Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

We aimed to develop a macrophage signature for predicting clinical outcomes and immunotherapy benefits in cholangiocarcinoma.

Background

Macrophages are potent immune effector cells that can change phenotype in different environments to exert anti-tumor and anti-tumor functions. The role of macrophages in the prognosis and therapy benefits of cholangiocarcinoma was not fully clarified.

Objective

The objective of this study is to develop a prognostic model for cholangiocarcinoma.

Methods

The macrophage-related signature (MRS) was developed using 10 machine learning methods with TCGA, GSE89748 and GSE107943 datasets. Several indicators (TIDE score, TMB score and MATH score) and two immunotherapy datasets (IMvigor210 and GSE91061) were used to investigate the performance of MRS in predicting the benefits of immunotherapy.

Results

The Lasso + CoxBoost method's MRS was considered a robust and stable model that demonstrated good accuracy in predicting the clinical outcome of patients with cholangiocarcinoma; the AUC of the 2-, 3-, and 4-year ROC curves in the TCGA dataset were 0.965, 0.957, and 1.000. Moreover, MRS acted as an independent risk factor for the clinical outcome of cholangiocarcinoma cases. Cholangiocarcinoma cases with higher MRS scores are correlated with a higher TIDE score, higher tumor escape score, higher MATH score, and lower TMB score. Further analysis suggested high MRS score indicated a higher gene set score correlated with cancer-related hallmarks.

Conclusion

With regard to cholangiocarcinoma, the current study created a machine learning-based MRS that served as an indication for forecasting the prognosis and therapeutic advantages of individual cases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673342462241010072026
2024-10-24
2025-10-18
Loading full text...

Full text loading...

