Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Lung cancer is the second malignant tumor in the world and is the most prevalent malignant tumor of the respiratory system. In lung cancer, the P2X7 receptor (P2X7R) is an important purinergic receptor. P2X7R is a class of ionotropic adenosine triphosphate (ATP)-gated receptors, which exists in many kinds of immune tissues and cells and is involved in tumorigenesis and progression. P2X7R is closely related to lung cancer and is expressed at higher levels in lung cancer than in normal lung tissue. P2X7R plays a critical regulatory function in lung cancer invasion and migration through multiple mechanisms of action and affects the proliferation and apoptosis of cancer cells in the lung. Antagonists of P2X7R can block its function, which in turn has a significant inhibitory effect on lung cancer cell development and progression. This paper details a comprehensive overview of the structure and function of P2X7R. It focuses on the impact and treatment potential of P2X7R in lung cancer invasion, migration, proliferation, and apoptosis, providing new ideas and a new basis for clinical lung cancer treatment and prognosis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331527240829080249
2024-09-09
2025-11-01
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SchabathM.B. CoteM.L. Cancer progress and priorities: Lung cancer.Cancer Epidemiol. Biomarkers Prev.201928101563157910.1158/1055‑9965.EPI‑19‑022131575553
    [Google Scholar]
  3. ZhaoD. DongY. DuanM. HeD. XieQ. PengW. CuiW. JiangJ. ChengY. ZhangH. TangF. ZhangC. GaoY. DuanC. Circadian gene ARNTL initiates circGUCY1A2 transcription to suppress non-small cell lung cancer progression via miR-200c-3p/PTEN signaling.J. Exp. Clin. Cancer Res.202342122910.1186/s13046‑023‑02791‑137667322
    [Google Scholar]
  4. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  5. NiJ. SiX. WangH. ZhangX. ZhangL. Prognostic biomarkers and immune cell infiltration characteristics in small cell lung cancer.Cancer Pathogenesis and Therapy202311182410.1016/j.cpt.2022.09.00438328611
    [Google Scholar]
  6. GuoY. YangL. LiuL. WeiJ. TengF. ZhangJ. ZhuY. XingP. LiJ. Comparative study of clinicopathological characteristics and prognosis between combined and pure small cell lung cancer ( SCLC ) after surgical resection.Thorac. Cancer202011102782279210.1111/1759‑7714.1359132779385
    [Google Scholar]
  7. LiY.S. JieG.L. WuY.L. Novel systemic therapies in the management of tyrosine kinase inhibitor-pretreated patients with epidermal growth factor receptor-mutant non-small-cell lung cancer.Ther. Adv. Med. Oncol.2023151758835923119372610.1177/1758835923119372637667782
    [Google Scholar]
  8. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  9. RalevicV. BurnstockG. Receptors for purines and pyrimidines.Pharmacol. Rev.19985034134929755289
    [Google Scholar]
  10. BurnstockG. Introduction to purinergic signaling.Methods Mol. Biol.2020204111510.1007/978‑1‑4939‑9717‑6_131646477
    [Google Scholar]
  11. Di VirgilioF. PelegrínP. Editorial overview: Purinergic P2X receptors in innate immunity and inflammation.Curr. Opin. Pharmacol.20194714114410.1016/j.coph.2019.05.00331200277
    [Google Scholar]
  12. AiY. WangH. LiuL. QiY. TangS. TangJ. ChenN. Purine and purinergic receptors in health and disease.MedComm202345e35910.1002/mco2.35937692109
    [Google Scholar]
  13. YuQ. WangX. LiX. BaiX. ZhaoR. PengX. Purinergic P2X7R as a potential target for pancreatic cancer.Clin. Transl. Oncol.20232582297230510.1007/s12094‑023‑03123‑736856920
