Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival. In the fight against cancer, immunotherapy has demonstrated encouraging results, especially in cases of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). A key component in improving T cell responses against tumours is the use of immune checkpoint inhibitors, which include PD-1/PD-L1 and CTLA-4 blockers. Cancer vaccines and CAR T-cell therapy are two examples of adoptive cell therapies that might be used to boost the immune system's ability to eliminate tumours. In order to improve surgical results and decrease recurrence, neoadjuvant immunotherapy is being investigated for its ability to preoperatively reduce tumours. Precision medicine tailors treatment based on individual genetic profiles and tumour features, boosting therapeutic efficacy and avoiding unwanted effects. For certain types of non-small cell lung cancer (NSCLC), targeted treatments based on mutations in genes including EGFR, ALK, and ROS1 have shown excellent results. When it comes to optimizing treatment regimens, biomarker-driven approaches guarantee that the patients most likely to benefit from particular medicines are selected. Artificial intelligence (AI) is revolutionizing lung cancer care through increased diagnostic accuracy, prognostic assessments, and therapy planning. Machine learning algorithms examine enormous information to detect trends and forecast outcomes, permitting individualized treatment techniques. AI-driven imaging tools enable early diagnosis and monitoring of disease progression, while predictive models assist in evaluating therapy responses and potential toxicity. The convergence of these advanced technologies holds promise for overcoming the constraints of conventional therapy. Combining immunotherapy with targeted treatments and utilizing AI for precision medicine delivers a multimodal approach that tackles the heterogeneous and dynamic nature of lung cancer. The incorporation of these new tactics into clinical practice demands cross-disciplinary collaboration and continuing study to develop and confirm their effectiveness. The synergistic application of immunotherapy, precision medicine, and AI constitutes a paradigm shift in lung cancer management. These discoveries provide a robust basis for individualized and adaptable therapy, potentially altering the prognosis for lung cancer patients. Ongoing research and clinical studies are vital to unlocking the full potential of these technologies, paving the way for enhanced therapeutic outcomes and improved quality of life for people battling this tough disease.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673347323241119184648
2025-01-14
2025-11-01
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. Archilla-OrtegaA. DomuroC. Martin-LiberalJ. MuñozP. Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity.J. Exp. Clin. Cancer Res.20224116210.1186/s13046‑022‑02264‑x35164813
    [Google Scholar]
  4. LiuY.T. SunZ.J. Turning cold tumors into hot tumors by improving T-cell infiltration.Theranostics202111115365538610.7150/thno.5839033859752
    [Google Scholar]
  5. RizzoA. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate.Br. J. Cancer202212781381138210.1038/s41416‑022‑01929‑w36064585
    [Google Scholar]
  6. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  7. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the Royal Marsden Hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers (Basel)20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  8. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  9. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  10. LiQ. ShiZ. ZhangF. ZengW. ZhuD. MeiL. Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle.Acta Pharm. Sin. B202212110713410.1016/j.apsb.2021.05.03135127375
    [Google Scholar]
  11. KuśnierczykP. Genetic differences between smokers and never-smokers with lung cancer.Front. Immunol.202314106371610.3389/fimmu.2023.106371636817482
    [Google Scholar]