References

  1. IlyasS.I. KhanS.A. HallemeierC.L. KelleyR.K. GoresG.J. Cholangiocarcinoma - evolving concepts and therapeutic strategies.Nat. Rev. Clin. Oncol.20181529511110.1038/nrclinonc.2017.15728994423
    [Google Scholar]
  2. RazumilavaN. GoresG.J. Cholangiocarcinoma.Lancet201438399352168217910.1016/S0140‑6736(13)61903‑024581682
    [Google Scholar]
  3. BanalesJ.M. MarinJ.J.G. LamarcaA. RodriguesP.M. KhanS.A. RobertsL.R. CardinaleV. CarpinoG. AndersenJ.B. BraconiC. CalvisiD.F. PerugorriaM.J. FabrisL. BoulterL. MaciasR.I.R. GaudioE. AlvaroD. GradiloneS.A. StrazzaboscoM. MarzioniM. CoulouarnC. FouassierL. RaggiC. InvernizziP. MertensJ.C. MoncsekA. IlyasS.I. HeimbachJ. KoerkampB.G. BruixJ. FornerA. BridgewaterJ. ValleJ.W. GoresG.J. Cholangiocarcinoma 2020: The next horizon in mechanisms and management.Nat. Rev. Gastroenterol. Hepatol.202017955758810.1038/s41575‑020‑0310‑z32606456
    [Google Scholar]
  4. BlechaczB. KomutaM. RoskamsT. GoresG.J. Clinical diagnosis and staging of cholangiocarcinoma.Nat. Rev. Gastroenterol. Hepatol.20118951252210.1038/nrgastro.2011.13121808282
    [Google Scholar]
  5. BanalesJ.M. CardinaleV. CarpinoG. MarzioniM. AndersenJ.B. InvernizziP. LindG.E. FolseraasT. ForbesS.J. FouassierL. GeierA. CalvisiD.F. MertensJ.C. TraunerM. BenedettiA. MaroniL. VaqueroJ. MaciasR.I.R. RaggiC. PerugorriaM.J. GaudioE. BobergK.M. MarinJ.J.G. AlvaroD. Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the european network for the study of cholangiocarcinoma (ENS-CCA).Nat. Rev. Gastroenterol. Hepatol.201613526128010.1038/nrgastro.2016.5127095655
    [Google Scholar]
  6. AndersenJ.B. SpeeB. BlechaczB.R. AvitalI. KomutaM. BarbourA. ConnerE.A. GillenM.C. RoskamsT. RobertsL.R. FactorV.M. ThorgeirssonS.S. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.Gastroenterology2012142410211031.e1510.1053/j.gastro.2011.12.00522178589
    [Google Scholar]
  7. KrasinskasA.M. Cholangiocarcinoma.Surg. Pathol. Clin.201811240342910.1016/j.path.2018.02.00529751883
    [Google Scholar]
  8. YunnaC. MengruH. LeiW. WeidongC. Macrophage M1/M2 polarization.Eur. J. Pharmacol.202087717309010.1016/j.ejphar.2020.17309032234529
    [Google Scholar]
  9. VarolC. MildnerA. JungS. Macrophages: Development and tissue specialization.Annu. Rev. Immunol.201533164367510.1146/annurev‑immunol‑032414‑11222025861979
    [Google Scholar]
  10. GuilliamsM. ScottC.L. Liver macrophages in health and disease.Immunity20225591515152910.1016/j.immuni.2022.08.00236103850
    [Google Scholar]
  11. RuffellB. CoussensL.M. Macrophages and therapeutic resistance in cancer.Cancer Cell201527446247210.1016/j.ccell.2015.02.01525858805
    [Google Scholar]
  12. NielsenS.R. SchmidM.C. Macrophages as key drivers of cancer progression and metastasis.Mediators Inflamm.2017201711110.1155/2017/962476028210073
    [Google Scholar]
  13. ZhouZ. WangP. SunR. LiJ. HuZ. XinH. LuoC. ZhouJ. FanJ. ZhouS. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3.J. Immunother. Cancer202193e00194610.1136/jitc‑2020‑00194633692217
    [Google Scholar]
  14. RuffoloL.I. JacksonK.M. KuhlersP.C. DaleB.S. Figueroa GuillianiN.M. UllmanN.A. BurchardP.R. QinS.S. JuvilerP.G. KeilsonJ.M. MorrisonA.B. GeorgerM. JewellR. CalviL.M. NyweningT.M. O’DellM.R. HezelA.F. De Las CasasL. LesinskiG.B. YehJ.J. Hernandez-AlejandroR. BeltB.A. LinehanD.C. GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity.Gut20227171386139810.1136/gutjnl‑2021‑32410934413131
    [Google Scholar]
  15. CassettaL. PollardJ.W. A timeline of tumour-associated macrophage biology.Nat. Rev. Cancer202323423825710.1038/s41568‑022‑00547‑136792751
    [Google Scholar]