    [Google Scholar]
  14. ZhuX. LiQ. SongW. PengX. ZhaoR. P2X7 receptor: a critical regulator and potential target for breast cancer.J. Mol. Med. (Berl.)202199334935810.1007/s00109‑021‑02041‑x33486566
    [Google Scholar]
  15. LiX. BaiX. TangY. QiaoC. ZhaoR. PengX. Research progress on the P2X7 receptor in liver injury and hepatocellular carcinoma.Chem. Biol. Drug Des.2023101379480810.1111/cbdd.1418236403102
    [Google Scholar]
  16. QiaoC. TangY. LiQ. ZhuX. PengX. ZhaoR. ATP-gated P2X7 receptor as a potential target for prostate cancer.Hum. Cell20223551346135410.1007/s13577‑022‑00729‑x35657562
    [Google Scholar]
  17. BaiX. LiX. QiaoC. TangY. ZhaoR. PengX. Progress in the relationship between P2X7R and colorectal cancer.Mol. Biol. Rep.20235021687169910.1007/s11033‑022‑07939‑436417079
    [Google Scholar]
  18. Gómez-VillafuertesR. García-HuertaP. Díaz-HernándezJ.I. Miras-PortugalM.T. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions.Sci. Rep.2015511841710.1038/srep1841726687764
    [Google Scholar]
  19. TangY. QiaoC. LiQ. ZhuX. ZhaoR. PengX. Research progress in the relationship between P2X7R and cervical cancer.Reprod. Sci.202330382383410.1007/s43032‑022‑01022‑w35799022
    [Google Scholar]
  20. ZhangW. HuC. ZhuZ. LuoH. Effect of P2X7 receptor on tumorigenesis and its pharmacological properties.Biomed. Pharmacother.202012510984410.1016/j.biopha.2020.10984432004973
    [Google Scholar]
  21. FerrariD. MalavasiF. AntonioliL. A Purinergic trail for metastases.Trends Pharmacol. Sci.201738327729010.1016/j.tips.2016.11.01027989503
    [Google Scholar]
  22. LiQ. ZhuX. SongW. PengX. ZhaoR. The P2X7 purinergic receptor: a potential therapeutic target for lung cancer.J. Cancer Res. Clin. Oncol.2020146112731274110.1007/s00432‑020‑03379‑432892231
    [Google Scholar]
  23. da Silva FerreiraN.C. AlvesL.A. Soares-BezerraR.J. Potential therapeutic applications of P2 receptor antagonists: From bench to clinical trials.Curr. Drug Targets201920991993710.2174/138945012066619021309592330760187
    [Google Scholar]
  24. De SalisS.K.F. LiL. ChenZ. LamK.W. SkarrattK.K. BalleT. FullerS.J. Alternatively spliced isoforms of the P2X7 receptor: Structure, function and disease associations.Int. J. Mol. Sci.20222315817410.3390/ijms2315817435897750
    [Google Scholar]
  25. CaiX. YaoY. TengF. LiY. WuL. YanW. LinN. The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity.Int. Immunopharmacol.2021101108297
    [Google Scholar]
  26. Di VirgilioF. JiangL.H. RogerS. FalzoniS. SartiA.C. Vultaggio-PomaV. ChiozziP. AdinolfiE. Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells.Methods Enzymol.201962911515010.1016/bs.mie.2019.07.04331727237
    [Google Scholar]
  27. YoungC.N.J. GóreckiD.C. P2RX7 purinoceptor as a therapeutic target-the second coming?Front Chem.2018624810.3389/fchem.2018.0024830003075
    [Google Scholar]
  28. ZhangR. LiN. ZhaoM. TangM. JiangX. CaiX. YeN. SuK. PengJ. ZhangX. WuW. YeH. From lead to clinic: A review of the structural design of P2X7R antagonists.Eur. J. Med. Chem.202325111523410.1016/j.ejmech.2023.11523436893624
    [Google Scholar]
  29. Ghafir El IdrissiI. PodlewskaS. AbateC. BojarskiA.J. LacivitaE. LeopoldoM. Structure-activity relationships and therapeutic potential of purinergic P2X7 receptor antagonists.Curr. Med. Chem.202431111361140310.2174/092986733066623040309453837013427
    [Google Scholar]
