Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The role of Myocyte Enhancer Factor 2 C (MEF2C) in lung adenocarcinoma (LUAD) is unclear.

Objective

To address this gap in knowledge, we employed bioinformatics analysis and experimental validation in this study.

Methods

This study investigated MEF2C expression across a spectrum of cancers, with a specific focus on lung adenocarcinoma (LUAD), utilizing Cancer Genome Atlas (TCGA) data to assess its potential as a diagnostic marker. The study also investigated correlations between MEF2C expression and clinical traits and prognostic indicators of LUAD. Additionally, this study also delved into the regulatory mechanisms of MEF2C, examining its connections to immune system interactions, immune checkpoint genes, tumor mutational burden (TMB), and the sensitivity of LUAD to various drugs. Through single-cell sequencing of LUAD cells and genetic variation of MEF2C in LUAD, we explored the expression of MEF2C in cell lines and verified it by quantitative real-time PCR (qRT-PCR).

Results

MEF2C exhibited aberrant expression in both pan-cancer and LUAD. In individuals with LUAD, diminished levels of MEF2C expression were notably linked to the effectiveness of primary therapy outcome ( = 0.025), gender ( < 0.001), and the subdivision of anatomic neoplasms 2 ( = 0.011). A decline in MEF2C levels was also found to be significantly related to reduced overall survival (OS) in LUAD patients ( = 0.026). The presence of MEF2C was recognized as a standalone factor predictive of prognosis in LUAD ( = 0.029). MEF2C was found to be involved in multiple biological pathways, such as those involving cell adhesion molecules. Additionally, its expression was correlated with the extent of immune cell presence, the activity of immune checkpoint genes, and TMB in LUAD. Notably, an inverse relationship was observed between MEF2C expression and the sensitivity to several agents, including Topotecan, Irinotecan, Panobinostat, Nilotinib, and Tp38-279, within the context of LUAD. Furthermore, MEF2C was found to be significantly negatively regulated in LUAD cell lines.

Conclusion

The results imply that MEF2C could be a valuable indicator for predicting outcomes and a possible target for immunotherapy for LUAD patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673317910241003101925
2024-10-18
2025-10-27
Loading full text...

Full text loading...