  16. QianB.Z. PollardJ.W. Macrophage diversity enhances tumor progression and metastasis.Cell20101411395110.1016/j.cell.2010.03.01420371344
    [Google Scholar]
  17. LiangY. TanY. GuanB. GuoB. XiaM. LiJ. ShiY. YuZ. ZhangQ. LiuD. YangX. HaoJ. GongY. ShakeelM. ZhouL. CiW. LiX. Single-cell atlases link macrophages and CD8 + T-cell subpopulations to disease progression and immunotherapy response in urothelial carcinoma.Theranostics202212187745775910.7150/thno.7728136451860
    [Google Scholar]
  18. QiJ. SunH. ZhangY. WangZ. XunZ. LiZ. DingX. BaoR. HongL. JiaW. FangF. LiuH. ChenL. ZhongJ. ZouD. LiuL. HanL. GinhouxF. LiuY. YeY. SuB. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer.Nat. Commun.2022131174210.1038/s41467‑022‑29366‑635365629
    [Google Scholar]
  19. ZhangH. LiuL. LiuJ. DangP. HuS. YuanW. SunZ. LiuY. WangC. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers.Mol. Cancer20232215810.1186/s12943‑023‑01725‑x36941614
    [Google Scholar]
  20. BalarA.V. GalskyM.D. RosenbergJ.E. PowlesT. PetrylakD.P. BellmuntJ. LoriotY. NecchiA. Hoffman-CensitsJ. Perez-GraciaJ.L. DawsonN.A. van der HeijdenM.S. DreicerR. SrinivasS. RetzM.M. JosephR.W. DrakakiA. VaishampayanU.N. SridharS.S. QuinnD.I. DuránI. ShafferD.R. EiglB.J. GrivasP.D. YuE.Y. LiS. KadelE.E.III BoydZ. BourgonR. HegdeP.S. MariathasanS. ThåströmA. AbidoyeO.O. FineG.D. BajorinD.F. IMvigor210 Study Group Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial.Lancet201738910064677610.1016/S0140‑6736(16)32455‑227939400
    [Google Scholar]
  21. RiazN. HavelJ.J. MakarovV. DesrichardA. UrbaW.J. SimsJ.S. HodiF.S. Martín-AlgarraS. MandalR. SharfmanW.H. BhatiaS. HwuW.J. GajewskiT.F. SlingluffC.L.Jr ChowellD. KendallS.M. ChangH. ShahR. KuoF. MorrisL.G.T. SidhomJ.W. SchneckJ.P. HorakC.E. WeinholdN. ChanT.A. Tumor and microenvironment evolution during immunotherapy with nivolumab.Cell20171714934949.e1610.1016/j.cell.2017.09.02829033130
    [Google Scholar]
  22. ZhangY. ParmigianiG. JohnsonW.E. ComBat-seq: Batch effect adjustment for RNA-seq count data.NAR Genom. Bioinform.202023lqaa07810.1093/nargab/lqaa07833015620
    [Google Scholar]
  23. SunY. WuL. ZhongY. ZhouK. HouY. WangZ. ZhangZ. XieJ. WangC. ChenD. HuangY. WeiX. ShiY. ZhaoZ. LiY. GuoZ. YuQ. XuL. VolpeG. QiuS. ZhouJ. WardC. SunH. YinY. XuX. WangX. EstebanM.A. YangH. WangJ. DeanM. ZhangY. LiuS. YangX. FanJ. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma.Cell20211842404421.e1610.1016/j.cell.2020.11.04133357445
    [Google Scholar]
  24. KorsunskyI. MillardN. FanJ. SlowikowskiK. ZhangF. WeiK. BaglaenkoY. BrennerM. LohP. RaychaudhuriS. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods201916121289129610.1038/s41592‑019‑0619‑031740819
    [Google Scholar]
  25. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  26. SatijaR. FarrellJ.A. GennertD. SchierA.F. RegevA. Spatial reconstruction of single-cell gene expression data.Nat. Biotechnol.201533549550210.1038/nbt.319225867923
    [Google Scholar]
  27. ZhangW. WangS. Machine learning developed an intratumor heterogeneity signature for predicting prognosis and immunotherapy benefits in skin cutaneous melanoma.Melanoma Res.202434321522410.1097/CMR.000000000000095738364052
    [Google Scholar]
  28. DingD. WangL. ZhangY. ShiK. ShenY. Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma.Transl. Oncol.20233810178410.1016/j.tranon.2023.10178437722290
    [Google Scholar]
  29. LiuZ. LiuL. WengS. GuoC. DangQ. XuH. WangL. LuT. ZhangY. SunZ. HanX. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.Nat. Commun.202213181610.1038/s41467‑022‑28421‑635145098
    [Google Scholar]