  30. BurnstockG. KnightG.E. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression.Purinergic Signal.201814111810.1007/s11302‑017‑9593‑029164451
    [Google Scholar]
  31. PurohitR. BeraA.K. Carboxyl terminus of Pannexin-1 plays a crucial role in P2X7 receptor-mediated signaling.Biochem. Biophys. Res. Commun.2023664202610.1016/j.bbrc.2023.04.08137130457
    [Google Scholar]
  32. LaraR. AdinolfiE. HarwoodC.A. PhilpottM. BardenJ.A. Di VirgilioF. McNultyS. P2X7 in cancer: From molecular mechanisms to therapeutics.Front. Pharmacol.20201179310.3389/fphar.2020.0079332581786
    [Google Scholar]
  33. FuriniF. GiulianiA.L. ParlatiM.E. GovoniM. Di VirgilioF. BortoluzziA. P2X7 receptor expression in patients with serositis related to systemic lupus erythematosus.Front. Pharmacol.20191043510.3389/fphar.2019.0043531110478
    [Google Scholar]
  34. DiezmosE.F. MarkusI. PereraD.S. GanS. ZhangL. SandowS.L. BertrandP.P. LiuL. Blockade of pannexin-1 channels and purinergic P2X7 receptors shows protective effects against cytokines-induced colitis of human colonic mucosa.Front. Pharmacol.2018986510.3389/fphar.2018.0086530127744
    [Google Scholar]
  35. BandaraV. FoengJ. GundsambuuB. NortonT.S. NapoliS. McPeakeD.J. TyllisT.S. Rohani-RadE. AbbottC. MillsS.J. TanL.Y. ThompsonE.J. WilletV.M. NikitarasV.J. ZhengJ. ComerfordI. JohnsonA. CoombsJ. OehlerM.K. RicciardelliC. CowinA.J. BonderC.S. JensenM. SadlonT.J. McCollS.R. BarryS.C. Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7.Nat. Commun.2023141554610.1038/s41467‑023‑41338‑y37684239
    [Google Scholar]
  36. AdinolfiE. CallegariM.G. FerrariD. BolognesiC. MinelliM. WieckowskiM.R. PintonP. RizzutoR. Di VirgilioF. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth.Mol. Biol. Cell20051673260327210.1091/mbc.e04‑11‑102515901833
    [Google Scholar]
  37. Di VirgilioF. FerrariD. AdinolfiE. P2X7: a growth-promoting receptor-implications for cancer.Purinergic Signal.20095225125610.1007/s11302‑009‑9145‑319263244
    [Google Scholar]
  38. AdinolfiE. CallegariM.G. CirilloM. PintonP. GiorgiC. CavagnaD. RizzutoR. Di VirgilioF. Expression of the P2X7 receptor increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1, and protects from apoptosis.J. Biol. Chem.200928415101201012810.1074/jbc.M80580520019204004
    [Google Scholar]
  39. GiannuzzoA. SaccomanoM. NappJ. EllegaardM. AlvesF. NovakI. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells.Int. J. Cancer2016139112540255210.1002/ijc.3038027513892
    [Google Scholar]
  40. JiZ. XieY. GuanY. ZhangY. ChoK.S. JiM. YouY. Involvement of P2X7 receptor in proliferation and migration of human glioma cells.BioMed Res. Int.2018201811210.1155/2018/859139729546069
    [Google Scholar]
  41. XiaJ. YuX. TangL. LiG. HeT. P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway.Oncol. Rep.201534110311010.3892/or.2015.397925976617
    [Google Scholar]
  42. ParkM. KimJ. PhuongN.T.T. ParkJ.G. ParkJ.H. KimY.C. BaekM.C. LimS.C. KangK.W. Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production.Sci. Rep.2019911158710.1038/s41598‑019‑47734‑z31406126
    [Google Scholar]
  43. RaffaghelloL. ChiozziP. FalzoniS. Di VirgilioF. PistoiaV. The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism.Cancer Res.200666290791410.1158/0008‑5472.CAN‑05‑318516424024
    [Google Scholar]
  44. ShinY.H. KimM. KimN. ChoiS.K. NamkoongE. ChoiS.Y. LeeJ.H. ChaS. ParkK. Epigenetic alteration of the purinergic type 7 receptor in salivary epithelial cells.Biochem. Biophys. Res. Commun.2015466470471010.1016/j.bbrc.2015.09.09526399685
