Skip to content
2000
image of Amide Derivative of Arjunolic Acid TA-1,4-BiP Enhances ROS- mediated Apoptosis in Colorectal Cancer Cells

Abstract

Introduction

Arjunolic acid, a well-known natural product with various medicinal properties, was isolated from the heartwood of . Various amides of arjunolic acid were synthesized using different aryl and cyclic amines, characterized, and evaluated for their anti-cancer activities at the National Cancer Institute (NCI).

Method

All the derivatives were active against all the cell lines of NCI compared to the parent molecule arjunolic acid. Eight compounds were selected for dose-dependent activity based on the preliminary results. IC of selected eight compounds was evaluated. Based on IC values against various cell lines, compound was further investigated to understand the mechanism of action against HCT-116 and CT-26 colon cancer cell lines.

Result

Mechanistic studies of compound in these two cell lines demonstrated that compound arrested the colon cancer cells at the G/G phase. Compound -treated cells were also found to have an increased percentage of ROS compared to untreated cells. It induced apoptosis in both these cell lines.

Conclusion

Compound 2l was found to inhibit cancer growth in the mice model and was very effective against all the cancer cell lines. Therefore, it could be used for further development to treat colon cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348718250109142630
2025-01-27
2025-09-08
Loading full text...

Full text loading...