  12. LauS.C.M. PanY. VelchetiV. WongK.K. Squamous cell lung cancer: Current landscape and future therapeutic options.Cancer Cell202240111279129310.1016/j.ccell.2022.09.01836270277
    [Google Scholar]
  13. KumarA. KumarA. Non-small-cell lung cancer-associated gene mutations and inhibitors.Advances in Cancer Biology - Metastasis2022610007610.1016/j.adcanc.2022.100076
    [Google Scholar]
  14. SieowB.F.L. WunK.S. YongW.P. HwangI.Y. ChangM.W. Tweak to treat: Reprograming bacteria for cancer treatment.Trends Cancer20217544746410.1016/j.trecan.2020.11.00433303401
    [Google Scholar]
  15. YangL. GuX. YuJ. GeS. FanX. Oncolytic Virotherapy: From bench to bedside.Front. Cell Dev. Biol.2021979015010.3389/fcell.2021.79015034901031
    [Google Scholar]
  16. DerosaL. RoutyB. ThomasA.M. IebbaV. ZalcmanG. FriardS. MazieresJ. Audigier-ValetteC. Moro-SibilotD. GoldwasserF. SilvaC.A.C. TerrisseS. BonvaletM. ScherpereelA. PegliascoH. RichardC. GhiringhelliF. ElkriefA. DesiletsA. Blanc-DurandF. CumboF. BlancoA. BoidotR. ChevrierS. DaillèreR. KroemerG. AllaL. PonsN. Le ChatelierE. GalleronN. RoumeH. DubuissonA. BouchardN. MessaoudeneM. DrubayD. DeutschE. BarlesiF. PlanchardD. SegataN. MartinezS. ZitvogelL. SoriaJ.C. BesseB. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer.Nat. Med.202228231532410.1038/s41591‑021‑01655‑535115705
    [Google Scholar]
  17. ChattopadhyayS. MyersR.R. JanesJ. ShubayevV. Cytokine regulation of MMP-9 in peripheral glia: Implications for pathological processes and pain in injured nerve.Brain Behav. Immun.200721556156810.1016/j.bbi.2006.10.01517189680
    [Google Scholar]
  18. HoebartJ. Exploring an oncolytic virus triggered PD-L1 response via immunoPET.PhD thesis2023
    [Google Scholar]
  19. DharR. SeethyA. SinghS. PethusamyK. SrivastavaT. TalukdarJ. RathG.K. KarmakarS. Cancer immunotherapy.J. Cancer Res. Ther.202117483484410.4103/jcrt.JCRT_1241_2034528529
    [Google Scholar]
  20. WenW. ZhangY. ZhangH. ChenY. Clinical outcomes of PD-1/PD-L1 inhibitors in patients with advanced hepatocellular carcinoma: A systematic review and meta- analysis.J. Cancer Res. Clin. Oncol.2023149396997810.1007/s00432‑022‑04057‑335771261
    [Google Scholar]
  21. RestrepoJ.C. DueñasD. CorredorZ. LiscanoY. Advances in genomic data and biomarkers: Revolutionizing NSCLC diagnosis and treatment.Cancers (Basel)20231513347410.3390/cancers1513347437444584
    [Google Scholar]
  22. WojtukiewiczM.Z. RekM.M. KarpowiczK. GórskaM. PolityńskaB. WojtukiewiczA.M. MoniuszkoM. RadziwonP. TuckerS.C. HonnK.V. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners.Cancer Metastasis Rev.202140394998210.1007/s10555‑021‑09976‑034236546
    [Google Scholar]
  23. BilusicM. What are the advantages of neoadjuvant immunotherapy over adjuvant immunotherapy?Expert Rev. Anticancer Ther.202222656156310.1080/14737140.2022.206909735473572
    [Google Scholar]
  24. XieH. ShiX. WangG. Neoadjuvant immunotherapy for resectable non-small cell lung cancer.Am. J. Cancer Res.20211162521253634249414
    [Google Scholar]
  25. ShiravandY. KhodadadiF. KashaniS.M.A. Hosseini-FardS.R. HosseiniS. SadeghiradH. LadwaR. O’ByrneK. KulasingheA. Immune checkpoint inhibitors in cancer therapy.Curr. Oncol.20222953044306010.3390/curroncol2905024735621637
    [Google Scholar]
  26. AguadoC. CharaL. AntoñanzasM. Matilla GonzalezJ.M. JiménezU. HernanzR. Mielgo-RubioX. Trujillo-ReyesJ.C. CouñagoF. Neoadjuvant treatment in non-small cell lung cancer: New perspectives with the incorporation of immunotherapy.World J. Clin. Oncol.202213531432210.5306/wjco.v13.i5.31435662985
    [Google Scholar]
  27. StefaniD. PlönesT. ViehofJ. DarwicheK. StuschkeM. SchulerM. AignerC. Lung cancer surgery after neoadjuvant immunotherapy.Cancers (Basel)20211316403310.3390/cancers1316403334439187
    [Google Scholar]
  28. TangT. HuangX. ZhangG. HongZ. BaiX. LiangT. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.Signal Transduct. Target. Ther.2021617210.1038/s41392‑020‑00449‑433608497
    [Google Scholar]