    [Google Scholar]
  45. ZhangY. ChengH. LiW. WuH. YangY. Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling.Int. J. Cancer201914541068108210.1002/ijc.3220730761524
    [Google Scholar]
  46. VirgilioF.D. ChiozziP. FalzoniS. FerrariD. SanzJ.M. VenketaramanV. BaricordiO.R. Cytolytic P2X purinoceptors.Cell Death Differ.19985319119910.1038/sj.cdd.440034110200464
    [Google Scholar]
  47. de Andrade MelloP. BianS. SavioL.E.B. ZhangH. ZhangJ. JungerW. WinkM.R. LenzG. BuffonA. WuY. RobsonS.C. Hyperthermia and associated changes in membrane fluidity potentiate P2X7 activation to promote tumor cell death.Oncotarget2017840672546726810.18632/oncotarget.1859528978031
    [Google Scholar]
  48. WhiteN. ButlerP.E.M. BurnstockG. Human melanomas express functional P2X7 receptors.Cell Tissue Res.2005321341141810.1007/s00441‑005‑1149‑x15991050
    [Google Scholar]
  49. BianS. SunX. BaiA. ZhangC. LiL. EnjyojiK. JungerW.G. RobsonS.C. WuY. WuY. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death.PLoS One201384e6018410.1371/journal.pone.006018423565201
    [Google Scholar]
  50. SantosA.A.Jr CappellariA.R. de MarchiF.O. GehringM.P. ZaparteA. BrandãoC.A. LopesT.G. da SilvaV.D. PintoL.F.R. SavioL.E.B. Moreira- SouzaA.C.A. Coutinho-SilvaR. PaccezJ.D. ZerbiniL.F. MorroneF.B. Potential role of P2X7R in esophageal squamous cell carcinoma proliferation.Purinergic Signal.201713327929210.1007/s11302‑017‑9559‑228397110
    [Google Scholar]
  51. Vultaggio-PomaV. SartiA.C. Di VirgilioF. ExtracellularA.T.P. Extracellular ATP: A feasible target for cancer therapy.Cells2020911249610.3390/cells911249633212982
    [Google Scholar]
  52. De MarchiE. OrioliE. PegoraroA. SangalettiS. PortararoP. CurtiA. ColomboM.P. Di VirgilioF. AdinolfiE. The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment.Oncogene201938193636365010.1038/s41388‑019‑0684‑y30655604
    [Google Scholar]
  53. LiX. QiX. ZhouL. FuW. Abdul-KarimF.W. MacLennanG. GorodeskiG.I. P2X7 receptor expression is decreased in epithelial cancer cells of ectodermal, uro-genital sinus, and distal paramesonephric duct origin.Purinergic Signal.20095335136810.1007/s11302‑009‑9161‑319399640
    [Google Scholar]
  54. TakaiE. TsukimotoM. HaradaH. SawadaK. MoriyamaY. KojimaS. Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells.J. Cell Sci.2012125Pt 21jcs.10497610.1242/jcs.10497622946048
    [Google Scholar]
  55. TakaiE. TsukimotoM. HaradaH. KojimaS. Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells.Purinergic Signal.201410348749710.1007/s11302‑014‑9411‑x24627191
    [Google Scholar]
  56. SchmidS. KüblerM. Korcan AyataC. LazarZ. HaagerB. HoßfeldM. MeyerA. CickoS. ElzeM. WiesemannS. ZisselG. PasslickB. IdzkoM. Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer.Lung Cancer201590351652110.1016/j.lungcan.2015.10.00526505137
    [Google Scholar]
  57. QinJ. ZhangX. TanB. ZhangS. YinC. XueQ. ZhangZ. RenH. ChenJ. LiuM. QianM. DuB. Blocking P2X7-mediated macrophage polarization overcomes treatment resistance in lung cancer.Cancer Immunol. Res.20208111426143910.1158/2326‑6066.CIR‑20‑012332933967
    [Google Scholar]
  58. BenzaquenJ. Dit HreichS.J. HeekeS. JuhelT. LalveeS. BauwensS. SaccaniS. LenormandP. HofmanV. ButoriM. LeroyS. BerthetJ.P. MarquetteC.H. HofmanP. Vouret-CraviariV. P2RX7B is a new theranostic marker for lung adenocarcinoma patients.Theranostics20201024108491086010.7150/thno.4822933042257
    [Google Scholar]