References

  1. Labianca R. Beretta G. Gatta G. de Braud F. Wils J. Colon cancer. Crit. Rev. Oncol. Hematol. 2004 51 2 145 170 10.1016/j.critrevonc.2004.03.003 15276177
    [Google Scholar]
  2. Rahier N.J. Thomas C.J. Hecht S.M. Camptothecin and its analogs, Anticancer Agents from Nat. Prod 2005 5 22 10.1201/b11185‑3
    [Google Scholar]
  3. Li F. Jiang T. Li Q. Ling X. Camptothecin analogues and their molecular targets. Am. J. Cancer Res. 2017 7 2350 2394 29312794
    [Google Scholar]
  4. Klusa J. Arimondo P.B. David-Cordonnier M.H. Bailly C. Camptothecins for drug design, Cancer cell death and gene targeting. Elsevier Inc. 2007 10.1016/B978‑012369448‑5.50011‑2
    [Google Scholar]
  5. Venditto V.J. Eric E. Simanek, cancer therapies utilizing the camptothecins: A review of in vivo literature. Biophys. Chem. 2005 257 2432 2437 10.1021/mp900243b.Cancer
    [Google Scholar]
  6. Cragg G.M. Newman D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005 100 1-2 72 79 10.1016/j.jep.2005.05.011 16009521
    [Google Scholar]
  7. Sati P. Sharma E. Dhyani P. Attri D.C. Rana R. Kiyekbayeva L. Büsselberg D. Samuel S.M. Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: Comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur. J. Med. Res. 2024 29 1 90 10.1186/s40001‑024‑01657‑2 38291541
    [Google Scholar]
  8. Vardanyan R. Hruby V. Vardanyan R. Hruby V. Antineoplastic agents. Synthesis of Best-Seller Drugs Elsevier 2016 495 547 10.1016/B978‑0‑12‑411492‑0.00028‑6
    [Google Scholar]
  9. Prakash O. Kumar A. Kumar P. Ajeet A. Anticancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci. 2013 1 6 104 115 10.12691/ajps‑1‑6‑1
    [Google Scholar]
  10. Mukherjee A.K. Basu S. Sarkar N. Ghosh A.C. Advances in cancer therapy with plant based natural products. Curr. Med. Chem. 2001 8 12 1467 1486 10.2174/0929867013372094
    [Google Scholar]
  11. Iqbal J. Abbasi B.A. Mahmood T. Kanwal S. Ali B. Shah S.A. Khalil A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017 7 12 1129 1150 10.1016/j.apjtb.2017.10.016
    [Google Scholar]
  12. Bishayee A. Ahmed S. Brankov N. Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. 2011 16 1 980 996 10.2741/3730 21196213
    [Google Scholar]
  13. Laszczyk M. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009 75 15 1549 1560 10.1055/s‑0029‑1186102 19742422
    [Google Scholar]
  14. Parikh N.R. Mandal A. Bhatia D. Siveen K.S. Sethi G. Bishayee A. Oleanane triterpenoids in the prevention and therapy of breast cancer: Current evidence and future perspectives. Phytochem. Rev. 2014 13 4 793 810 10.1007/s11101‑014‑9337‑5 25395898
    [Google Scholar]
  15. Kumar V. Sharma N. Sourirajan A. Khosla P.K. Dev K. Comparative evaluation of antimicrobial and antioxidant potential of ethanolic extract and its fractions of bark and leaves of Terminalia arjuna from north-western Himalayas, India. J. Tradit. Complement. Med. 2018 8 1 100 106 10.1016/j.jtcme.2017.04.002 29321996
    [Google Scholar]
  16. Singh V.K. Soni N. Efficacy and advancement of terminalia arjuna in indian herbal drug research: A review. Trends Appl. Sci. Res. 2019 14 4 233 242 10.3923/tasr.2019.233.242
    [Google Scholar]
  17. Md S. Phytochemistry and pharmacological potential of Terminalia arjuna L. Med. Plant Res. 2013 3 70 77 10.5376/mpr.2013.03.0010
    [Google Scholar]
  18. Amalraj A. Gopi S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med. 2017 7 1 65 78 10.1016/j.jtcme.2016.02.003 28053890
    [Google Scholar]
  19. Jokar A. Masoomi F. Sadeghpour O. Nassiri-Toosi M. Hamedi S. Potential therapeutic applications for Terminalia chebula in Iranian traditional medicine. J. Tradit. Chin. Med. 2016 36 2 250 254 10.1016/S0254‑6272(16)30035‑8 27400482
    [Google Scholar]
  20. Chakradhari S. Rajhans K.P. Patel K.S. Towett E.K. Martín-Gil J. Martín-Ramos P. Nutritional and spectral characteristics of terminalia plants. European J. Med. Plants 2019 27 1 13 10.9734/ejmp/2019/v27i430120
    [Google Scholar]
