Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Both coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis.

Objective

The purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy.

Methods

Utilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking.

Results

The 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combining TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets.

Conclusion

Our research elucidates the targets, pathways and pathophysiological processes of RSV involved in the effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673308841240930044555
2024-10-11
2025-10-27
Loading full text...

Full text loading...

References

  1. MayC.N. BellomoR. LankadevaY.R. Therapeutic potential of megadose vitamin C to reverse organ dysfunction in sepsis and COVID-19.Br. J. Pharmacol.2021178193864386810.1111/bph.1557934061355
    [Google Scholar]
  2. CrookH. RazaS. NowellJ. YoungM. EdisonP. Long covid-mechanisms, risk factors, and management.BMJ20213741648n164810.1136/bmj.n164834312178
    [Google Scholar]
  3. MahmudS.M.H. Al-MustanjidM. AkterF. RahmanM.S. AhmedK. RahmanM.H. ChenW. MoniM.A. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients.Brief. Bioinform.2021225bbab11510.1093/bib/bbab11533847347
    [Google Scholar]
  4. WendischD. DietrichO. MariT. von StillfriedS. IbarraI.L. MittermaierM. MacheC. ChuaR.L. KnollR. TimmS. BrumhardS. KrammerT. ZauberH. HillerA.L. Pascual-ReguantA. MothesR. BülowR.D. SchulzeJ. LeipoldA.M. DjudjajS. ErhardF. GeffersR. PottF. KazmierskiJ. RadkeJ. PergantisP. BaßlerK. ConradC. AschenbrennerA.C. SawitzkiB. LandthalerM. WylerE. HorstD. HippenstielS. HockeA. HeppnerF.L. UhrigA. GarciaC. MachleidtF. HeroldS. ElezkurtajS. ThibeaultC. WitzenrathM. CochainC. SuttorpN. DrostenC. GoffinetC. KurthF. SchultzeJ.L. RadbruchH. OchsM. EilsR. Müller-RedetzkyH. HauserA.E. LueckenM.D. TheisF.J. ConradC. WolffT. BoorP. SelbachM. SalibaA.E. SanderL.E. Deutsche COVID-19 OMICS Initiative (DeCOI) SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis.Cell20211842662436261.e2710.1016/j.cell.2021.11.03334914922
    [Google Scholar]
  5. SpagnoloP. KropskiJ.A. JonesM.G. LeeJ.S. RossiG. KarampitsakosT. MaherT.M. TzouvelekisA. RyersonC.J. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development.Pharmacol. Ther.202122210779810.1016/j.pharmthera.2020.10779833359599
    [Google Scholar]
  6. OgataH. NakagawaT. SakodaS. IshimatsuA. TaguchiK. KadowakiM. MoriwakiA. YoshidaM. Nintedanib treatment for pulmonary fibrosis after coronavirus disease 2019.Respirol. Case Rep.202195e0074410.1002/rcr2.74433815804
    [Google Scholar]
  7. YangX. YuY. XuJ. ShuH. XiaJ. LiuH. WuY. ZhangL. YuZ. FangM. YuT. WangY. PanS. ZouX. YuanS. ShangY. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑532105632
    [Google Scholar]