  59. WennerbergE. MukherjeeS. SpadaS. HungC. AgrusaC.J. ChenC. Valeta-MagaraA. RudqvistN.P. Van NestS.J. KamelM.K. NasarA. NarulaN. MittalV. MarkowitzG.J. ZhouX.K. AdusumilliP.S. BorczukA.C. WhiteT.E. KhanA.G. BalderesP.J. LorenzI.C. AltorkiN. DemariaS. McGrawT.E. StilesB.M. Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non–small cell lung cancer.Sci. Transl. Med.202214636eabe819510.1126/scitranslmed.abe819535294260
    [Google Scholar]
  60. BoldriniL. GiordanoM. AlìG. ServadioA. PelliccioniS. NiccoliC. MussiA. FontaniniG. P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC).J. Negat. Results Biomed.20141311610.1186/1477‑5751‑13‑1625178922
    [Google Scholar]
  61. XuS. ShiL. High expression of miR-155 and miR-21 in the recurrence or metastasis of non-small cell lung cancer.Oncol. Lett.201918175876310.3892/ol.2019.1033731289551
    [Google Scholar]
  62. BoldriniL. GiordanoM. AlìG. MelfiF. RomanoG. LucchiM. FontaniniG. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value.Oncol. Lett.20159144945310.3892/ol.2014.262025436007
    [Google Scholar]
  63. GuoJ. YangP. LiY.F. TangJ.F. HeZ.X. YuS.G. YinH.Y. MicroR.N.A. MicroRNA: Crucial modulator in purinergic signalling involved diseases.Purinergic Signal.202319132934110.1007/s11302‑022‑09840‑y35106737
    [Google Scholar]
  64. BadeB.C. Dela CruzC.S. Lung cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.00132008623
    [Google Scholar]
  65. BaxterM. EltomS. DekkakB. Yew-BoothL. DubuisE.D. MaherS.A. BelvisiM.G. BirrellM.A. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung.Thorax201469121080108910.1136/thoraxjnl‑2014‑20546725301060
    [Google Scholar]
  66. BrownR. NathS. LoraA. SamahaG. ElgamalZ. KaiserR. TaggartC. WeldonS. GeraghtyP. CathepsinS. Investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics.Respir. Res.202021111110.1186/s12931‑020‑01381‑532398133
    [Google Scholar]
  67. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  68. BrennerD.R. McLaughlinJ.R. HungR.J. Previous lung diseases and lung cancer risk: a systematic review and meta-analysis.PLoS One201163e1747910.1371/journal.pone.001747921483846
    [Google Scholar]
  69. ThieryJ.P. AcloqueH. HuangR.Y.J. NietoM.A. Epithelial-mesenchymal transitions in development and disease.Cell2009139587189010.1016/j.cell.2009.11.00719945376
    [Google Scholar]
  70. NietoM.A. HuangR.Y.J. JacksonR.A. ThieryJ.P. Huang, Ruby Y.J.; Jackson, Rebecca A.; Thiery, Jean P., Emt: 2016.Cell20161661214510.1016/j.cell.2016.06.02827368099
    [Google Scholar]
  71. CaoY. WangX. LiY. EversM. ZhangH. ChenX. Extracellular and macropinocytosis internalized ATP work together to induce epithelial–mesenchymal transition and other early metastatic activities in lung cancer.Cancer Cell Int.201919125410.1186/s12935‑019‑0973‑031582910
    [Google Scholar]
  72. ChangY.W. WangC.C. YinC.F. WuC.H. HuangH.C. JuanH.F. Quantitative phosphoproteomics reveals ectopic ATP synthase on mesenchymal stem cells to promote tumor progression via ERK/c-Fos pathway activation.Mol. Cell. Proteomics202221610023710.1016/j.mcpro.2022.10023735439648
    [Google Scholar]
  73. GruschM. PetzM. MetznerT. OztürkD. SchnellerD. MikulitsW. The crosstalk of RAS with the TGF-β family during carcinoma progression and its implications for targeted cancer therapy.Curr. Cancer Drug Targets201010884985710.2174/15680091079335794320718708
    [Google Scholar]
  74. ZhangG. LiaoJ. LiuY. ZhuF. HuangH. ZhangW. Ion channel P2X7 receptor in the progression of cancer.Front. Oncol.202413129777510.3389/fonc.2023.129777538273855