References

  1. KimC. GiacconeG. Precision oncology in non-small- cell lung cancer: opportunities and challenges.Nat. Rev. Clin. Oncol.201815634834910.1038/s41571‑018‑0008‑029599475
    [Google Scholar]
  2. ShiJ. HuaX. ZhuB. RavichandranS. WangM. NguyenC. BrodieS.A. PalleschiA. AlloisioM. PariscentiG. JonesK. ZhouW. BoukA.J. BolandJ. HicksB. RischA. BennettH. LukeB.T. SongL. DuanJ. LiuP. KohnoT. ChenQ. MeerzamanD. MarconettC. Laird-OffringaI. MillsI. CaporasoN.E. GailM.H. PesatoriA.C. ConsonniD. BertazziP.A. ChanockS.J. LandiM.T. Somatic genomics and clinical features of lung adenocarcinoma: A retrospective study.PLoS Med.20161312e100216210.1371/journal.pmed.100216227923066
    [Google Scholar]
  3. DenisenkoT.V. BudkevichI.N. ZhivotovskyB. Cell death-based treatment of lung adenocarcinoma.Cell Death Dis.20189211710.1038/s41419‑017‑0063‑y29371589
    [Google Scholar]
  4. AlbertiA. MancinM. CortinovisD. BidoliP. SalaL. Disseminated intravascular coagulation in advanced lung adenocarcinoma during first-line pembrolizumab.Immunotherapy202012962963310.2217/imt‑2020‑001832418466
    [Google Scholar]
  5. BulatV. LikicR. BradicL. SpeeckaertR. AzdajicM.D. Pembrolizumab-induced vitiligo in a patient with lung adenocarcinoma: A case report.Br. J. Clin. Pharmacol.20218762614261810.1111/bcp.1466333217043
    [Google Scholar]
  6. CaetanoS. GarciaA.R. FigueiraI. BritoM.A. MEF2C and miR-194-5p: New players in triple negative breast cancer tumorigenesis.Int. J. Mol. Sci.202324181429710.3390/ijms24181429737762600
    [Google Scholar]
  7. JingjingZ. LeiM. JieZ. ShaC. YapengH. WeiminZ. ChunluanY. A novel MEF2C mutation in lymphoid neoplasm diffuse large B-cell lymphoma promotes tumorigenesis by increasing c-JUN expression.Naunyn Schmiedebergs Arch. Pharmacol.202039381549155810.1007/s00210‑019‑01764‑631900516
    [Google Scholar]
  8. Canté-BarrettK. MeijerM.T. Cordo’V. HagelaarR. YangW. YuJ. SmitsW.K. NulleM.E. JansenJ.P. PietersR. YangJ.J. HaighJ.J. GoossensS. MeijerinkJ.P.P. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus.JCI Insight2022713e15036310.1172/jci.insight.15036335536646
    [Google Scholar]
  9. WangM. JiangY. FanZ.L. ZhangN. LiangJ. ZhengZ. Exosomal MEF2C’s association with the progression of CRC in regulating CD36 transcription.Altern. Ther. Health Med.202329119820936074971
    [Google Scholar]
  10. YangD. LiuM. JiangJ. LuoY. WangY. ChenH. LiD. WangD. YangZ. ChenH. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma.Cancers20221424622010.3390/cancers1424622036551704
    [Google Scholar]
  11. YiW. ShenH. SunD. XuY. FengY. LiD. WangC. Low expression of long noncoding RNA SLC26A4 antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer.Med. Sci. Monit.202127e93452234880202
    [Google Scholar]
  12. HuaH. PanS. DiaoH. CaoY. QianX. ZhangJ. Increased ACSL6 expression predicts a favorable prognosis in triple-negative breast cancer.Curr. Med. Chem.20243110.2174/010929867327884623122210342038310395
    [Google Scholar]
  13. ChenL. GeM. MoS. ShiM. ZhangJ. LiuJ. Construction of a new ferroptosis-related prognosis model for survival prediction in colorectal cancer.Curr. Med. Chem.202438362684
    [Google Scholar]
  14. XuY. ShenY. BhandariA. HirachanS. WangO. XiaE. Serine protease 27, a prognostic biomarker in pan- cancer and associated with the aggressive progression of breast cancer.Curr. Med. Chem.202431152073208910.2174/092986733066623032416132937282654
    [Google Scholar]
  15. VivianJ. RaoA.A. NothaftF.A. KetchumC. ArmstrongJ. NovakA. PfeilJ. NarkizianJ. DeranA.D. Musselman-BrownA. SchmidtH. AmstutzP. CraftB. GoldmanM. RosenbloomK. ClineM. O’ConnorB. HannaM. BirgerC. KentW.J. PattersonD.A. JosephA.D. ZhuJ. ZaranekS. GetzG. HausslerD. PatenB. Toil enables reproducible, open source, big biomedical data analyses.Nat. Biotechnol.201735431431610.1038/nbt.377228398314
    [Google Scholar]