  8. de RooijL.P.M.H. BeckerL.M. TeuwenL.A. BoeckxB. JansenS. FeysS. VerledenS. LiesenborghsL. StalderA.K. LibbrechtS. Van BuytenT. PhilipsG. SubramanianA. DumasS.J. MetaE. BorriM. SokolL. DendoovenA. TruongA.C.K. GunstJ. Van MolP. HaslbauerJ.D. RohlenovaK. MenterT. BoudewijnsR. GeldhofV. VinckierS. AmersfoortJ. WuytsW. Van RaemdonckD. JacobsW. CeulemansL.J. WeynandB. ThienpontB. LammensM. KuehnelM. EelenG. DewerchinM. SchoonjansL. JonigkD. van DorpeJ. TzankovA. WautersE. MazzoneM. NeytsJ. WautersJ. LambrechtsD. CarmelietP. The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single-cell resolution.Cardiovasc. Res.2023119252053510.1093/cvr/cvac13935998078
    [Google Scholar]
  9. GeorgeP.M. WellsA.U. JenkinsR.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy.Lancet Respir. Med.20208880781510.1016/S2213‑2600(20)30225‑332422178
    [Google Scholar]
  10. GuanW. NiZ. HuY. LiangW. OuC. HeJ. LiuL. ShanH. LeiC. HuiD.S.C. DuB. LiL. ZengG. YuenK.Y. ChenR. TangC. WangT. ChenP. XiangJ. LiS. WangJ. LiangZ. PengY. WeiL. LiuY. HuY. PengP. WangJ. LiuJ. ChenZ. LiG. ZhengZ. QiuS. LuoJ. YeC. ZhuS. ZhongN. Clinical characteristics of coronavirus disease 2019 in China.N. Engl. J. Med.2020382181708172010.1056/NEJMoa200203232109013
    [Google Scholar]
  11. ShiJ. WangJ. JiaN. SunQ. A network pharmacology study on mechanism of resveratrol in treating preeclampsia via regulation of AGE-RAGE and HIF-1 signalling pathways.Front. Endocrinol.202313104477510.3389/fendo.2022.104477536686428
    [Google Scholar]
  12. PriceN.L. GomesA.P. LingA.J.Y. DuarteF.V. Martin-MontalvoA. NorthB.J. AgarwalB. YeL. RamadoriG. TeodoroJ.S. HubbardB.P. VarelaA.T. DavisJ.G. VaraminiB. HafnerA. MoaddelR. RoloA.P. CoppariR. PalmeiraC.M. de CaboR. BaurJ.A. SinclairD.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.Cell Metab.201215567569010.1016/j.cmet.2012.04.00322560220
    [Google Scholar]
  13. AgahS. AkbariA. SadeghiE. MorvaridzadehM. BasharatZ. PalmowskiA. HeshmatiJ. Resveratrol supplementation and acute pancreatitis: A comprehensive review.Biomed. Pharmacother.202113711126810.1016/j.biopha.2021.11126833493966
    [Google Scholar]
  14. XuD. LiY. ZhangB. WangY. LiuY. LuoY. NiuW. DongM. LiuM. DongH. ZhaoP. LiZ. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats.Int. J. Med. Sci.2016131294295410.7150/ijms.1681027994500
    [Google Scholar]
  15. ChenJ. YangX. ZhangW. PengD. XiaY. LuY. HanX. SongG. ZhuJ. LiuR. Therapeutic effects of resveratrol in a mouse model of LPS and cigarette smoke-induced COPD.Inflammation20163961949195910.1007/s10753‑016‑0430‑327590234
    [Google Scholar]
  16. ChereshP. KimS.J. JablonskiR. WatanabeS. LuZ. ChiM. HelminK.A. GiusD. BudingerG.R.S. KampD.W. SIRT3 overexpression ameliorates asbestos-induced pulmonary fibrosis, mt-DNA damage, and lung fibrogenic monocyte recruitment.Int. J. Mol. Sci.20212213685610.3390/ijms2213685634202229
    [Google Scholar]
  17. MarinellaM.A. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19.Int. J. Clin. Pract.2020749e1353510.1111/ijcp.1353532412158
    [Google Scholar]
  18. FilardoS. Di PietroM. MastromarinoP. SessaR. Therapeutic potential of resveratrol against emerging respiratory viral infections.Pharmacol. Ther.202021410761310.1016/j.pharmthera.2020.10761332562826
    [Google Scholar]
  19. LiaoM.T. WuC.C. WuS.F.V. LeeM.C. HuW.C. TsaiK.W. YangC.H. LuC.L. ChiuS.K. LuK.C. Resveratrol as an adjunctive therapy for excessive oxidative stress in aging COVID-19 patients.Antioxidants2021109144010.3390/antiox1009144034573071