    [Google Scholar]
  75. BaiX. LiQ. PengX. LiX. QiaoC. TangY. ZhaoR. P2X7 receptor promotes migration and invasion of non-small cell lung cancer A549 cells through the PI3K/Akt pathways.Purinergic Signal.202319468569710.1007/s11302‑023‑09928‑z36854856
    [Google Scholar]
  76. CuiX. WanB. YangY. XinY. XieY.C. GuoL.H. MantellL.L. Carbon nanomaterials stimulate HMGB1 release from macrophages and induce cell migration and invasion.Toxicol. Sci.2019172239841010.1093/toxsci/kfz19031504961
    [Google Scholar]
  77. WangX. WenS. DuX. ZhangY. YangX. ZouR. FengB. FuX. JiangF. ZhouG. LiuZ. ZhuW. MaR. FengJ. ShenB. SAA suppresses α-PD-1 induced anti-tumor immunity by driving TH2 polarization in lung adenocarcinoma.Cell Death Dis.2023141171810.1038/s41419‑023‑06198‑w37925492
    [Google Scholar]
  78. MusikaW. Kamsa-ArdS. JirapornkulC. SantongC. PhunmaneeA. Lung cancer survival with current therapies and new targeted treatments: A comprehensive update from the srinagarind hospital-based cancer registry from (2013 to 2017).Asian Pac. J. Cancer Prev.20212282501250710.31557/APJCP.2021.22.8.250134452564
    [Google Scholar]
  79. ZhaoX. LiuH.Z. ZhangY.Q. Effect of P2X7 receptor knock-out on bone cancer pain in mice.Sheng Li Xue Bao201668322423227350194
    [Google Scholar]
  80. SongS. JacobsonK.N. McDermottK.M. ReddyS.P. CressA.E. TangH. DudekS.M. BlackS.M. GarciaJ.G.N. MakinoA. YuanJ.X.J. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.Am. J. Physiol. Cell Physiol.20163102C99C11410.1152/ajpcell.00092.201526491047
    [Google Scholar]
  81. BalducciE. HoribaK. UsukiJ. ParkM. FerransV.J. MossJ. Selective expression of RT6 superfamily in human bronchial epithelial cells.Am. J. Respir. Cell Mol. Biol.199921333734610.1165/ajrcmb.21.3.363810460751
    [Google Scholar]
  82. StevensL.A. LevineR.L. GochuicoB.R. MossJ. ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine.Proc. Natl. Acad. Sci. USA200910647197961980010.1073/pnas.091063310619897717
    [Google Scholar]
  83. HuZ. LaiY. MaC. ZuoL. XiaoG. GaoH. XieB. HuangX. GanH. HuangD. YaoN. FengB. RuJ. ChenY. CaiD. Cordyceps militaris extract induces apoptosis and pyroptosis via caspase-3/PARP/GSDME pathways in A549 cell line.Food Sci. Nutr.2022101213810.1002/fsn3.263635035907
    [Google Scholar]
  84. HirschF.R. ScagliottiG.V. MulshineJ.L. KwonR. CurranW.J.Jr WuY.L. Paz-AresL. Lung cancer: current therapies and new targeted treatments.Lancet20173891006629931110.1016/S0140‑6736(16)30958‑827574741
    [Google Scholar]
  85. GovindanR. PageN. MorgenszternD. ReadW. TierneyR. VlahiotisA. SpitznagelE.L. PiccirilloJ. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database.J. Clin. Oncol.200624284539454410.1200/JCO.2005.04.485917008692
    [Google Scholar]
  86. NagasakaM. GadgeelS.M. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer.Expert Rev. Anticancer Ther.2018181637010.1080/14737140.2018.140962429168933
    [Google Scholar]
  87. JelassiB. ChantômeA. Alcaraz-PérezF. Baroja-MazoA. CayuelaM.L. PelegrinP. SurprenantA. RogerS. P2X7 receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness.Oncogene201130182108212210.1038/onc.2010.59321242969
    [Google Scholar]
  88. SchneiderG. GlaserT. LameuC. Abdelbaset-IsmailA. SellersZ.P. MoniuszkoM. UlrichH. RatajczakM.Z. Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells.Mol. Cancer201514120110.1186/s12943‑015‑0469‑z26597723
    [Google Scholar]
