacol.202311710993210.1016/j.intimp.2023.10993237012889
    [Google Scholar]
  59. ZhangL. LinY. XuX. LiuH. WangX. PanJ. Telotristat Etiprate alleviates rheumatoid arthritis by targeting LGALS3 and affecting MAPK signaling.Intractable Rare Dis. Res.2023121455710.5582/irdr.2022.0112136873667
    [Google Scholar]
  60. ParkW.S. JungW.K. ParkS.K. HeoK.W. KangM.S. ChoiY.H. KimG.Y. ParkS.G. SeoS.K. YeaS.S. LiuK.H. ShimE.B. KimD.J. HerM. ChoiI.W. Expression of galectin-9 by IFN-γ stimulated human nasal polyp fibroblasts through MAPK, PI3K, and JAK/STAT signaling pathways.Biochem. Biophys. Res. Commun.2011411225926410.1016/j.bbrc.2011.06.11021723260
    [Google Scholar]
  61. LinS.Y. ChangC.L. LiouK.T. KaoY.K. WangY.H. ChangC.C. KuoT.B.J. HuangH.T. YangC.C.H. LiawC.C. ShenY.C. The protective role of Achyranthes aspera extract against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and PANoptosis.J. Ethnopharmacol.2024319Pt 111709710.1016/j.jep.2023.11709737648176
    [Google Scholar]
  62. VenyM. Fernández-ClotetA. PanésJ. Controlling leukocyte trafficking in IBD.Pharmacol. Res.202015910505010.1016/j.phrs.2020.10505032598943
    [Google Scholar]
  63. GetterT. MargalitR. KahremanyS. LevyL. BlumE. KhazanovN. Keshet-LevyN.Y. TamirT.Y. Ben MajorM. LahavR. ZilberS. SenderowitzH. BradfieldP. ImhofB.A. AlpertE. GruzmanA. Novel inhibitors of leukocyte transendothelial migration.Bioorg. Chem.20199210325010.1016/j.bioorg.2019.10325031580982
    [Google Scholar]
  64. LeeS. KarkiR. WangY. NguyenL.N. KalathurR.C. KannegantiT.D. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence.Nature2021597787641541910.1038/s41586‑021‑03875‑834471287
    [Google Scholar]
  65. SaezA. Herrero-FernandezB. Gomez-BrisR. Sánchez-MartinezH. Gonzalez-GranadoJ.M. Pathophysiology of inflammatory bowel disease: Innate immune system.Int. J. Mol. Sci.2023242152610.3390/ijms2402152636675038
    [Google Scholar]
  66. CordesF. FoellD. DingJ.N. VargaG. BettenworthD. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease.World J. Gastroenterol.202026284055407510.3748/wjg.v26.i28.405532821070
    [Google Scholar]
  67. WoznickiJ.A. SainiN. FloodP. RajaramS. LeeC.M. StamouP. SkowyraA. Bustamante-GarridoM. RegazzoniK. CrawfordN. McDadeS.S. LongleyD.B. Aza-BlancP. ShanahanF. ZulquernainS.A. McCarthyJ. MelgarS. McRaeB.L. NallyK. TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells.Cell Death Dis.2021121086410.1038/s41419‑021‑04151‑334556638
    [Google Scholar]
  68. SalasA. Hernandez-RochaC. DuijvesteinM. FaubionW. McGovernD. VermeireS. VetranoS. Vande CasteeleN. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease.Nat. Rev. Gastroenterol. Hepatol.202017632333710.1038/s41575‑020‑0273‑032203403
    [Google Scholar]
  69. Herrera-deGuiseC. Serra-RuizX. LastiriE. BorruelN. JAK inhibitors: A new dawn for oral therapies in inflammatory bowel diseases.Front. Med.202310108909910.3389/fmed.2023.108909936936239
    [Google Scholar]
  70. LuJ. LiF. YeM. PANoptosis and autophagy-related molecular signature and immune landscape in ulcerative colitis: Integrated analysis and experimental validation.J. Inflamm. Res.2024173225324510.2147/JIR.S45586238800594
    [Google Scholar]
  71. ChuY.D. ChengL.C. LimS.N. LaiM.W. YehC.T. LinW.R. Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect.Cell Death Dis.2023141066010.1038/s41419‑023‑06187‑z37816733
    [Google Scholar]
  72. YangT. WangH. LiM. YangL. HanY. LiuC. ZhangB. WuM. WangG. ZhangZ. ZhangW. HuangJ. ZhangH. CaoT. ChenP. ZhangW. CD151 promotes colorectal cancer progression by a crosstalk involving CEACAM6, LGR5 and Wnt signaling via TGFβ1.Int. J. Biol. Sci.202117384886010.7150/ijbs.5365733767593
    [Google Scholar]
  73. LouT. ZhangL. JinZ. MiaoC. WangJ. KeK. miR-455-5p enhances 5-fluorouracil sensitivity in colorectal cancer cells by targeting PIK3R1 and DEPDC1.Open Med.202217184785610.1515/med‑2022‑047435582195
    [Google Scholar]
  74. LiuH. JiangX. ZhangM. PanY. YuY. ZhangS. MaX. LiQ. ChenK. Association of CASP9, CASP10 gene polymorphisms and tea drinking with colorectal cancer risk in the Han Chinese population.J. Zhejiang Univ. Sci. B2013141475710.1631/jzus.B120021823303631
    [Google Scholar]
  75. JiangX. YangL. ChenG. FengX. LiuY. GaoQ. MaiM. ChenC.Y.C. YeS. YangZ. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation.Cancer Lett.202458421660010.1016/j.canlet.2023.21660038159835
    [Google Scholar]
  76. HaY.J. TakK.H. KimC.W. RohS.A. ChoiE.K. ChoD.H. KimJ.H. KimS.K. KimS.Y. KimY.S. KimJ.C. PSMB8 as a candidate marker of responsiveness to preoperative radiation therapy in rectal cancer patients.Int. J. Radiat. Oncol. Biol. Phys.20179851164117310.1016/j.ijrobp.2017.03.02328721901
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330894241008060309
Loading
/content/journals/cmc/10.2174/0109298673330894241008060309
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Crohn's disease; leukocyte activation; machine learning; MAPK; NF-kappaB; PANoptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test