    [Google Scholar]
  20. RossiG.A. SaccoO. CapizziA. MastromarinoP. Can resveratrol-inhaled formulations be considered potential adjunct treatments for COVID-19?Front. Immunol.20211267095510.3389/fimmu.2021.67095534093569
    [Google Scholar]
  21. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  22. KeiserM.J. RothB.L. ArmbrusterB.N. ErnsbergerP. IrwinJ.J. ShoichetB.K. Relating protein pharmacology by ligand chemistry.Nat. Biotechnol.200725219720610.1038/nbt128417287757
    [Google Scholar]
  23. YaoZ.J. DongJ. CheY.J. ZhuM.F. WenM. WangN.N. WangS. LuA.P. CaoD.S. TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models.J. Comput. Aided Mol. Des.201630541342410.1007/s10822‑016‑9915‑227167132
    [Google Scholar]
  24. KuhnM. von MeringC. CampillosM. JensenL.J. BorkP. STITCH: Interaction networks of chemicals and proteins.Nucleic Acids Res.200836Database issueD684D68818084021
    [Google Scholar]
  25. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442Web Server issueW32W3810.1093/nar/gku293
    [Google Scholar]
  26. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics2016541.30.311.30.33
    [Google Scholar]
  27. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab95334718717
    [Google Scholar]
  28. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku120525428349
    [Google Scholar]
  29. EdgarR. DomrachevM. LashA.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120721010.1093/nar/30.1.20711752295
    [Google Scholar]
  30. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  31. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  32. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  33. LonsdaleJ. ThomasJ. SalvatoreM. PhillipsR. LoE. ShadS. HaszR. WaltersG. GarciaF. YoungN. FosterB. The genotype-tissue expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.265323715323
    [Google Scholar]
  34. GoodsellD.S. OlsonA.J. Automated docking of substrates to proteins by simulated annealing.Proteins19908319520210.1002/prot.3400803022281083
    [Google Scholar]
  35. YuanS. ChanH.C.S. HuZ. Using PyMOL as a platform for computational drug design.Wiley Interdiscip. Rev. Comput. Mol. Sci.201772e129810.1002/wcms.1298
    [Google Scholar]
  36. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  37. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  38. WangJ. ShiJ. JiaN. SunQ. Network pharmacology analysis reveals neuroprotection of Gynostemma pentaphyllum (Thunb.) Makino in Alzheimer’ disease.BMC Complement. Med. Ther.20222215710.1186/s12906‑022‑03534‑z35255879
    [Google Scholar]
  39. ShahM.A. FaheemH.I. HamidA. YousafR. HarisM. SaleemU. ShahG.M. AlhasaniR.H. AlthobaitiN.A. AlsharifI. SilvaA.S. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases.Med. Res. Rev.202444123527410.1002/med.2198537486109
    [Google Scholar]
  40. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  41. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-inflammatory action and mechanisms of resveratrol.Molecules202126122910.3390/molecules2601022933466247