  89. DouguetL. Janho dit HreichS. BenzaquenJ. SeguinL. JuhelT. DezitterX. DurantonC. RyffelB. KanellopoulosJ. DelarasseC. RenaultN. FurmanC. HomerinG. FéralC. Cherfils-ViciniJ. MilletR. AdriouchS. GhinetA. HofmanP. Vouret-CraviariV. A small- molecule P2RX7 activator promotes anti-tumor immune responses and sensitizes lung tumor to immunotherapy.Nat. Commun.202112165310.1038/s41467‑021‑20912‑233510147
    [Google Scholar]
  90. JelassiB. AnchelinM. ChamoutonJ. CayuelaM.L. ClarysseL. LiJ. GoréJ. JiangL.H. RogerS. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors.Carcinogenesis20133471487149610.1093/carcin/bgt09923524196
    [Google Scholar]
  91. MiragliaE. HögbergJ. SteniusU. Statins exhibit anticancer effects through modifications of the pAkt signaling pathway.Int. J. Oncol.201240386787521994073
    [Google Scholar]
  92. MistafaO. HögbergJ. SteniusU. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells.Biochem. Biophys. Res. Commun.2008365113113610.1016/j.bbrc.2007.10.14817980145
    [Google Scholar]
  93. KitabatakeK. KajiT. TsukimotoM. ATP and ADP enhance DNA damage repair in γ-irradiated BEAS-2B human bronchial epithelial cells through activation of P2X7 and P2Y12 receptors.Toxicol. Appl. Pharmacol.202040711524010.1016/j.taap.2020.11524032941855
    [Google Scholar]
  94. FuZ. LinQ. HuB. ZhangY. ChenW. ZhuJ. ZhaoY. ChoiH.S. ShiH. ChengD. P2X7 PET radioligand 18 F-PTTP for differentiation of lung tumor from inflammation.J. Nucl. Med.201960793093610.2967/jnumed.118.22254730655332
    [Google Scholar]
  95. AndreettiC. MennaC. IbrahimM. CicconeA.M. D'AndrilliA. VenutaF. RendinaE.A. Postoperative pain control: videothoracoscopic versus conservative mini-thoracotomic approach.Euro. J. Cardio-Thoracic Surg.2014465907912
    [Google Scholar]
  96. MaJ. LiW. ChaiQ. TanX. ZhangK. Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer.Medicine (Baltimore)2019987e1444510.1097/MD.000000000001444530762755
    [Google Scholar]
  97. DutotM. OlivierE. FouyetS. MagnyR. HammadK. RoullandE. RatP. FagonR. In vitro chemopreventive potential of phlorotannins-rich extract from brown algae by inhibition of benzo[a]pyrene-induced P2X7 activation and toxic effects.Mar. Drugs20211913410.3390/md1901003433466689
    [Google Scholar]
  98. Di VirgilioF. Vultaggio-PomaV. FalzoniS. GiulianiA.L. The coming of age of the P2X7 receptor in diagnostic medicine.Int. J. Mol. Sci.20232411946510.3390/ijms2411946537298415
    [Google Scholar]
  99. ParkJ.H. WilliamsD.R. LeeJ.H. LeeS.D. LeeJ.H. KoH. LeeG.E. KimS. LeeJ.M. AbdelrahmanA. MüllerC.E. JungD.W. KimY.C. Potent suppressive effects of 1-piperidinylimidazole based novel P2X7 receptor antagonists on cancer cell migration and invasion.J. Med. Chem.201659167410743010.1021/acs.jmedchem.5b0169027427902
    [Google Scholar]
  100. De MarchiE. OrioliE. Dal BenD. AdinolfiE. P2X7 receptor as a therapeutic target.Adv. Protein Chem. Struct. Biol.2016104397910.1016/bs.apcsb.2015.11.00427038372
    [Google Scholar]
  101. AgtereschH.J. BurgersS.A. van der GaastA. Paul WilsonJ.H. DagnelieP.C. Randomized clinical trial of adenosine 5′-triphosphate on tumor growth and survival in advanced lung cancer patients.Anticancer Drugs200314863964410.1097/00001813‑200309000‑0000914501386
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331527240829080249
Loading
/content/journals/cmc/10.2174/0109298673331527240829080249
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; ATP; invasion; lung cancer; migration; P2X7R; P2X7R antagonist; proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test