  21. Dwivedi S. Jauhari R. Beneficial effects of Terminalia arjuna in coronary artery disease. Indian Heart J. 1997 49 5 507 510 9505018
    [Google Scholar]
  22. Dwivedi S. Chopra D. Revisiting Terminalia arjuna-an ancient cardiovascular drug. J. Tradit. Complement. Med. 2014 4 4 224 231 10.4103/2225‑4110.139103 25379463
    [Google Scholar]
  23. Jain S. Yadav P.P. Gill V. Vasudeva N. Singla N. Terminalia arjuna a sacred medicinal plant: Phytochemical and pharmacological profile. Phytochem. Rev. 2009 8 2 491 502 10.1007/s11101‑009‑9134‑8
    [Google Scholar]
  24. Kapoor D. Vijayvergiya R. Dhawan V. Terminalia arjuna in coronary artery disease: Ethnopharmacology, pre-clinical, clinical & safety evaluation. J. Ethnopharmacol. 2014 155 2 1029 1045 10.1016/j.jep.2014.06.056 25014508
    [Google Scholar]
  25. Dhruti S. The Use of Terminalia arjuna as a Tonic. Int. J. Bioresour. Sci. 2020 7 2 59 61 10.30954/2347‑9655.02.2020.3
    [Google Scholar]
  26. Zafar F. Jahan N. Khalil-Ur-Rahman M. Asi M.R. Zafar W-U-I. Nanosuspension enhances dissolution rate and oral bioavailability of Terminalia arjuna bark extract in vivo and in vitro. Asian Pac. J. Trop. Biomed. 2020 10 4 164 171 10.4103/2221‑1691.280293
    [Google Scholar]
  27. Saleem S. Ansari A.H. Ansari A. Effect of arjun Ch āl on cardiovascular risk factors – A randomized controlled clinical trial. J. Complement. Integr. Med. 2022 19 1 145 154 10.1515/jcim‑2020‑0439 33977687
    [Google Scholar]
  28. Parmar H.S. Panda S. Jatwa R. Kar A. Cardio-protective role of Terminalia arjuna bark extract is possibly mediated through alterations in thyroid hormones. Pharmazie 2006 61 9 793 795 17020158
    [Google Scholar]
  29. Shifali Thakur Hemlata Kaurav Gitika Chaudhary Terminalia arjuna: A potential ayurvedic cardio tonic. Int. J. Res. Appl. Sci. Biotechnol. 2021 8 2 227 236 10.31033/ijrasb.8.2.30
    [Google Scholar]
  30. Dwivedi S. Udupa N. Terminalia arjuna: Pharmacognosy, phytochemistry, pharmacology and clinical use. A review. Fitoterapia 1989 60 413 420
    [Google Scholar]
  31. Wang W. Ali Z. Li X.C. Shen Y. Khan I. Triterpenoids from two Terminalia species. Planta Med. 2010 76 15 1751 1754 10.1055/s‑0030‑1249809 20383817
    [Google Scholar]
  32. Desai S.D. Pai S.R. Desai N.S. Optimization of methods for quantification of arjunic acid from bark of Terminalia arjuna from Konkan Region, India. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2021 91 4 879 887 10.1007/s40011‑021‑01264‑9
    [Google Scholar]
  33. Kalola J. Rajani M. Extraction and TLC desitometric determination of triterpenoid acids (arjungenin, arjunolic acid) from Terminalia arjuna stem bark without interference of Tannins. Chromatographia 2006 63 9-10 475 481 10.1365/s10337‑006‑0772‑3
    [Google Scholar]
  34. Fu J. Zou Y. Huang Z. Yan C. Zhou Q. Zhang H. Lai Y. Peng S. Zhang Y. Identification of nitric oxide-releasing derivatives of oleanolic acid as potential anti-colon cancer agents. RSC Advances 2015 5 25 19445 19454 10.1039/C5RA00270B
    [Google Scholar]
  35. Prasad M.V.V. Anbalagan N. Patra A. Veluchamy G. Balakrishna K. Antiallergic and anti-asthmatic activities of the alcoholic extract of Terminalia arjuna and arjunolic acid. Nat. Prod. Sci. 2004 10 240 243
    [Google Scholar]
  36. Saxena M. Faridi U. Mishra R. Gupta M. Darokar M. Srivastava S. Singh D. Luqman S. Khanuja S. Cytotoxic agents from Terminalia arjuna. Planta Med. 2007 73 14 1486 1490 10.1055/s‑2007‑990258 18008199
    [Google Scholar]
  37. Manna S. Dey A. Majumdar R. Bag B.G. Ghosh C. Roy S. Self assembled arjunolic acid acts as a smart weapon against cancer through TNF- α mediated ROS generation. Heliyon 2020 6 2 e03456 10.1016/j.heliyon.2020.e03456 32140584
    [Google Scholar]
  38. Elsherbiny N.M. Eladl M.A. Al-Gayyar M.M.H. Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine 2016 77 26 34 10.1016/j.cyto.2015.10.010 26517155
    [Google Scholar]