  30. LiZ. GuoM. LinW. HuangP. Machine learning-based integration develops a macrophage-related index for predicting prognosis and immunotherapy response in lung adenocarcinoma.Arch. Med. Res.202354710289710.1016/j.arcmed.2023.10289737865004
    [Google Scholar]
  31. ChenX. SunB. ChenY. XiaoY. SongY. LiuS. PengC. Machine learning developed an intratumor heterogeneity signature for predicting prognosis and immunotherapy benefits in cholangiocarcinoma.Transl. Oncol.20244310190510.1016/j.tranon.2024.10190538387388
    [Google Scholar]
  32. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa40732442275
    [Google Scholar]
  33. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  34. FuJ. LiK. ZhangW. WanC. ZhangJ. JiangP. LiuX.S. Large-scale public data reuse to model immunotherapy response and resistance.Genome Med.20201212110.1186/s13073‑020‑0721‑z32102694
    [Google Scholar]
  35. SungW.W.Y. ChowJ.C.H. ChoW.C.S. Tumor mutational burden as a tissue-agnostic biomarker for cancer immunotherapy.Expert Rev. Clin. Pharmacol.202114214114310.1080/17512433.2021.186579733322961
    [Google Scholar]
  36. YangW. SoaresJ. GreningerP. EdelmanE.J. LightfootH. ForbesS. BindalN. BeareD. SmithJ.A. ThompsonI.R. RamaswamyS. FutrealP.A. HaberD.A. StrattonM.R. BenesC. McDermottU. GarnettM.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.Nucleic Acids Res.201341Database issueD955D96123180760
    [Google Scholar]
  37. LinA. YanW.H. HLA-G/ILTs targeted solid cancer immunotherapy: Opportunities and challenges.Front. Immunol.20211269867710.3389/fimmu.2021.69867734276691
    [Google Scholar]
  38. LinA. ZhangJ. LuoP. Crosstalk between the msi status and tumor microenvironment in colorectal cancer.Front. Immunol.202011203910.3389/fimmu.2020.0203932903444
    [Google Scholar]
  39. MaD. JiangY.Z. LiuX.Y. LiuY.R. ShaoZ.M. Clinical and molecular relevance of mutant-allele tumor heterogeneity in breast cancer.Breast Cancer Res. Treat.20171621394810.1007/s10549‑017‑4113‑z28093659
    [Google Scholar]
  40. StockingJC TaylorSL FanS WingertT DrakeC AldrichJM OngMK AminAN MarmorRA GodatL. A least absolute shrinkage and selection operator-derived predictive model for postoperative respiratory failure in a heterogeneous adult elective surgery patient population.CHEST Crit Care.20231310002510.1016/j.chstcc.2023.100025
    [Google Scholar]
  41. BinderH. AllignolA. SchumacherM. BeyersmannJ. Boosting for high-dimensional time-to-event data with competing risks.Bioinformatics200925789089610.1093/bioinformatics/btp08819244389
    [Google Scholar]
  42. PanS. HuY. HuM. XuY. ChenM. DuC. CuiJ. ZhengP. LaiJ. ZhangY. BaiJ. JiangP. ZhuJ. HeY. WangJ. [Corrigendum] S100A8 facilitates cholangiocarcinoma metastasis via upregulation of VEGF through TLR4/NF-κB pathway activation.Int. J. Oncol.202056110111210.3892/ijo.2020.497731746424
    [Google Scholar]
  43. BaoX. LiQ. ChenJ. ChenD. YeC. DaiX. WangY. LiX. RongX. ChengF. JiangM. ZhuZ. DingY. SunR. LiuC. HuangL. JinY. LiB. LuJ. WuW. GuoY. FuW. LangleyS.R. TanoV. FangW. GuoT. ShengJ. ZhaoP. RuanJ. Molecular subgroups of intrahepatic cholangiocarcinoma discovered by single- cell RNA sequencing–assisted multiomics analysis.Cancer Immunol. Res.202210781182810.1158/2326‑6066.CIR‑21‑110135604302
    [Google Scholar]
  44. LiuL. WuJ. YanY. ChengS. YuS. WangY. DERL2 (derlin 2) stabilizes BAG6 (BAG cochaperone 6) in chemotherapy resistance of cholangiocarcinoma.J. Physiol. Biochem.202337815698
    [Google Scholar]
  45. NishidaN. KudoM. Genetic/epigenetic alteration and tumor immune microenvironment in intrahepatic cholangiocarcinoma: Transforming the immune microenvironment with molecular-targeted agents.Liver Cancer202413213614910.1159/00053444338751556
    [Google Scholar]