  16. PanH. LiuQ. ZhangF. WangX. WangS. ShiX. High STK40 expression as an independent prognostic biomarker and correlated with immune infiltrates in low- grade gliomas.Int. J. Gen. Med.2021146389640010.2147/IJGM.S33582134675607
    [Google Scholar]
  17. ZhaoX. LuM. LiuZ. ZhangM. YuanH. DanZ. WangD. MaB. YangY. YangF. SunR. LiL. DangC. Comprehensive analysis of alfa defensin expression and prognosis in human colorectal cancer.Front. Oncol.20231297465410.3389/fonc.2022.97465436703795
    [Google Scholar]
  18. ChenB. LuX. ZhouQ. ChenQ. ZhuS. LiG. LiuH. PAXIP1-AS1 is associated with immune infiltration and predicts poor prognosis in ovarian cancer.PLoS One2023188e029003110.1371/journal.pone.029003137582104
    [Google Scholar]
  19. DuQ. XingN. GuoS. MengX. ZhangY. WangS. Cycas revoluta leaves: As a potential flavonoids source for targeted regulation of immune-related markers in lung adenocarcinoma.Ind. Crops Prod.202320211696710.1016/j.indcrop.2023.116967
    [Google Scholar]
  20. XuL. LiW. YangT. HuS. ZouQ. JiaoJ. JiangN. ZhangY. Immune-related RNA-binding protein-based signature with predictive and prognostic implications in patients with lung adenocarcinoma.Front. Mol. Biosci.2022980762210.3389/fmolb.2022.80762235647031
    [Google Scholar]
  21. ChenJ. TangH. LiT. JiangK. ZhongH. WuY. HeJ. LiD. LiM. CaiX. Comprehensive analysis of the expression, prognosis, and biological significance of OVOLs in breast cancer.Int. J. Gen. Med.2021143951396010.2147/IJGM.S32640234345183
    [Google Scholar]
  22. CaiH. ChenS. WuZ. WangF. TangS. LiD. WangD. GuoW. Comprehensive analysis of ZNF692 as a potential biomarker associated with immune infiltration in a pan cancer analysis and validation in hepatocellular carcinoma.Aging20231522130411305810.18632/aging.20521837980166
    [Google Scholar]
  23. ChenY. XuH. TangH. LiH. ZhangC. JinS. BaiD. miR-9-5p expression is associated with vascular invasion and prognosis in hepatocellular carcinoma, and in vitro verification.J. Cancer Res. Clin. Oncol.202314916146571467110.1007/s00432‑023‑05257‑137584711
    [Google Scholar]
  24. LiangW. LuY. PanX. ZengY. ZhengW. LiY. NieY. LiD. WangD. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma.Pharm. Genomics Pers. Med.20221598599810.2147/PGPM.S38490136482943
    [Google Scholar]
  25. LiangL. XuH. DongQ. QiuL. LuL. YangQ. ZhaoW. LiY. WTAP is correlated with unfavorable prognosis, tumor cell proliferation, and immune infiltration in hepatocellular carcinoma.Front. Oncol.20221285200010.3389/fonc.2022.85200035480109
    [Google Scholar]
  26. LinZ. HuangW. YiY. LiD. XieZ. LiZ. YeM. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma.Int. J. Gen. Med.2021148541855510.2147/IJGM.S34068334849000
    [Google Scholar]
  27. LuX. JingL. LiuS. WangH. ChenB. miR-149-3p is a potential prognosis biomarker and correlated with immune infiltrates in uterine corpus endometrial carcinoma.Int. J. Endocrinol.2022202211510.1155/2022/500612335719192
    [Google Scholar]
  28. FuZ. LaiY. WangQ. LinF. FangJ. LRG1 predicts the prognosis and is associated with immune infiltration in thyroid cancer: A bioinformatics study.Endocr. Connect.2023131e23041810.1530/EC‑23‑041837991216
    [Google Scholar]
  29. BindeaG. MlecnikB. TosoliniM. KirilovskyA. WaldnerM. ObenaufA.C. AngellH. FredriksenT. LafontaineL. BergerA. BrunevalP. FridmanW.H. BeckerC. PagèsF. SpeicherM.R. TrajanoskiZ. GalonJ. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.Immunity201339478279510.1016/j.immuni.2013.10.00324138885
    [Google Scholar]
  30. LuZ.M. PanS.L. YuanW.L. FengJ.L. TianD. ShangX.Q. Molecular and immunological characteristics of patients with CMTM6 low expression colorectal cancer.Medicine202310250e3648010.1097/MD.000000000003648038115316
    [Google Scholar]
  31. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  32. ChalmersZ.R. ConnellyC.F. FabrizioD. GayL. AliS.M. EnnisR. SchrockA. CampbellB. ShlienA. ChmieleckiJ. HuangF. HeY. SunJ. TaboriU. KennedyM. LieberD.S. RoelsS. WhiteJ. OttoG.A. RossJ.S. GarrawayL. MillerV.A. StephensP.J. FramptonG.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med.2017913410.1186/s13073‑017‑0424‑228420421