  39. Sasikumar K. Dubey V. Ghosh A.R. Oleanolic acid from black raisins, Vitis vinifera with antioxidant and antiproliferative potentials on HCT 116 colon cancer cell line. Braz. J. Pharm. Sci. 2020 56 e17158 10.1590/s2175‑97902019000417158
    [Google Scholar]
  40. Baer-Dubowska W. Narożna M. Krajka-Kuźniak V. Anti-cancer potential of synthetic oleanolic acid derivatives and their conjugates with nsaids. Molecules 2021 26 16 4957 10.3390/molecules26164957 34443544
    [Google Scholar]
  41. Manna P. Sinha M. Sil P.C. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways. Toxicology 2009 257 1-2 53 63 10.1016/j.tox.2008.12.008 19133311
    [Google Scholar]
  42. Nono R.N. Barboni L. Teponno R.B. Quassinti L. Bramucci M. Vitali L.A. Petrelli D. Lupidi G. Tapondjou A.L. Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of Dissotis thollonii Cogn. (Melastomataceae). S. Afr. J. Bot. 2014 93 19 26 10.1016/j.sajb.2014.03.009
    [Google Scholar]
  43. Facundo V.A. Rios K.A. Medeiros C.M. Militão J.S.L.T. Miranda A.L.P. Epifanio R.A. Carvalho M.P. Andrade A.T. Pinto A.C. Rezende C.M. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: Anti-inflammatory and anticholinesterasic activities. J. Braz. Chem. Soc. 2005 16 6b 1309 1312 10.1590/S0103‑50532005000800002
    [Google Scholar]
  44. Kim M.S. Lee D.Y. Sung S.H. Jeon W.K. Anti-cholinesterase activities of hydrolysable tannins and polyhydroxytriterpenoid derivatives from Terminalia chebula Retz. fruit. Rec. Nat. Prod. 2018 12 3 284 289 10.25135/rnp.29.17.07.130
    [Google Scholar]
  45. Manna P. Das J. Ghosh J. Sil P.C. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid. Free Radic. Biol. Med. 2010 48 11 1465 1484 10.1016/j.freeradbiomed.2010.02.025 20188823
    [Google Scholar]
  46. Hemalatha T. Pulavendran S. Balachandran C. Manohar B.M. Puvanakrishnan R. Arjunolic acid: A novel phytomedicine with multifunctional therapeutic applications. Indian J. Exp. Biol. 2010 48 3 238 247 21046976
    [Google Scholar]
  47. Uzor P.F. Osadebe P.O. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice. EXCLI J. 2016 15 10.17179/excli2016‑252
    [Google Scholar]
  48. Gonçalves B.M.F. Mendes V.I.S. Silvestre S.M. Salvador J.A.R. Design, synthesis, and biological evaluation of new arjunolic acid derivatives as anticancer agents. RSC Medicinal Chemistry 2023 14 2 313 331 10.1039/D2MD00275B 36846362
    [Google Scholar]
  49. Olanipekun B.E. Ponnapalli M.G. Patel H.K. Munipalle K. Shaik K. Design, synthesis of new phenyl acetylene and isoxazole analogues of arjunolic acid as potent tyrosinase and alpha glucosidase inhibitors. Nat. Prod. Res. 2023 37 7 1092 1097 10.1080/14786419.2021.1986817 34625004
    [Google Scholar]
  50. Diallo B. Vanhaelen-Fastré R. Vanhaelen M. Konoshima T. Takasaki M. Tokuda H. In vivo inhibitory effects of arjunolic acid derivatives on two-stage carcinogenesis in mouse skin. Phytother. Res. 1995 9 6 444 447 10.1002/ptr.2650090612
    [Google Scholar]
  51. Clayden J. Fluorine and amide groups together at last. Nature 2019 573 37 38 10.1038/d41586‑019‑02611‑7 31485062
    [Google Scholar]
  52. Bhujel M. Sripada L. K B. Perumal P. Jain D. Pandey N. Bajaj A. Golakoti N.R. Synthesis and anti-cancer activity of acetals of arjunolic acid. New J. Chem. 2024 48 38 16957 16967 10.1039/D4NJ03095H
    [Google Scholar]
  53. Rokkam S.K. Bhujel M. Jain D. Sripada L. Nanduri S. Bajaj A. Golakoti N.R. Advances R.S.C. Synthesis of novel pyrazole acetals of andrographolide and isoandrographolide as potent anticancer agents. RSC Advances 2024 14 36 26625 26636 10.1039/D4RA00547C 39175689
    [Google Scholar]
  54. Kandanur S.G.S. Tamang N. Golakoti N.R. Nanduri S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur. J. Med. Chem. 2019 176 513 533 10.1016/j.ejmech.2019.05.022 31151068
    [Google Scholar]
  55. Kandanur S.G.S. Nanduri S. Golakoti N.R. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett. 2017 27 13 2854 2862 10.1016/j.bmcl.2017.04.033 28527822
    [Google Scholar]