  46. Ruiz-CorderoR. DevineW.P. Targeted therapy and checkpoint immunotherapy in lung cancer.Surg. Pathol. Clin.2020131173310.1016/j.path.2019.11.00232005431
    [Google Scholar]
  47. ChaJ.H. ChanL.C. SongM.S. HungM.C. New approaches on cancer immunotherapy.Cold Spring Harb. Perspect. Med.2020108a03686310.1101/cshperspect.a03686331615865
    [Google Scholar]
  48. BergmanP.J. Cancer immunotherapy.Vet. Clin. North Am. Small Anim. Pract.202454344146810.1016/j.cvsm.2023.12.00238158304
    [Google Scholar]
  49. KennedyL.B. SalamaA.K.S. A review of cancer immunotherapy toxicity.CA Cancer J. Clin.20207028610410.3322/caac.2159631944278
    [Google Scholar]
  50. O’DonnellJ.S. TengM.W.L. SmythM.J. Cancer immunoediting and resistance to T cell-based immunotherapy.Nat. Rev. Clin. Oncol.201916315116710.1038/s41571‑018‑0142‑830523282
    [Google Scholar]
  51. LiuL. BaiX. WangJ. TangX.R. WuD.H. DuS.S. DuX.J. ZhangY.W. ZhuH.B. FangY. GuoZ.Q. ZengQ. GuoX.J. LiuZ. DongZ.Y. Combination of TMB and CNA stratifies prognostic and predictive responses to immunotherapy across metastatic cancer.Clin. Cancer Res.201925247413742310.1158/1078‑0432.CCR‑19‑055831515453
    [Google Scholar]
  52. SeoI. LeeH.W. ByunS.J. ParkJ.Y. MinH. LeeS.H. LeeJ.S. KimS. BaeS.U. Neoadjuvant chemoradiation alters biomarkers of anticancer immunotherapy responses in locally advanced rectal cancer.J. Immunother. Cancer202193e00161010.1136/jitc‑2020‑00161033692216
    [Google Scholar]
  53. LinW. ChenY. WuB. chenY. LiZ. Identification of the pyroptosis-related prognostic gene signature and the associated regulation axis in lung adenocarcinoma.Cell Death Discov.20217116110.1038/s41420‑021‑00557‑234226539
    [Google Scholar]
  54. WangCL LiuXY WangYH ZhangZ WangZD ZhouGQ MCM2 promotes the proliferation, migration and invasion of cholangiocarcinoma cells by reducing the p53 signaling pathway.Yi Chuan.2022443230244
    [Google Scholar]
  55. XiongF. LiuW. WangX. WuG. WangQ. GuoT. HuangW. WangB. ChenY. HOXA5 inhibits the proliferation of extrahepatic cholangiocarcinoma cells by enhancing MXD1 expression and activating the p53 pathway.Cell Death Dis.202213982910.1038/s41419‑022‑05279‑636167790
    [Google Scholar]
  56. YanX. LiZ. ChenH. YangF. TianQ. ZhangY. Photodynamic therapy inhibits cancer progression and induces ferroptosis and apoptosis by targeting P53/GPX4/SLC7A11 signaling pathways in cholangiocarcinoma.Photodiagn. Photodyn. Ther.20244710410410.1016/j.pdpdt.2024.10410438679154
    [Google Scholar]
  57. YouZ. XuJ. LiB. YeH. ChenL. LiuY. XiongX. The mechanism of ATF3 repression of epithelial-mesenchymal transition and suppression of cell viability in cholangiocarcinoma via p53 signal pathway.J. Cell. Mol. Med.20192332184219310.1111/jcmm.1413230648816
    [Google Scholar]
  58. ZengC. LinJ. ZhangK. OuH. ShenK. LiuQ. WeiZ. DongX. ZengX. ZengL. WangW. YaoJ. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/ SLC7A11 / GPX4 signaling.Cancer Sci.2022113113766377510.1111/cas.1553135968603
    [Google Scholar]
  59. LiX. YuC. LuoY. LinJ. WangF. SunX. GaoY. TanW. XiaQ. KongX. Aldolase a enhances intrahepatic cholangiocarcinoma proliferation and invasion through promoting glycolysis.Int. J. Biol. Sci.20211771782179410.7150/ijbs.5906833994862
    [Google Scholar]
  60. XuX. ChenY. ShaoS. WangJ. ShanJ. WangY. WangY. ChangJ. ZhouT. ChenR. LiuS. LiC. LiC. LiX. USP21 deubiquitinates and stabilizes HSP90 and ENO1 to promote aerobic glycolysis and proliferation in cholangiocarcinoma.Int. J. Biol. Sci.20242041492150810.7150/ijbs.9077438385089
    [Google Scholar]
  61. CaiJ. CuiZ. ZhouJ. ZhangB. LuR. DingY. HuH. METTL3 promotes glycolysis and cholangiocarcinoma progression by mediating the m6A modification of AKR1B10.Cancer Cell Int.202222138510.1186/s12935‑022‑02809‑236476503