  29. ZhangH. YeL. YuX. JinK. WuW. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer.Front. Immunol.20221395698410.3389/fimmu.2022.95698436225934
    [Google Scholar]
  30. OlivierT. PrasadV. Neoadjuvant checkpoint inhibition in non-small cell lung cancer: Is earlier unquestionably better than later?Transl. Oncol.20222410150510.1016/j.tranon.2022.10150535953223
    [Google Scholar]
  31. TongB.C. GuL. WangX. WigleD.A. PhillipsJ.D. HarpoleD.H.Jr KlapperJ.A. SpornT. ReadyN.E. D’AmicoT.A. Perioperative outcomes of pulmonary resection after neoadjuvant pembrolizumab in patients with non–small cell lung cancer.J. Thorac. Cardiovasc. Surg.2022163242743610.1016/j.jtcvs.2021.02.09933985811
    [Google Scholar]
  32. SepesiB. ZhouN. WilliamW.N.Jr LinH.Y. LeungC.H. WeissferdtA. MitchellK.G. PataerA. WalshG.L. RiceD.C. RothJ.A. MehranR.J. HofstetterW.L. AntonoffM.B. RajaramR. NegraoM.V. TsaoA.S. GibbonsD.L. LeeJ.J. HeymachJ.V. VaporciyanA.A. SwisherS.G. CasconeT. Surgical outcomes after neoadjuvant nivolumab or nivolumab with ipilimumab in patients with non–small cell lung cancer.J. Thorac. Cardiovasc. Surg.202216451327133710.1016/j.jtcvs.2022.01.01935190177
    [Google Scholar]
  33. CasconeT. LeungC.H. WeissferdtA. PataerA. CarterB.W. GodoyM.C.B. FeldmanH. WilliamW.N.Jr XiY. BasuS. SunJ.J. YadavS.S. Rojas AlvarezF.R. LeeY. MishraA.K. ChenL. PradhanM. GuoH. SinjabA. ZhouN. NegraoM.V. LeX. GayC.M. TsaoA.S. ByersL.A. AltanM. GlissonB.S. FossellaF.V. ElaminY.Y. BlumenscheinG.Jr ZhangJ. SkoulidisF. WuJ. MehranR.J. RiceD.C. WalshG.L. HofstetterW.L. RajaramR. AntonoffM.B. FujimotoJ. SolisL.M. ParraE.R. HaymakerC. WistubaI.I. SwisherS.G. VaporciyanA.A. LinH.Y. WangJ. GibbonsD.L. Jack LeeJ. AjamiN.J. WargoJ.A. AllisonJ.P. SharmaP. KadaraH. HeymachJ.V. SepesiB. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: The phase 2 platform NEOSTAR trial.Nat. Med.202329359360410.1038/s41591‑022‑02189‑036928818
    [Google Scholar]
  34. TangS. QinC. HuH. LiuT. HeY. GuoH. YanH. ZhangJ. TangS. ZhouH. Immune checkpoint inhibitors in non-small cell lung cancer: Progress, challenges, and prospects.Cells202211332010.3390/cells1103032035159131
    [Google Scholar]
  35. ShahK. Al-HaidariA. SunJ. KaziJ.U. T cell receptor (TCR) signaling in health and disease.Signal Transduct. Target. Ther.20216141210.1038/s41392‑021‑00823‑w34897277
    [Google Scholar]
  36. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑532433532
    [Google Scholar]
  37. SobhaniN. Tardiel-CyrilD.R. DavtyanA. GeneraliD. RoudiR. LiY. CTLA-4 in regulatory T Cells for cancer immunotherapy.Cancers (Basel)2021136144010.3390/cancers1306144033809974
    [Google Scholar]
  38. KumarS. ChatterjeeM. GhoshP. GangulyK.K. BasuM. GhoshM.K. Targeting PD-1/PD-L1 in cancer immunotherapy: An effective strategy for treatment of triple-negative breast cancer (TNBC) patients.Genes Dis.20231041318135010.1016/j.gendis.2022.07.02437397537
    [Google Scholar]
  39. LisiL. LacalP.M. MartireM. NavarraP. GrazianiG. Clinical experience with CTLA-4 blockade for cancer immunotherapy: From the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment.Pharmacol. Res.202217510599710.1016/j.phrs.2021.10599734826600
    [Google Scholar]
  40. NajafiS. MortezaeeK. Advances in dendritic cell vaccination therapy of cancer.Biomed. Pharmacother.202316411495410.1016/j.biopha.2023.11495437257227
    [Google Scholar]
  41. WijfjesZ. van DalenF.J. Le GallC.M. VerdoesM.J.M.P. Controlling antigen fate in therapeutic cancer vaccines by targeting dendritic cell receptors.20232048264847
    [Google Scholar]
  42. MahakiH. Saeed ModagheghM.H. Nasr IsfahaniZ. The role of peptide-based tumor vaccines on cytokines of adaptive immunity.A review. Int. J. Pept. Res. Ther.20212725272542
    [Google Scholar]
  43. SpeiserD.E. ChijiokeO. SchaeubleK. MünzC. CD4+ T cells in cancer.Nat. Can.20234331732910.1038/s43018‑023‑00521‑236894637
    [Google Scholar]
  44. TruongC.S. YooS.Y. Oncolytic vaccinia virus in lung cancer vaccines.Vaccines202210224010.3390/vaccines1002024035214699
    [Google Scholar]