  56. Kandanur S.G.S. Golakoti N.R. Nanduri S. Synthesis and in vitro cytotoxicity of novel C-12 substituted-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett. 2015 25 24 5781 5786 10.1016/j.bmcl.2015.10.053 26561364
    [Google Scholar]
  57. Tamang N. Andrews C. Mavileti S.K. Nanduri S. Golakoti N.R. Karanam B. Anti-cancer activity of heteroaromatic acetals of andrographolide and its isomers. New J. Chem. 2022 46 20 9745 9754 10.1039/D2NJ01055K 36093125
    [Google Scholar]
  58. Tamang N. Mavileti S.K. Yadav M. Nanduri S. Sahal D. Golakoti N.R. Synthesis and anti-plasmodial activity of isoandrographolide acetals. Chem. Zvesti 2023 76 3015 3023 10.1007/s11696‑023‑02684‑9
    [Google Scholar]
  59. Bhujel M. Golakoti N.R. Sripada L. A process for separating arjunolic acid and asiatic acid from heartwood of Terminalia Arjuna. Patent 202441015549, 2024
  60. Shoemaker R.H. Nrc1953. Pdf 2006 6 813 823
    [Google Scholar]
  61. Boyd M.R. Paull K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995 34 2 91 109 10.1002/ddr.430340203
    [Google Scholar]
  62. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  63. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  64. Na H.S. Lim Y.K. Jeong Y.I. Lee H.S. Lim Y.J. Kang M.S. Cho C.S. Lee H.C. Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int. J. Pharm. 2010 383 1-2 192 200 10.1016/j.ijpharm.2009.08.041 19732817
    [Google Scholar]
  65. Fohlen A. Bordji K. Assenat E. Gongora C. Bazille C. Boulonnais J. Naveau M. Breuil C. Pérès E.A. Bernaudin M. Guiu B. Anticancer drugs for intra-arterial treatment of colorectal cancer liver metastases: In-vitro screening after short exposure time. Pharmaceuticals 2021 14 7 639 10.3390/ph14070639 34358065
    [Google Scholar]
  66. Crowley L.C. Scott A.P. Marfell B.J. Boughaba J.A. Chojnowski G. Waterhouse N.J. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb. Protoc. 2016 647 651
    [Google Scholar]
  67. Jingwen B. Yaochen L. Guojun Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 2017 14 4 348 362 10.20892/j.issn.2095‑3941.2017.0033 29372101
    [Google Scholar]
  68. Liou G.Y. Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010 44 5 479 496 10.3109/10715761003667554 20370557
    [Google Scholar]
  69. Kumar S. Bajaj A. Advances in self-assembled injectable hydrogels for cancer therapy. Biomater. Sci. 2020 8 8 2055 2073 10.1039/D0BM00146E 32129390
    [Google Scholar]
  70. Siegel R.L. Wagle N.S. Cercek A. Smith R.A. Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023 73 3 233 254 10.3322/caac.21772 36856579
    [Google Scholar]
  71. Caputo F. Santini C. Bardasi C. Cerma K. Casadei-Gardini A. Spallanzani A. Andrikou K. Cascinu S. Gelsomino F. BRAF-mutated colorectal cancer: Clinical and molecular insights. Int. J. Mol. Sci. 2019 20 21 5369 10.3390/ijms20215369 31661924
    [Google Scholar]
  72. Tavberidze N. Zhang W. HER2 (ERBB2) alterations in colorectal cancers. Human Pathology Reports 2022 28 300628 10.1016/j.hpr.2022.300628
    [Google Scholar]
  73. Soiza R.L. Donaldson A.I.C. Myint P.K. Vaccine against arteriosclerosis: An update. Ther. Adv. Vaccines 2018 9 259 261 10.1177/https
    [Google Scholar]
  74. Ivanova M. Venetis K. Guerini-Rocco E. Bottiglieri L. Mastropasqua M.G. Garrone O. Fusco N. Ghidini M. HER2 in metastatic colorectal cancer: Pathology, somatic alterations, and perspectives for novel therapeutic schemes. Life (Basel) 2022 12 9 1403 10.3390/life12091403 36143438
    [Google Scholar]
  75. Reynolds S. Tucatinib and trastuzumab combination approved for advanced colorectal cancer. 2023 5 11 Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2023/fda-tucatinib-her2-colorectal-cancer
/content/journals/cmc/10.2174/0109298673348718250109142630
Loading
/content/journals/cmc/10.2174/0109298673348718250109142630
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: colon cancer ; amides ; synthesis ; apoptosis ; Terminalia arjuna ; arjunolic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test