    [Google Scholar]
  42. PopescuM. BogdanC. PinteaA. RuginăD. IonescuC. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy.Drug Des. Devel. Ther.2018121985199610.2147/DDDT.S15694130013318
    [Google Scholar]
  43. Gharaee-KermaniM. MooreB.B. MacoskaJ.A. Resveratrol-mediated repression and reversion of prostatic myofibroblast phenoconversion.PLoS One2016117e015835710.1371/journal.pone.015835727367854
    [Google Scholar]
  44. XiaoZ. YeQ. DuanX. XiangT. Network pharmacology reveals that resveratrol can alleviate COVID-19-related hyperinflammation.Dis. Markers2021202111210.1155/2021/412999334580601
    [Google Scholar]
  45. GiordoR. ZinelluA. EidA.H. PintusG. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders.Molecules202126485610.3390/molecules2604085633562030
    [Google Scholar]
  46. LeeI.T. LinC.C. YangC.C. HsiaoL.D. WuM.Y. YangC.M. Resveratrol attenuates staphylococcus aureus-induced monocyte adhesion through downregulating PDGFR/AP-1 activation in human lung epithelial cells.Int. J. Mol. Sci.20181910305810.3390/ijms1910305830301269
    [Google Scholar]
  47. KnoblochJ. WahlC. FeldmannM. JungckD. StrauchJ. StoelbenE. KochA. Resveratrol attenuates the release of inflammatory cytokines from human bronchial smooth muscle cells exposed to lipoteichoic acid in chronic obstructive pulmonary disease.Basic Clin. Pharmacol. Toxicol.2014114220220910.1111/bcpt.1212923981542
    [Google Scholar]
  48. BollmannF. ArtJ. HenkeJ. SchrickK. BescheV. BrosM. LiH. SiudaD. HandlerN. BauerF. ErkerT. BehnkeF. MönchB. HärdleL. HoffmannM. ChenC.Y. FörstermannU. DirschV.M. WerzO. KleinertH. PautzA. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity.Nucleic Acids Res.20144220125551256910.1093/nar/gku103325352548
    [Google Scholar]
  49. LinL. WenS. GuoS. SuX. WuH. ChongL. ZhangH. ZhangW. LiC. Role of SIRT1 in Streptococcus pneumoniae-induced human β-defensin-2 and interleukin-8 expression in A549 cell.Mol. Cell. Biochem.20143941-219920810.1007/s11010‑014‑2095‑224894820
    [Google Scholar]
  50. PeterA.E. SandeepB.V. RaoB.G. KalpanaV.L. Calming the storm: Natural immunosuppressants as adjuvants to target the cytokine storm in COVID-19.Front. Pharmacol.20211158377710.3389/fphar.2020.58377733708109
    [Google Scholar]
  51. Shankar-HariM. ValeC.L. GodolphinP.J. FisherD. HigginsJ.P.T. SpigaF. SavovicJ. TierneyJ. BaronG. BenbenishtyJ.S. BerryL.R. BromanN. CavalcantiA.B. ColmanR. De BuyserS.L. DerdeL.P.G. DomingoP. OmarS.F. Fernandez-CruzA. FeuthT. GarciaF. Garcia-VicunaR. Gonzalez-AlvaroI. GordonA.C. HaynesR. HermineO. HorbyP.W. HorickN.K. KumarK. LambrechtB.N. LandrayM.J. LealL. LedererD.J. LorenziE. MarietteX. MerchanteN. MisnanN.A. MohanS.V. NivensM.C. OksiJ. Perez-MolinaJ.A. PizovR. PorcherR. PostmaS. RajasuriarR. RamananA.V. RavaudP. ReidP.D. RutgersA. Sancho-LopezA. SetoT.B. SivapalasingamS. SoinA.S. StaplinN. StoneJ.H. StrohbehnG.W. Sunden-CullbergJ. Torre-CisnerosJ. TsaiL.W. van HoogstratenH. van MeertenT. VeigaV.C. WesterweelP.E. MurthyS. DiazJ.V. MarshallJ.C. SterneJ.A.C. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: A meta-analysis.JAMA2021326649951810.1001/jama.2021.1133034228774