  45. FanT. ZhangM. YangJ. ZhuZ. CaoW. DongC. Therapeutic cancer vaccines: Advancements, challenges and prospects.Signal Transduct. Target. Ther.20238145010.1038/s41392‑023‑01674‑338086815
    [Google Scholar]
  46. LiuJ. FuM. WangM. WanD. WeiY. WeiX. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress.J. Hematol. Oncol.20221512810.1186/s13045‑022‑01247‑x35303904
    [Google Scholar]
  47. LiuD. CheX. WangX. MaC. WuG. Tumor vaccines: Unleashing the power of the immune system to fight cancer.Pharmaceuticals (Basel)20231610138410.3390/ph1610138437895855
    [Google Scholar]
  48. NaimiA. MohammedR.N. RajiA. ChupraditS. YumashevA.V. SuksatanW. ShalabyM.N. ThangaveluL. KamravaS. ShomaliN. SohrabiA.D. AdiliA. Noroozi-AghidehA. RazeghianE. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons.Cell Commun. Signal.20222014410.1186/s12964‑022‑00854‑y35392976
    [Google Scholar]
  49. KandraP. NandigamaR. EulB. HuberM. KoboldS. SeegerW. GrimmingerF. SavaiR. Utility and drawbacks of Chimeric Antigen receptor T cell (CAR-T) therapy in lung cancer.Front. Immunol.20221390356210.3389/fimmu.2022.90356235720364
    [Google Scholar]
  50. QuJ. MeiQ. ChenL. ZhouJ. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives.Cancer Immunol. Immunother.202170361963110.1007/s00262‑020‑02735‑033025047
    [Google Scholar]
  51. SoriaJ.C. OheY. VansteenkisteJ. ReungwetwattanaT. ChewaskulyongB. LeeK.H. DechaphunkulA. ImamuraF. NogamiN. KurataT. OkamotoI. ZhouC. ChoB.C. ChengY. ChoE.K. VoonP.J. PlanchardD. SuW.C. GrayJ.E. LeeS.M. HodgeR. MarottiM. RukazenkovY. RamalingamS.S. Osimertinib in untreated EGFR-mutated advanced non–small cell lung cancer.N. Engl. J. Med.2018378211312510.1056/NEJMoa171313729151359
    [Google Scholar]
  52. AlharbiK.S. Javed ShaikhM.A. AfzalO. Alfawaz AltamimiA.S. AlmalkiW.H. AlzareaS.I. KazmiI. Al-AbbasiF.A. SinghS.K. DuaK. GuptaG. An overview of epithelial growth factor receptor (EGFR) inhibitors in cancer therapy.Chem. Biol. Interact.202236611010810.1016/j.cbi.2022.11010836027944
    [Google Scholar]
  53. CaoB. LiuM. WangL. ZhuK. CaiM. ChenX. FengY. YangS. FuS. ZhiC. YeX. ZhangJ. ZhangZ. YangX. ZhaoM. WuQ. XuL. YangL. LianH. ZhaoQ. ZhangZ. Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non- small cell lung cancer.Nat. Commun.2022131620310.1038/s41467‑022‑33968‑536261437
    [Google Scholar]
  54. XiaoB.F. ZhangJ.T. ZhuY.G. CuiX.R. LuZ.M. YuB.T. WuN. Chimeric antigen receptor T-cell therapy in lung cancer: Potential and challenges.Front. Immunol.20211278277510.3389/fimmu.2021.78277534790207
    [Google Scholar]
  55. ChenL. ChenF. LiJ. PuY. YangC. WangY. LeiY. HuangY. CAR-T cell therapy for lung cancer: Potential and perspective.Thorac. Cancer202213788989910.1111/1759‑7714.1437535289077
    [Google Scholar]
  56. FaustJ.R. HamillD. KolbE.A. GopalakrishnapillaiA. BarweS.P. Mesothelin: An immunotherapeutic target beyond solid tumors.Cancers (Basel)2022146155010.3390/cancers1406155035326701
    [Google Scholar]
  57. LvJ. LiP. Mesothelin as a biomarker for targeted therapy.Biomark. Res.2019711810.1186/s40364‑019‑0169‑831463062
    [Google Scholar]
  58. ShenJ. SunX. ZhouJ. Insights into the role of Mesothelin as a diagnostic and therapeutic target in ovarian carcinoma.Front. Oncol.202010126310.3389/fonc.2020.0126332983962
    [Google Scholar]
  59. ChenW. ZhangZ. ZhangS. ZhuP. KoJ.K.S. YungK.K.L. MUC1: Structure, function, and clinic application in epithelial cancers.Int. J. Mol. Sci.20212212656710.3390/ijms2212656734207342
    [Google Scholar]
  60. GaoJ. McConnellM.J. YuB. LiJ. BalkoJ.M. BlackE.P. JohnsonJ.O. LloydM.C. AltiokS. HauraE.B. MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion.Int. J. Oncol.200935233734519578748
    [Google Scholar]
  61. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y36810079
    [Google Scholar]
  62. VathiotisI.A. GomatouG. StravopodisD.J. SyrigosN. Programmed death-Ligand 1 as a regulator of tumor progression and metastasis.Int. J. Mol. Sci.20212210538310.3390/ijms2210538334065396
    [Google Scholar]