    [Google Scholar]
  62. SunJ. FengM. ZouH. MaoY. YuW. Circ_0000284 facilitates the growth, metastasis and glycolysis of intrahepatic cholangiocarcinoma through miR-152-3p-mediated PDK1 expression.Histol. Histopathol.202338101129114336331285
    [Google Scholar]
  63. VanarojP. ChaijaroenkulW. Na-BangchangK. Notch signaling in the pathogenesis, progression and identification of potential targets for cholangiocarcinoma (Review).Mol. Clin. Oncol.20221636610.3892/mco.2022.249935154706
    [Google Scholar]
  64. CiglianoA. WangJ. ChenX. CalvisiD.F. Role of the Notch signaling in cholangiocarcinoma.Expert Opin. Ther. Targets201721547148310.1080/14728222.2017.131084228326864
    [Google Scholar]
  65. Gil-GarcíaB. BaladrónV. The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma.Biol. Cell20161082294010.1111/boc.20150002926621221
    [Google Scholar]
  66. HuS. MolinaL. TaoJ. LiuS. HassanM. SinghS. PoddarM. BellA. SiaD. OertelM. RaemanR. Nejak-BowenK. SinghiA. LuoJ. MongaS.P. KoS. NOTCH-YAP1/TEAD-DNMT1 axis drives hepatocyte reprogramming into intrahepatic cholangiocarcinoma.Gastroenterology2022163244946510.1053/j.gastro.2022.05.00735550144
    [Google Scholar]
  67. KawaguchiK. KanekoS. Notch signaling and liver cancer.Adv. Exp. Med. Biol.20211287698010.1007/978‑3‑030‑55031‑8_633034027
    [Google Scholar]
  68. ChenY. XuX. WangY. ZhangY. ZhouT. JiangW. WangZ. ChangJ. LiuS. ChenR. ShanJ. WangJ. WangY. LiC. LiX. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation.J. Exp. Clin. Cancer Res.202342126510.1186/s13046‑023‑02842‑737821935
    [Google Scholar]
  69. BhuriaV. XingJ. ScholtaT. BuiK.C. NguyenM.L.T. MalekN.P. BozkoP. PlentzR.R. Hypoxia induced sonic hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma.Exp. Cell Res.2019385211167110.1016/j.yexcr.2019.11167131634481
    [Google Scholar]
  70. PanY. ZhouY. ShenY. XuL. LiuH. ZhangN. HuangT. MengK. LiuY. WangL. BaiG. ChenQ. ZhuY. ZouX. WangS. WangZ. WangL. Hypoxia stimulates pygb enzymatic activity to promote glycogen metabolism and cholangiocarcinoma progression.Cancer Res.202484223803381710.1158/0008‑5472.CAN‑24‑008839163511
    [Google Scholar]
  71. SunQ. WangH. XiaoB. XueD. WangG. Development and validation of a 6-gene hypoxia-related prognostic signature for cholangiocarcinoma.Front. Oncol.20221295436610.3389/fonc.2022.95436635924146
    [Google Scholar]
  72. ChenC. LiH. WangX. WangL. ZengQ. Lnc-LFAR1 affects intrahepatic cholangiocarcinoma proliferation, invasion, and EMT by regulating the TGFβ/Smad signaling pathway.Int. J. Clin. Exp. Pathol.20191272455246131934072
    [Google Scholar]
  73. JaideeR. KukongviriyapanV. SenggunpraiL. PrawanA. JusakulA. LaphanuwatP. KongpetchS. Inhibition of FGFR2 enhances chemosensitivity to gemcitabine in cholangiocarcinoma through the AKT/mTOR and EMT signaling pathways.Life Sci.202229612042710.1016/j.lfs.2022.12042735218764
    [Google Scholar]
  74. LiangS. GuoH. MaK. LiX. WuD. WangY. WangW. ZhangS. CuiY. LiuY. SunL. ZhangB. XinM. ZhangN. ZhouH. LiuY. WangJ. LiuL. A PLCB1–PI3K–AKT signaling axis activates emt to promote cholangiocarcinoma progression.Cancer Res.202181235889590310.1158/0008‑5472.CAN‑21‑153834580062
    [Google Scholar]
  75. WuG. FanF. HuP. WangC. AGO1 enhances the proliferation and invasion of cholangiocarcinoma via the EMT-associated TGF-β signaling pathway.Am. J. Transl. Res.20201262890290232655817
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673342462241010072026
Loading
/content/journals/cmc/10.2174/0109298673342462241010072026
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test