    [Google Scholar]
  52. ZhangZ. GeM. WuD. LiW. ChenW. LiuP. ZhangH. YangY. Resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles: Preparation, characterization and synergistic anti-inflammatory effects.Carbohydr. Polym.202433212191610.1016/j.carbpol.2024.12191638431417
    [Google Scholar]
  53. WangC. YuanJ. DuJ. Resveratrol alleviates acute lung injury through regulating PLSCR-3-mediated mitochondrial dysfunction and mitophagy in a cecal ligation and puncture model.Eur. J. Pharmacol.202191317464310.1016/j.ejphar.2021.17464334808102
    [Google Scholar]
  54. ZagottaI. DimovaE.Y. FunckeJ.B. WabitschM. KietzmannT. Fischer-PosovszkyP. Resveratrol suppresses PAI-1 gene expression in a human in vitro model of inflamed adipose tissue.Oxid. Med. Cell. Longev.2013201311310.1155/2013/79352523819014
    [Google Scholar]
  55. KelliciT.F. PilkaE.S. BodkinM.J. Therapeutic potential of targeting plasminogen activator inhibitor-1 in COVID-19.Trends Pharmacol. Sci.202142643143310.1016/j.tips.2021.03.00633867130
    [Google Scholar]
  56. JiangC. LiuG. LuckhardtT. AntonyV. ZhouY. CarterA.B. ThannickalV.J. LiuR.M. Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease.Aging Cell20171651114112410.1111/acel.1264328722352
    [Google Scholar]
  57. McCannJ.V. XiaoL. KimD.J. KhanO.F. KowalskiP.S. AndersonD.G. PecotC.V. AzamS.H. ParkerJ.S. TsaiY.S. WolbergA.S. TurnerS.D. TatsumiK. MackmanN. DudleyA.C. Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β–induced Serpine1.J. Clin. Invest.201912941654167010.1172/JCI12310630855280
    [Google Scholar]
  58. NieY.J. WuS.H. XuanY.H. YanG. Role of IL-17 family cytokines in the progression of IPF from inflammation to fibrosis.Mil. Med. Res.2022912110.1186/s40779‑022‑00382‑335550651
    [Google Scholar]
  59. ChenW.C. ChenN.J. ChenH.P. YuW.K. SuV.Y.F. ChenH. WuH.H. YangK.Y. Nintedanib reduces neutrophil chemotaxis via activating GRK2 in bleomycin-induced pulmonary fibrosis.Int. J. Mol. Sci.20202113473510.3390/ijms2113473532630825
    [Google Scholar]
  60. ShaathH. VishnubalajiR. ElkordE. AlajezN.M. Single-cell transcriptome analysis highlights a role for neutrophils and inflammatory macrophages in the pathogenesis of severe covid-19.Cells2020911237410.3390/cells911237433138195
    [Google Scholar]
  61. GruberC.N. PatelR.S. TrachtmanR. LepowL. AmanatF. KrammerF. WilsonK.M. OnelK. GeanonD. TuballesK. PatelM. MouskasK. O’DonnellT. MerrittE. SimonsN.W. BarcessatV. Del ValleD.M. UdondemS. KangG. AgasheC. KarekarN. GrabowskaJ. NieK. Le BerichelJ. XieH. BeckmannN. GangadharanS. Ofori-AmanfoG. LasersonU. RahmanA. Kim-SchulzeS. CharneyA.W. GnjaticS. GelbB.D. MeradM. BogunovicD. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C).Cell20201834982995.e1410.1016/j.cell.2020.09.03432991843
    [Google Scholar]
  62. Lintzmaier PetizL. GlaserT. ScharfsteinJ. RatajczakM.Z. UlrichH. P2Y14 receptor as a target for neutrophilia attenuation in severe COVID-19 cases: From hematopoietic stem cell recruitment and chemotaxis to thrombo‐inflammation.Stem Cell Rev. Rep.202117124125210.1007/s12015‑021‑10129‑733575962