  63. MortezaeeK. MajidpoorJ. Mechanisms of CD8+ T cell exclusion and dysfunction in cancer resistance to anti-PD-(L)1.Biomed. Pharmacother.202316311482410.1016/j.biopha.2023.11482437141735
    [Google Scholar]
  64. RustagiV. NagarG. MittalP. SinghA. SinghI.K. Receptor tyrosine kinase-like orphan receptors ROR1/2: Insights into the mechanism of action, inhibition, and therapeutic potential.Protein Kinase Inhibitors 597-621.Elsevier202210.1016/B978‑0‑323‑91287‑7.00018‑1
    [Google Scholar]
  65. IrmerB. EfingJ. ReitnauerL.E. AngenendtA. HeinrichsS. SchubertA. SchulzM. BinderC. TioJ. HansenU. GeyerC. GerwingM. BleckmannA. MenckK. Extracellular vesicle-associated tyrosine kinase-like orphan receptors ROR1 and ROR2 promote breast cancer progression.Cell Commun. Signal.202321117110.1186/s12964‑023‑01186‑137430307
    [Google Scholar]
  66. Osorio-RodríguezD.A. CamachoB.A. Ramírez-SeguraC. Anti-ROR1 CAR-T cells: Architecture and performance.Front. Med. (Lausanne)202310112102010.3389/fmed.2023.112102036873868
    [Google Scholar]
  67. AzariF. MeijerR.P.J. KennedyG.T. HannaA. ChangA. NadeemB. DinA. PèlegrinA. FrameryB. CaillerF. SullivanN.T. KucharczukJ. MartinL.W. VahrmeijerA.L. SinghalS. Carcinoembryonic antigen–related cell adhesion molecule type 5 receptor–targeted fluorescent intraoperative molecular imaging tracer for lung cancer.JAMA Netw. Open202361e225288510.1001/jamanetworkopen.2022.5288536705924
    [Google Scholar]
  68. MiaoT. DuL. XiaoW. MaoB. WangY. FuJ. Identification of survival-associated gene signature in lung cancer coexisting with COPD.Front. Oncol.20211160024310.3389/fonc.2021.60024333791201
    [Google Scholar]
  69. MaanssonC.T. HelstrupS. EbertE.B.F. MeldgaardP. SorensenB.S. Circulating immune response proteins predict the outcome following disease progression of osimertinib treated epidermal growth factor receptor-positive non-small-cell lung cancer patients.Transl. Lung Cancer Res.2023121142610.21037/tlcr‑22‑57736762069
    [Google Scholar]
  70. PangK. ShiZ.D. WeiL.Y. DongY. MaY.Y. WangW. WangG.Y. CaoM.Y. DongJ.J. ChenY.A. ZhangP. HaoL. XuH. PanD. ChenZ.S. HanC.H. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade.Drug Resist. Updat.20236610090710.1016/j.drup.2022.10090736527888
    [Google Scholar]
  71. JiangW. PanS. ChenX. WangZ. ZhuX. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy.Mol. Cancer202120111610.1186/s12943‑021‑01406‑734496886
    [Google Scholar]
  72. LabaS. MallettG. AmarnathS. The depths of PD-1 function within the tumor microenvironment beyond CD8+ T cells.Semin. Cancer. Biol.202286Pt 210451055
    [Google Scholar]
  73. GrantM.J. HerbstR.S. GoldbergS.B. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC.Nat. Rev. Clin. Oncol.2021181062564410.1038/s41571‑021‑00520‑134168333
    [Google Scholar]
  74. WangY. ZhangT. HuangY. LiW. ZhaoJ. YangY. LiC. WangL. BiN. Real-world safety and efficacy of consolidation durvalumab after chemoradiation therapy for stage III non-small cell lung cancer: A systematic review and meta-analysis.Int. J. Radiat. Oncol. Biol. Phys.202211251154116410.1016/j.ijrobp.2021.12.15034963558
    [Google Scholar]
  75. RicciutiB. WangX. AlessiJ.V. RizviH. MahadevanN.R. LiY.Y. PolioA. LindsayJ. UmetonR. SinhaR. VokesN.I. RecondoG. LambertiG. LawrenceM. VazV.R. LeonardiG.C. PlodkowskiA.J. GuptaH. CherniackA.D. TolstorukovM.Y. SharmaB. FeltK.D. GainorJ.F. RaviA. GetzG. SchalperK.A. HenickB. FordeP. AnagnostouV. JänneP.A. Van AllenE.M. NishinoM. ShollL.M. ChristianiD.C. LinX. RodigS.J. HellmannM.D. AwadM.M. Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels.JAMA Oncol.2022881160116810.1001/jamaoncol.2022.198135708671
    [Google Scholar]
  76. SanghaviN. FarwaU. KhurshidF. HusainH. Landscape of immunotherapy in lung cancer.Cancer Metastasis Through the Lymphovascular System.Springer202271972710.1007/978‑3‑030‑93084‑4_68
    [Google Scholar]
  77. HalbertB. EinsteinD.J. Hot or not: Tumor mutational burden (TMB) as a biomarker of immunotherapy response in genitourinary cancers.Urology202114711912610.1016/j.urology.2020.10.03033137348