    [Google Scholar]
  33. JardimD.L. GoodmanA. de Melo GagliatoD. KurzrockR. The challenges of tumor mutational burden as an immunotherapy biomarker.Cancer Cell202139215417310.1016/j.ccell.2020.10.00133125859
    [Google Scholar]
  34. WangC. ZhaoZ. ZhangY. LiangW. ZhouC. LinW. HeY. WuM. MengZ. LiaoY. LiM. El AkkawiM. ZhaoJ. HeY. Identification and verification of the prognostic value of CUL7 in colon adenocarcinoma.Front. Immunol.202213104351210.3389/fimmu.2022.104351236304472
    [Google Scholar]
  35. XuZ. PeiC. ChengH. SongK. YangJ. LiY. HeY. LiangW. LiuB. TanW. LiX. PanX. MengL. Comprehensive analysis of FOXM1 immune infiltrates, m6a, glycolysis and ceRNA network in human hepatocellular carcinoma.Front. Immunol.202314113852410.3389/fimmu.2023.113852437234166
    [Google Scholar]
  36. ChenB. DingX. WanA. QiX. LinX. WangH. MuW. WangG. ZhengJ. Comprehensive analysis of TLX2 in pan cancer as a prognostic and immunologic biomarker and validation in ovarian cancer.Sci. Rep.20231311624410.1038/s41598‑023‑42171‑537758722
    [Google Scholar]
  37. LiS. LiuY. YaoC. XuA. ZengX. GeY. ShengX. ZhangH. ZhouX. LongY. Prognostic prediction and expression validation of NSD3 in pan-cancer analyses.Biocell20234751003101910.32604/biocell.2023.027209
    [Google Scholar]
  38. LinZ. HuangW. XieZ. YiY. LiZ. Expression, clinical significance, immune infiltration, and regulation network of miR-3940-5p in lung adenocarcinoma based on bioinformatic analysis and experimental validation.Int. J. Gen. Med.2022156451646410.2147/IJGM.S37576135966511
    [Google Scholar]
  39. LuX. LiG. LiuS. WangH. ChenB. MiR-585-3p suppresses tumor proliferation and migration by directly targeting CAPN9 in high grade serous ovarian cancer.J. Ovarian Res.20211419010.1186/s13048‑021‑00841‑w34238324
    [Google Scholar]
  40. ShiB. ChuJ. HuangT. WangX. LiQ. GaoQ. XiaQ. LuoS. The scavenger receptor MARCO expressed by tumor-associated macrophages are highly associated with poor pancreatic cancer prognosis.Front. Oncol.20211177148810.3389/fonc.2021.77148834778091
    [Google Scholar]
  41. ZhangY. ZhouY. WeiF. circABCB10 promotes malignant progression of gastric cancer cells by preventing the degradation of MYC.J. Oncol.2021202111410.1155/2021/462503334950208
    [Google Scholar]
  42. GaoY. ChenY. LiuM. ZengD. TanF. WanH. LiuX. SuS. ZhangY. ZhangY. KeC. PeiZ. SLC17A9 as a prognostic biomarker correlated with immune infiltrates in human non-small cell lung cancer.Am. J. Cancer Res.20231393963398237818081
    [Google Scholar]
  43. TanY. DingL. LiG. MCM4 acts as a biomarker for LUAD prognosis.J. Cell. Mol. Med.202327213354336210.1111/jcmm.1781937817427
    [Google Scholar]
  44. YinY. HeM. HuangY. XieX. Transcriptomic analysis identifies CYP27A1 as a diagnostic marker for the prognosis and immunity in lung adenocarcinoma.BMC Immunol.20232413710.1186/s12865‑023‑00572‑137817081
    [Google Scholar]
  45. JiangJ. ZhangY. WangJ. YangX. RenX. HuangH. WangJ. LuJ. ZhongY. LinZ. LinX. JiaY. LinS. Identification of CDT1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches.PeerJ202311e1616610.7717/peerj.1616637790630
    [Google Scholar]
  46. XiaoG. XuX. ChenZ. ZengJ. XieJ. SPAG5 expression predicts poor prognosis and is associated with adverse immune infiltration in lung adenocarcinomas.Clin. Med. Insights Oncol.2023171179554923119991510.1177/1179554923119991537744424
    [Google Scholar]
  47. NiuY. WangL. ZhangX. HanY. YangC. BaiH. HuangK. RenC. TianG. YinS. ZhaoY. WangY. ShiX. ZhangM. Predicting tumor mutational burden from lung adenocarcinoma histopathological images using deep learning.Front. Oncol.20221292742610.3389/fonc.2022.92742635756617
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673317910241003101925
Loading
/content/journals/cmc/10.2174/0109298673317910241003101925
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test