    [Google Scholar]
  63. AckermannM. WerleinC. PlucinskiE. LeypoldS. KühnelM.P. VerledenS.E. KhalilH.A. LängerF. WelteT. MentzerS.J. JonigkD.D. The role of vasculature and angiogenesis in respiratory diseases.Angiogenesis202427329331010.1007/s10456‑024‑09910‑238580869
    [Google Scholar]
  64. HuangX. WangX. XieX. ZengS. LiZ. XuX. YangH. QiuF. LinJ. DiaoY. Kallistatin protects against bleomycin-induced idiopathic pulmonary fibrosis by inhibiting angiogenesis and inflammation.Am. J. Transl. Res.201793999101128386328
    [Google Scholar]
  65. YanagiharaT. TsubouchiK. ZhouQ. ChongM. OtsuboK. IsshikiT. SchuppJ.C. SatoS. ScallanC. UpaguptaC. RevillS. AyoubA. ChongS.G. Dvorkin-GhevaA. KaminskiN. TikkanenJ. KeshavjeeS. ParéG. GuignabertC. AskK. KolbM.R.J. Vascular-parenchymal cross-talk promotes lung fibrosis through BMPR2 signaling.Am. J. Respir. Crit. Care Med.2023207111498151410.1164/rccm.202109‑2174OC36917778
    [Google Scholar]
  66. NorooznezhadA.H. MansouriK. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19).Microvasc. Res.202113710418810.1016/j.mvr.2021.10418834022205
    [Google Scholar]
  67. AckermannM. VerledenS.E. KuehnelM. HaverichA. WelteT. LaengerF. VanstapelA. WerleinC. StarkH. TzankovA. LiW.W. LiV.W. MentzerS.J. JonigkD. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19.N. Engl. J. Med.2020383212012810.1056/NEJMoa201543232437596
    [Google Scholar]
  68. NieX. QianL. SunR. HuangB. DongX. XiaoQ. ZhangQ. LuT. YueL. ChenS. LiX. SunY. LiL. XuL. LiY. YangM. XueZ. LiangS. DingX. YuanC. PengL. LiuW. YiX. LyuM. XiaoG. XuX. GeW. HeJ. FanJ. WuJ. LuoM. ChangX. PanH. CaiX. ZhouJ. YuJ. GaoH. XieM. WangS. RuanG. ChenH. SuH. MeiH. LuoD. ZhaoD. XuF. LiY. ZhuY. XiaJ. HuY. GuoT. Multi-organ proteomic landscape of COVID-19 autopsies.Cell20211843775791.e1410.1016/j.cell.2021.01.00433503446
    [Google Scholar]
  69. MaH. LiuS. LiS. XiaY. Targeting growth factor and cytokine pathways to treat idiopathic pulmonary fibrosis.Front. Pharmacol.20221391877110.3389/fphar.2022.91877135721111
    [Google Scholar]
  70. CaricchioR. GallucciM. DassC. ZhangX. GallucciS. FleeceD. BrombergM. CrinerG.J. Temple University COVID-19 Research Group Preliminary predictive criteria for COVID-19 cytokine storm.Ann. Rheum. Dis.2021801889510.1136/annrheumdis‑2020‑21832332978237
    [Google Scholar]
  71. LiX. BecharaR. ZhaoJ. McGeachyM.J. GaffenS.L. IL-17 receptor–based signaling and implications for disease.Nat. Immunol.201920121594160210.1038/s41590‑019‑0514‑y31745337
    [Google Scholar]
  72. AmatyaN. GargA.V. GaffenS.L. IL-17 signaling: The Yin and the Yang.Trends Immunol.201738531032210.1016/j.it.2017.01.00628254169
    [Google Scholar]
  73. WangD. GongL. LiZ. ChenH. XuM. RongR. ZhangY. ZhuQ. Antifibrotic effect of gancao ganjiang decoction is mediated by PD-1 / TGF-β1 / IL-17A pathway in bleomycin-induced idiopathic pulmonary fibrosis.J. Ethnopharmacol.202128111452210.1016/j.jep.2021.11452234391863
    [Google Scholar]