    [Google Scholar]
  78. Meri-AbadM. Moreno-ManuelA. GarcíaS.G. Calabuig-FariñasS. PérezR.S. HerreroC.C. Jantus-LewintreE. Clinical and technical insights of tumour mutational burden in non-small cell lung cancer.Crit. Rev. Oncol. Hematol.202318210389110.1016/j.critrevonc.2022.10389136565893
    [Google Scholar]
  79. Kaler, A.K.; Maskomani, S.; Kavyashree, R.; Vadera, V.; Choudhary, V.; Shaikh, I.; Goyle, S.; Mistry, R. Evolution of biomarkers and treatment outcomes of immunotherapy in lung cancer.Current Tissue Microenvironment Reports.202344163
    [Google Scholar]
  80. GilsonP. MerlinJ.L. HarléA. Detection of microsatellite instability: State of the art and future applications in circulating tumour.Cancers (Basel)2021137149110.3390/cancers1307149133804907
    [Google Scholar]
  81. ZengZ. YangB. LiaoZ. Biomarkers in immunotherapy-based precision treatments of digestive system tumors.Front. Oncol.20211165048110.3389/fonc.2021.65048133777812
    [Google Scholar]
  82. MottaR. Cabezas-CamareroS. Torres-MattosC. RiquelmeA. CalleA. FigueroaA. SoteloM.J. Immunotherapy in microsatellite instability metastatic colorectal cancer: Current status and future perspectives.20217451152234541365
    [Google Scholar]
  83. HorinouchiH. NogamiN. SakaH. NishioM. TokitoT. TakahashiT. KasaharaK. HattoriY. IchiharaE. AdachiN. NoguchiK. SouzaF. KurataT. Pembrolizumab plus pemetrexed-platinum for metastatic nonsquamous non–small-cell lung cancer: KEYNOTE-189 Japan study.Cancer Sci.202111283255326510.1111/cas.1498034036692
    [Google Scholar]
  84. NogamiN. BarlesiF. SocinskiM.A. ReckM. ThomasC.A. CappuzzoF. MokT.S.K. FinleyG. AertsJ.G. OrlandiF. Moro-SibilotD. JotteR.M. StroyakovskiyD. VillaruzL.C. Rodríguez-AbreuD. Wan-Teck LimD. MerrittD. ColemanS. LeeA. ShankarG. YuW. BaraI. NishioM. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain.J. Thorac. Oncol.202217230932310.1016/j.jtho.2021.09.01434626838
    [Google Scholar]
  85. ManJ. MillicanJ. MulveyA. GebskiV. HuiR. Response rate and survival at key timepoints with PD-1 blockade vs. chemotherapy in PD-L1 subgroups: Meta-analysis of metastatic NSCLC trials.JNCI Cancer Spectr.202153pkab01210.1093/jncics/pkab01234084999
    [Google Scholar]
  86. PowellS.F. Rodríguez-AbreuD. LangerC.J. TafreshiA. Paz-AresL. KoppH.G. Rodríguez-CidJ. KowalskiD.M. ChengY. KurataT. AwadM.M. LinJ. ZhaoB. PietanzaM.C. PiperdiB. GarassinoM.C. Outcomes with Pembrolizumab plus platinum-based chemotherapy for patients with NSCLC and stable brain Metastases: Pooled Analysis of KEYNOTE-021, -189, and -407.J. Thorac. Oncol.202116111883189210.1016/j.jtho.2021.06.02034265431
    [Google Scholar]
  87. WangL. YangY. YuJ. ZhangS. LiX. WuX. NieX. LiuW. ZhangP. LiY. LiA. AiB. Efficacy and safety of anti-PD-1/PD-L1 in combination with chemotherapy or not as first-line treatment for advanced non-small cell lung cancer: A systematic review and network meta-analysis.Thorac. Cancer202213332233710.1111/1759‑7714.1424434907661
    [Google Scholar]
  88. RebuzziS.E. FacchinettiF. TiseoM. Anti-angiogenesis boosts chemo-immunotherapy in patients with EGFR mutations or baseline liver metastases: Insights from IMpower150 study.Transl. Cancer Res.20198Suppl. 6S612S61710.21037/tcr.2019.06.2135117143
    [Google Scholar]
  89. SocinskiM.A. JotteR.M. CappuzzoF. NishioM. MokT.S.K. ReckM. FinleyG.G. KaulM.D. YuW. ParanthamanN. BāraI. WestH.J. Association of immune-related adverse events with efficacy of atezolizumab in patients with non–small cell lung cancer: Pooled analyses of the phase 3 IMpower130, IMpower132, and IMpower150 randomized clinical trials.JAMA Oncol.20239452753510.1001/jamaoncol.2022.771136795388
    [Google Scholar]
  90. SpigelD.R. Faivre-FinnC. GrayJ.E. VicenteD. PlanchardD. Paz-AresL. VansteenkisteJ.F. GarassinoM.C. HuiR. QuantinX. RimnerA. WuY.L. ÖzgüroğluM. LeeK.H. KatoT. de WitM. KurataT. ReckM. ChoB.C. SenanS. NaidooJ. MannH. NewtonM. ThiyagarajahP. AntoniaS.J. Five-year survival outcomes from the PACIFIC trial: Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer.J. Clin. Oncol.202240121301131110.1200/JCO.21.0130835108059
    [Google Scholar]
  91. BrahmerJ.R. LeeJ.S. CiuleanuT.E. Bernabe CaroR. NishioM. UrbanL. Audigier-ValetteC. LupinacciL. SanghaR. PluzanskiA. BurgersJ. MahaveM. AhmedS. SchoenfeldA.J. Paz-AresL.G. ReckM. BorghaeiH. O’ByrneK.J. GuptaR.G. BushongJ. LiL. BlumS.I. EcclesL.J. RamalingamS.S. Five-year survival outcomes with Nivolumab plus Ipilimumab versus chemotherapy as first-line treatment for metastatic non– small-cell lung cancer in CheckMate 227.J. Clin. Oncol.20234161200121210.1200/JCO.22.0150336223558
    [Google Scholar]
  92. MemmottR.M. WolfeA.R. CarboneD.P. WilliamsT.M. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors.J. Thorac. Oncol.20211671086109810.1016/j.jtho.2021.03.01733845212
    [Google Scholar]
  93. SantarpiaM. CiappinaG. SpagnoloC.C. SqueriA. PassalacquaM.I. AguilarA. Gonzalez-CaoM. GiovannettiE. SilvestrisN. RosellR. Targeted therapies for KRAS-mutant non-small cell lung cancer: From preclinical studies to clinical development—a narrative review.Transl. Lung Cancer Res.202312234636810.21037/tlcr‑22‑63936895930
    [Google Scholar]
  94. HuangC.C. LaiC.Y. TsaiC.H. WangJ.Y. WongR.H. Combined effects of cigarette smoking, DNA methyltransferase 3B genetic polymorphism, and DNA damage on lung cancer.BMC Cancer2021211106610.1186/s12885‑021‑08800‑w34587932
    [Google Scholar]
  95. PeyraudF. ItalianoA. Combined PARP inhibition and immune checkpoint therapy in solid tumors.Cancers (Basel)2020126150210.3390/cancers1206150232526888
    [Google Scholar]
  96. XieH. WangW. QiW. JinW. XiaB. Targeting DNA repair response promotes immunotherapy in ovarian cancer: Rationale and clinical application.Front. Immunol.20211266111510.3389/fimmu.2021.66111534712221
    [Google Scholar]
  97. MamdaniH. MatosevicS. KhalidA.B. DurmG. JalalS.I. Immunotherapy in lung cancer: Current landscape and future directions.Front. Immunol.20221382361810.3389/fimmu.2022.82361835222404
    [Google Scholar]
  98. ZhangZ. LiuX. ChenD. YuJ. Radiotherapy combined with immunotherapy: The dawn of cancer treatment.Signal Transduct. Target. Ther.20227125810.1038/s41392‑022‑01102‑y35906199
    [Google Scholar]
  99. SugimotoT. FujimotoD. SatoY. TamiyaM. YokoiT. TamiyaA. IwasawaS. HataA. UchidaJ. FukudaY. HaraS. KanazuM. HiranoK. KokuboM. YamamotoN. Durvalumab for patients with unresectable stage III non-small cell lung cancer and grade 1 radiation pneumonitis following concurrent chemoradiotherapy: A multicenter prospective cohort study.Invest. New Drugs202139385385910.1007/s10637‑020‑01060‑833405089
    [Google Scholar]
  100. SugimotoT. FujimotoD. SatoY. TamiyaM. YokoiT. TaniguchiY. HinoA. HataA. UchidaJ. FukudaY. HaraS. KanazuM. MatsumotoH. KokuboM. YamamotoN. Prospective multicenter cohort study of durvalumab for patients with unresectable stage III non-small cell lung cancer and grade 1 radiation pneumonitis.Lung Cancer20221713810.1016/j.lungcan.2022.07.00535863254
    [Google Scholar]
  101. LuoW. WangZ. ZhangT. YangL. XianJ. LiY. LiW. Immunotherapy in non-small cell lung cancer: Rationale, recent advances and future perspectives.Precis. Clin. Med.20214425827010.1093/pcmedi/pbab02735692863
    [Google Scholar]
  102. OlsenT.A. ZhuangT.Z. CaulfieldS. MartiniD.J. BrownJ.T. CarthonB.C. KucukO. HarrisW. BilenM.A. NazhaB. Advances in knowledge and management of immune-related adverse events in cancer immunotherapy.Front. Endocrinol. (Lausanne)20221377991510.3389/fendo.2022.77991535392134
    [Google Scholar]
  103. CaniM. BironzoP. GarettoF. BuffoniL. CotogniP. Immune checkpoint inhibitors and opioids in patients with solid tumours: Is their association safe? A systematic literature review.Healthcare (Basel)202211111610.3390/healthcare1101011636611575
    [Google Scholar]
  104. BradleyA. BolandJ.W. Effects of opioids on immune and Endocrine function in patients with cancer pain.Curr. Treat. Options Oncol.202324786787910.1007/s11864‑023‑01091‑237145383
    [Google Scholar]