  74. LinX. FuB. YinS. LiZ. LiuH. ZhangH. XingN. WangY. XueW. XiongY. ZhangS. ZhaoQ. XuS. ZhangJ. WangP. NianW. WangX. WuH. ORF8 contributes to cytokine storm during SARS-CoV-2 infection by activating IL-17 pathway.iScience202124410229310.1016/j.isci.2021.10229333723527
    [Google Scholar]
  75. LanzilliG. CottarelliA. NicoteraG. GuidaS. RavagnanG. FuggettaM.P. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation.Inflammation201235124024810.1007/s10753‑011‑9310‑z21369944
    [Google Scholar]
  76. TianyuZ. XiaoliC. YaruW. MinZ. FengliY. KanH. LiC. JingL. New tale on LianHuaQingWen: IL6R/IL6/IL6ST complex is a potential target for COVID-19 treatment.Aging20211321239132393510.18632/aging.20366634731090
    [Google Scholar]
  77. FangL. TangT. HuM. Identification of differentially expressed genes in COVID-19 and integrated bioinformatics analysis of signaling pathways.Genet. Res.2021202111010.1155/2021/272875735002537
    [Google Scholar]
  78. DingH. JiX. ChenR. MaT. TangZ. FenY. CaiH. Antifibrotic properties of receptor for advanced glycation end products in idiopathic pulmonary fibrosis.Pulm. Pharmacol. Ther.201535344110.1016/j.pupt.2015.10.01026545872
    [Google Scholar]
  79. MachahuaC. Montes-WorboysA. LlatjosR. EscobarI. DorcaJ. Molina-MolinaM. Vicens-ZygmuntV. Increased AGE-RAGE ratio in idiopathic pulmonary fibrosis.Respir. Res.201617114410.1186/s12931‑016‑0460‑227816054
    [Google Scholar]
  80. FavalliE.G. IngegnoliF. De LuciaO. CincinelliG. CimazR. CaporaliR. COVID-19 infection and rheumatoid arthritis: Faraway, so close!Autoimmun. Rev.202019510252310.1016/j.autrev.2020.10252332205186
    [Google Scholar]
  81. Pérez-Campos MayoralL. Hernández-HuertaM.T. Papy-GarcíaD. BarritaultD. ZentenoE. Sánchez NavarroL.M. Pérez-Campos MayoralE. Matias CervantesC.A. Martínez CruzM. Mayoral AndradeG. López CervantesM. Vázquez MartínezG. López SánchezC. Pina CansecoS. Martínez CruzR. Pérez-CamposE. Immunothrombotic dysregulation in chagas disease and COVID-19: A comparative study of anticoagulation.Mol. Cell. Biochem.2021476103815382510.1007/s11010‑021‑04204‑334110554
    [Google Scholar]
  82. JuliusU. SchatzU. TselminS. MorawietzH. COVID-19 and lipid disorders.Horm. Metab. Res.202254851452110.1055/a‑1860‑261035835148
    [Google Scholar]
  83. LawC.C. PuranikR. FanJ. FeiJ. HamblyB.D. BaoS. Clinical implications of IL-32, IL-34 and IL-37 in atherosclerosis: Speculative role in cardiovascular manifestations of COVID-19.Front. Cardiovasc. Med.2021863076710.3389/fcvm.2021.63076734422917
    [Google Scholar]
  84. SuryadevaraV. RamchandranR. KampD.W. NatarajanV. Lipid mediators regulate pulmonary fibrosis: Potential mechanisms and signaling pathways.Int. J. Mol. Sci.20202112425710.3390/ijms2112425732549377
    [Google Scholar]
  85. SonaglioniA. CaminatiA. LipsiR. LombardoM. HarariS. Association between C-reactive protein and carotid plaque in mild-to-moderate idiopathic pulmonary fibrosis.Intern. Emerg. Med.20211661529153910.1007/s11739‑020‑02607‑633411265
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673308841240930044555
Loading
/content/journals/cmc/10.2174/0109298673308841240930044555
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test