  105. SmithK. WangM. AbdukalikovR. Pain management considerations in patients with Opioid use disorder requiring critical care.J. Clin. Pharmacol.2022624449462
    [Google Scholar]
  106. LuoB. ZhangY. ZhangC. LiuX. ShiC. Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors.Cancer Lett.2021509536210.1016/j.canlet.2021.04.00133845122
    [Google Scholar]
  107. WuM. HuangQ. XieY. WuX. MaH. ZhangY. XiaY. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation.J. Hematol. Oncol.20221512410.1186/s13045‑022‑01242‑235279217
    [Google Scholar]
  108. MatsonV. ChervinC.S. GajewskiT.F. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy.Gastroenterology2021160260061310.1053/j.gastro.2020.11.04133253684
    [Google Scholar]
  109. PinatoD.J. LiX. Mishra-KalyaniP. D’AlessioA. FulgenziC.A.M. ScheinerB. PinterM. WeiG. SchneiderJ. RiveraD.R. PazdurR. TheoretM.R. CasakS. LemeryS. Fashoyin-AjeL. CortelliniA. PelosofL. Association between antibiotics and adverse oncological outcomes in patients receiving targeted or immune-based therapy for hepatocellular carcinoma.JHEP Reports20235610074710.1016/j.jhepr.2023.10074737197442
    [Google Scholar]
  110. ChortiE. KowallB. HasselJ.C. SchillingB. SachseM. GutzmerR. LoquaiC. KählerK.C. HüsingA. GildeC. ThielmannC.M. Zaremba-MontenariA. PlackeJ.M. GratsiasE. MartakiA. RoeschA. UgurelS. SchadendorfD. LivingstoneE. StangA. ZimmerL. Association of antibiotic treatment with survival outcomes in treatment-naïve melanoma patients receiving immune checkpoint blockade.Eur. J. Cancer202420011353610.1016/j.ejca.2024.11353638306840
    [Google Scholar]
  111. NyeinA.F. BariS. HogueS. ZhaoY. MallerB. ShaS. GomezM.F. RollisonD.E. RobinsonL.A. Effect of prior antibiotic or chemotherapy treatment on immunotherapy response in non-small cell lung cancer.BMC Cancer202222110110.1186/s12885‑022‑09210‑235073876
    [Google Scholar]
  112. AttiliI. TarantinoP. PassaroA. StatiV. CuriglianoG. de MarinisF. Strategies to overcome resistance to immune checkpoint blockade in lung cancer.Lung Cancer202115415116010.1016/j.lungcan.2021.02.03533684660
    [Google Scholar]
  113. HiltbrunnerS. CordsL. KasserS. FreibergerS.N. KreutzerS. ToussaintN.C. GrobL. OpitzI. MesserliM. ZocheM. SoltermannA. RechsteinerM. van den BroekM. BodenmillerB. Curioni-FontecedroA. Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype.Nat. Commun.2023141515410.1038/s41467‑023‑40745‑537620318
    [Google Scholar]
  114. Czajka-FrancuzP. PrendesM.J. MankanA. QuintanaÁ. PablaS. RamkissoonS. JensenT.J. PeiróS. SeversonE.A. AchyutB.R. VidalL. PoelmanM. SainiK.S. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy.Front. Oncol.202313120064610.3389/fonc.2023.120064637427115
    [Google Scholar]
  115. YuanM. ZhaoY. ArkenauH.T. LaoT. ChuL. XuQ. Signal pathways and precision therapy of small-cell lung cancer.Signal Transduct. Target. Ther.20227118710.1038/s41392‑022‑01013‑y35705538
    [Google Scholar]
  116. GuoC. KongL. XiaoL. LiuK. CuiH. XinQ. GuX. JiangC. WuJ. The impact of the gut microbiome on tumor immunotherapy: From mechanism to application strategies.Cell Biosci.202313118810.1186/s13578‑023‑01135‑y37828613
    [Google Scholar]
  117. ShiT. LiuK. PengY. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis.Cardiovasc. Drugs Ther.202438597799737178241
    [Google Scholar]
  118. KrishnamoorthyM. GerhardtL. Maleki VarekiS. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy.Cells2021105117010.3390/cells1005117034065010
    [Google Scholar]
  119. ShanshalM. CaimiP.F. AdjeiA.A. MaW.W. T-cell engagers in solid cancers-current landscape and future directions.Cancers (Basel)20231510282410.3390/cancers1510282437345160
    [Google Scholar]
  120. DuS. YanJ. XueY. ZhongY. DongY. Adoptive cell therapy for cancer treatment.Exploration (Beijing)2023342021005810.1002/EXP.20210058
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673347323241119184648
Loading
/content/journals/cmc/10.2174/0109298673347323241119184648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test